CMSIS DSP library

Dependents:   KL25Z_FFT_Demo Hat_Board_v5_1 KL25Z_FFT_Demo_tony KL25Z_FFT_Demo_tony ... more

Fork of mbed-dsp by mbed official

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers arm_cfft_f32.c Source File

arm_cfft_f32.c

00001 /* ----------------------------------------------------------------------    
00002 * Copyright (C) 2010-2013 ARM Limited. All rights reserved.    
00003 *    
00004 * $Date:        17. January 2013  
00005 * $Revision:    V1.4.1  
00006 *    
00007 * Project:      CMSIS DSP Library    
00008 * Title:        arm_cfft_f32.c   
00009 *    
00010 * Description:  Combined Radix Decimation in Frequency CFFT Floating point processing function
00011 *    
00012 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
00013 *  
00014 * Redistribution and use in source and binary forms, with or without 
00015 * modification, are permitted provided that the following conditions
00016 * are met:
00017 *   - Redistributions of source code must retain the above copyright
00018 *     notice, this list of conditions and the following disclaimer.
00019 *   - Redistributions in binary form must reproduce the above copyright
00020 *     notice, this list of conditions and the following disclaimer in
00021 *     the documentation and/or other materials provided with the 
00022 *     distribution.
00023 *   - Neither the name of ARM LIMITED nor the names of its contributors
00024 *     may be used to endorse or promote products derived from this
00025 *     software without specific prior written permission.
00026 *
00027 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00028 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00029 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00030 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
00031 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
00032 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
00033 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
00034 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
00035 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00036 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
00037 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00038 * POSSIBILITY OF SUCH DAMAGE.   
00039 * -------------------------------------------------------------------- */
00040 
00041 
00042 #include "arm_math.h"
00043 #include "arm_common_tables.h"
00044 
00045 extern void arm_radix8_butterfly_f32(
00046   float32_t * pSrc,
00047   uint16_t fftLen,
00048   const float32_t * pCoef,
00049   uint16_t twidCoefModifier);
00050 
00051 extern void arm_bitreversal_32(
00052         uint32_t * pSrc,
00053         const uint16_t bitRevLen,
00054         const uint16_t * pBitRevTable);
00055 
00056 /**   
00057 * @ingroup groupTransforms   
00058 */
00059 
00060 /**   
00061 * @defgroup ComplexFFT Complex FFT Functions   
00062 *   
00063 * \par
00064 * The Fast Fourier Transform (FFT) is an efficient algorithm for computing the
00065 * Discrete Fourier Transform (DFT).  The FFT can be orders of magnitude faster
00066 * than the DFT, especially for long lengths.
00067 * The algorithms described in this section
00068 * operate on complex data.  A separate set of functions is devoted to handling
00069 * of real sequences.
00070 * \par
00071 * There are separate algorithms for handling floating-point, Q15, and Q31 data
00072 * types.  The algorithms available for each data type are described next.
00073 * \par
00074 * The FFT functions operate in-place.  That is, the array holding the input data
00075 * will also be used to hold the corresponding result.  The input data is complex
00076 * and contains <code>2*fftLen</code> interleaved values as shown below.
00077 * <pre> {real[0], imag[0], real[1], imag[1],..} </pre>
00078 * The FFT result will be contained in the same array and the frequency domain
00079 * values will have the same interleaving.
00080 *
00081 * \par Floating-point
00082 * The floating-point complex FFT uses a mixed-radix algorithm.  Multiple radix-8
00083 * stages are performed along with a single radix-2 or radix-4 stage, as needed.
00084 * The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses
00085 * a different twiddle factor table.  
00086 * \par
00087 * The function uses the standard FFT definition and output values may grow by a
00088 * factor of <code>fftLen</code> when computing the forward transform.  The
00089 * inverse transform includes a scale of <code>1/fftLen</code> as part of the
00090 * calculation and this matches the textbook definition of the inverse FFT.
00091 * \par
00092 * Preinitialized data structures containing twiddle factors and bit reversal
00093 * tables are provided and defined in <code>arm_const_structs.h</code>.  Include 
00094 * this header in your function and then pass one of the constant structures as 
00095 * an argument to arm_cfft_f32.  For example:
00096 * \par
00097 * <code>arm_cfft_f32(arm_cfft_sR_f32_len64, pSrc, 1, 1)</code>
00098 * \par
00099 * computes a 64-point inverse complex FFT including bit reversal.
00100 * The data structures are treated as constant data and not modified during the
00101 * calculation.  The same data structure can be reused for multiple transforms
00102 * including mixing forward and inverse transforms.
00103 * \par
00104 * Earlier releases of the library provided separate radix-2 and radix-4
00105 * algorithms that operated on floating-point data.  These functions are still
00106 * provided but are deprecated.  The older functions are slower and less general
00107 * than the new functions.
00108 * \par
00109 * An example of initialization of the constants for the arm_cfft_f32 function follows:
00110 * \par
00111 * const static arm_cfft_instance_f32 *S;
00112 * ...
00113 *       switch (length) {
00114 *           case 16:
00115 *               S = & arm_cfft_sR_f32_len16;
00116 *           break;
00117 *           case 32:
00118 *               S = & arm_cfft_sR_f32_len32;
00119 *           break;
00120 *           case 64:
00121 *               S = & arm_cfft_sR_f32_len64;
00122 *           break;
00123 *           case 128:
00124 *               S = & arm_cfft_sR_f32_len128;
00125 *           break;
00126 *           case 256:
00127 *               S = & arm_cfft_sR_f32_len256;
00128 *           break;
00129 *           case 512:
00130 *               S = & arm_cfft_sR_f32_len512;
00131 *           break;
00132 *           case 1024:
00133 *               S = & arm_cfft_sR_f32_len1024;
00134 *           break;
00135 *           case 2048:
00136 *               S = & arm_cfft_sR_f32_len2048;
00137 *           break;
00138 *           case 4096:
00139 *               S = & arm_cfft_sR_f32_len4096;
00140 *           break;
00141 *           }
00142 * \par Q15 and Q31
00143 * The library provides radix-2 and radix-4 FFT algorithms for fixed-point data.  The
00144 * radix-2 algorithm supports lengths of [16, 32, 64, ..., 4096].  The radix-4
00145 * algorithm supports lengths of [16, 64, 256, ..., 4096].  When possible, you
00146 * should use the radix-4 algorithm since it is faster than the radix-2 of the
00147 * same length.
00148 * \par
00149 * The forward FFTs include scaling in order to prevent results from overflowing.
00150 * Intermediate results are scaled down during each butterfly stage.  In the
00151 * radix-2 algorithm, a scale of 0.5 is applied during each butterfly.  In the
00152 * radix-4 algorithm, a scale of 0.25 is applied.  The scaling applies to both
00153 * the forward and the inverse FFTs.  Thus the forward FFT contains an additional
00154 * scale factor of <code>1/fftLen</code> as compared to the standard textbook
00155 * definition of the FFT.  The inverse FFT also scales down during each butterfly
00156 * stage and this corresponds to the standard textbook definition.
00157 * \par
00158 * A separate instance structure must be defined for each transform used but
00159 * twiddle factor and bit reversal tables can be reused.
00160 * \par 
00161 * There is also an associated initialization function for each data type.   
00162 * The initialization function performs the following operations:   
00163 * - Sets the values of the internal structure fields.   
00164 * - Initializes twiddle factor table and bit reversal table pointers.
00165 * \par   
00166 * Use of the initialization function is optional.   
00167 * However, if the initialization function is used, then the instance structure 
00168 * cannot be placed into a const data section. To place an instance structure 
00169 * into a const data section, the instance structure should be manually 
00170 * initialized as follows:
00171 * <pre>   
00172 *arm_cfft_radix2_instance_q31 S = {fftLen, ifftFlag, bitReverseFlag, pTwiddle, pBitRevTable, twidCoefModifier, bitRevFactor};   
00173 *arm_cfft_radix2_instance_q15 S = {fftLen, ifftFlag, bitReverseFlag, pTwiddle, pBitRevTable, twidCoefModifier, bitRevFactor};   
00174 *arm_cfft_radix4_instance_q31 S = {fftLen, ifftFlag, bitReverseFlag, pTwiddle, pBitRevTable, twidCoefModifier, bitRevFactor};    
00175 *arm_cfft_radix4_instance_q15 S = {fftLen, ifftFlag, bitReverseFlag, pTwiddle, pBitRevTable, twidCoefModifier, bitRevFactor};    
00176 *arm_cfft_instance_f32 S = {fftLen, pTwiddle, pBitRevTable, bitRevLength};
00177 * </pre>   
00178 * \par   
00179 * where <code>fftLen</code> length of CFFT/CIFFT; <code>ifftFlag</code> Flag for
00180 * selection of forward or inverse transform.  When ifftFlag is set the inverse
00181 * transform is calculated.
00182 * <code>bitReverseFlag</code> Flag for selection of output order (Set bitReverseFlag to output in normal order otherwise output in bit reversed order);    
00183 * <code>pTwiddle</code>points to array of twiddle coefficients; <code>pBitRevTable</code> points to the bit reversal table.   
00184 * <code>twidCoefModifier</code> modifier for twiddle factor table which supports all FFT lengths with same table;    
00185 * <code>pBitRevTable</code> modifier for bit reversal table which supports all FFT lengths with same table.   
00186 * <code>onebyfftLen</code> value of 1/fftLen to calculate CIFFT;
00187 * \par
00188 * The Q15 and Q31 FFT functions use a large bit reversal and twiddle factor
00189 * table.  The tables are defined for the maximum length transform and a subset
00190 * of the coefficients are used in shorter transforms.
00191 * 
00192 */
00193 
00194 void arm_cfft_radix8by2_f32( arm_cfft_instance_f32 * S, float32_t * p1) 
00195 {
00196    uint32_t    L  = S->fftLen;
00197    float32_t * pCol1, * pCol2, * pMid1, * pMid2;
00198    float32_t * p2 = p1 + L;
00199    const float32_t * tw = (float32_t *) S->pTwiddle;
00200    float32_t t1[4], t2[4], t3[4], t4[4], twR, twI;
00201    float32_t m0, m1, m2, m3;
00202    uint32_t l;
00203 
00204    pCol1 = p1;
00205    pCol2 = p2;
00206 
00207    //    Define new length
00208    L >>= 1;
00209    //    Initialize mid pointers
00210    pMid1 = p1 + L;
00211    pMid2 = p2 + L;
00212 
00213    // do two dot Fourier transform
00214    for ( l = L >> 2; l > 0; l-- ) 
00215    {
00216       t1[0] = p1[0];
00217       t1[1] = p1[1];
00218       t1[2] = p1[2];
00219       t1[3] = p1[3];
00220 
00221       t2[0] = p2[0];
00222       t2[1] = p2[1];
00223       t2[2] = p2[2];
00224       t2[3] = p2[3];
00225 
00226       t3[0] = pMid1[0];
00227       t3[1] = pMid1[1];
00228       t3[2] = pMid1[2];
00229       t3[3] = pMid1[3];
00230 
00231       t4[0] = pMid2[0];
00232       t4[1] = pMid2[1];
00233       t4[2] = pMid2[2];
00234       t4[3] = pMid2[3];
00235 
00236       *p1++ = t1[0] + t2[0];
00237       *p1++ = t1[1] + t2[1];
00238       *p1++ = t1[2] + t2[2];
00239       *p1++ = t1[3] + t2[3];    // col 1
00240 
00241       t2[0] = t1[0] - t2[0];
00242       t2[1] = t1[1] - t2[1];
00243       t2[2] = t1[2] - t2[2];
00244       t2[3] = t1[3] - t2[3];    // for col 2
00245 
00246       *pMid1++ = t3[0] + t4[0];
00247       *pMid1++ = t3[1] + t4[1];
00248       *pMid1++ = t3[2] + t4[2];
00249       *pMid1++ = t3[3] + t4[3]; // col 1
00250 
00251       t4[0] = t4[0] - t3[0];
00252       t4[1] = t4[1] - t3[1];
00253       t4[2] = t4[2] - t3[2];
00254       t4[3] = t4[3] - t3[3];    // for col 2
00255 
00256       twR = *tw++;
00257       twI = *tw++;
00258 
00259       // multiply by twiddle factors
00260       m0 = t2[0] * twR;
00261       m1 = t2[1] * twI;
00262       m2 = t2[1] * twR;
00263       m3 = t2[0] * twI;
00264       
00265       // R  =  R  *  Tr - I * Ti
00266       *p2++ = m0 + m1;
00267       // I  =  I  *  Tr + R * Ti
00268       *p2++ = m2 - m3;
00269       
00270       // use vertical symmetry
00271       //  0.9988 - 0.0491i <==> -0.0491 - 0.9988i
00272       m0 = t4[0] * twI;
00273       m1 = t4[1] * twR;
00274       m2 = t4[1] * twI;
00275       m3 = t4[0] * twR;
00276       
00277       *pMid2++ = m0 - m1;
00278       *pMid2++ = m2 + m3;
00279 
00280       twR = *tw++;
00281       twI = *tw++;
00282       
00283       m0 = t2[2] * twR;
00284       m1 = t2[3] * twI;
00285       m2 = t2[3] * twR;
00286       m3 = t2[2] * twI;
00287       
00288       *p2++ = m0 + m1;
00289       *p2++ = m2 - m3;
00290          
00291       m0 = t4[2] * twI;
00292       m1 = t4[3] * twR;
00293       m2 = t4[3] * twI;
00294       m3 = t4[2] * twR;
00295       
00296       *pMid2++ = m0 - m1;
00297       *pMid2++ = m2 + m3;
00298    }
00299 
00300    // first col
00301    arm_radix8_butterfly_f32( pCol1, L, (float32_t *) S->pTwiddle, 2u);
00302    // second col
00303    arm_radix8_butterfly_f32( pCol2, L, (float32_t *) S->pTwiddle, 2u);
00304    
00305 }
00306 
00307 void arm_cfft_radix8by4_f32( arm_cfft_instance_f32 * S, float32_t * p1) 
00308 {
00309    uint32_t    L  = S->fftLen >> 1;
00310    float32_t * pCol1, *pCol2, *pCol3, *pCol4, *pEnd1, *pEnd2, *pEnd3, *pEnd4;
00311     const float32_t *tw2, *tw3, *tw4;
00312    float32_t * p2 = p1 + L;
00313    float32_t * p3 = p2 + L;
00314    float32_t * p4 = p3 + L;
00315    float32_t t2[4], t3[4], t4[4], twR, twI;
00316    float32_t p1ap3_0, p1sp3_0, p1ap3_1, p1sp3_1;
00317    float32_t m0, m1, m2, m3;
00318    uint32_t l, twMod2, twMod3, twMod4;
00319 
00320    pCol1 = p1;         // points to real values by default
00321    pCol2 = p2;
00322    pCol3 = p3;
00323    pCol4 = p4;
00324    pEnd1 = p2 - 1;     // points to imaginary values by default
00325    pEnd2 = p3 - 1;
00326    pEnd3 = p4 - 1;
00327    pEnd4 = pEnd3 + L;
00328    
00329    tw2 = tw3 = tw4 = (float32_t *) S->pTwiddle;
00330    
00331    L >>= 1;
00332 
00333    // do four dot Fourier transform
00334 
00335    twMod2 = 2;
00336    twMod3 = 4;
00337    twMod4 = 6;
00338 
00339    // TOP
00340    p1ap3_0 = p1[0] + p3[0];
00341    p1sp3_0 = p1[0] - p3[0];
00342    p1ap3_1 = p1[1] + p3[1];
00343    p1sp3_1 = p1[1] - p3[1];
00344 
00345    // col 2
00346    t2[0] = p1sp3_0 + p2[1] - p4[1];
00347    t2[1] = p1sp3_1 - p2[0] + p4[0];
00348    // col 3
00349    t3[0] = p1ap3_0 - p2[0] - p4[0];
00350    t3[1] = p1ap3_1 - p2[1] - p4[1];
00351    // col 4
00352    t4[0] = p1sp3_0 - p2[1] + p4[1];
00353    t4[1] = p1sp3_1 + p2[0] - p4[0];
00354    // col 1
00355    *p1++ = p1ap3_0 + p2[0] + p4[0];
00356    *p1++ = p1ap3_1 + p2[1] + p4[1];
00357 
00358    // Twiddle factors are ones
00359    *p2++ = t2[0];
00360    *p2++ = t2[1];
00361    *p3++ = t3[0];
00362    *p3++ = t3[1];
00363    *p4++ = t4[0];
00364    *p4++ = t4[1];
00365    
00366    tw2 += twMod2;
00367    tw3 += twMod3;
00368    tw4 += twMod4;
00369    
00370    for (l = (L - 2) >> 1; l > 0; l-- ) 
00371    {
00372 
00373       // TOP
00374       p1ap3_0 = p1[0] + p3[0];
00375       p1sp3_0 = p1[0] - p3[0];
00376       p1ap3_1 = p1[1] + p3[1];
00377       p1sp3_1 = p1[1] - p3[1];
00378       // col 2
00379       t2[0] = p1sp3_0 + p2[1] - p4[1];
00380       t2[1] = p1sp3_1 - p2[0] + p4[0];
00381       // col 3
00382       t3[0] = p1ap3_0 - p2[0] - p4[0];
00383       t3[1] = p1ap3_1 - p2[1] - p4[1];
00384       // col 4
00385       t4[0] = p1sp3_0 - p2[1] + p4[1];
00386       t4[1] = p1sp3_1 + p2[0] - p4[0];
00387       // col 1 - top
00388       *p1++ = p1ap3_0 + p2[0] + p4[0];
00389       *p1++ = p1ap3_1 + p2[1] + p4[1];
00390 
00391       // BOTTOM
00392       p1ap3_1 = pEnd1[-1] + pEnd3[-1];
00393       p1sp3_1 = pEnd1[-1] - pEnd3[-1];
00394       p1ap3_0 = pEnd1[0] + pEnd3[0];
00395       p1sp3_0 = pEnd1[0] - pEnd3[0];
00396       // col 2
00397       t2[2] = pEnd2[0]  - pEnd4[0] + p1sp3_1;
00398       t2[3] = pEnd1[0] - pEnd3[0] - pEnd2[-1] + pEnd4[-1];
00399       // col 3
00400       t3[2] = p1ap3_1 - pEnd2[-1] - pEnd4[-1];
00401       t3[3] = p1ap3_0 - pEnd2[0]  - pEnd4[0];
00402       // col 4
00403       t4[2] = pEnd2[0]  - pEnd4[0]  - p1sp3_1;
00404       t4[3] = pEnd4[-1] - pEnd2[-1] - p1sp3_0;
00405       // col 1 - Bottom
00406       *pEnd1-- = p1ap3_0 + pEnd2[0] + pEnd4[0];
00407       *pEnd1-- = p1ap3_1 + pEnd2[-1] + pEnd4[-1];
00408 
00409       // COL 2
00410       // read twiddle factors
00411       twR = *tw2++;
00412       twI = *tw2++;
00413       // multiply by twiddle factors
00414       //  let    Z1 = a + i(b),   Z2 = c + i(d)
00415       //   =>  Z1 * Z2  =  (a*c - b*d) + i(b*c + a*d)
00416       // Top
00417       m0 = t2[0] * twR;
00418       m1 = t2[1] * twI;
00419       m2 = t2[1] * twR;
00420       m3 = t2[0] * twI;
00421       
00422       *p2++ = m0 + m1;
00423       *p2++ = m2 - m3;
00424       // use vertical symmetry col 2
00425       // 0.9997 - 0.0245i  <==>  0.0245 - 0.9997i
00426       // Bottom
00427       m0 = t2[3] * twI;
00428       m1 = t2[2] * twR;
00429       m2 = t2[2] * twI;
00430       m3 = t2[3] * twR;
00431       
00432       *pEnd2-- = m0 - m1;
00433       *pEnd2-- = m2 + m3;
00434 
00435       // COL 3
00436       twR = tw3[0];
00437       twI = tw3[1];
00438       tw3 += twMod3;
00439       // Top
00440       m0 = t3[0] * twR;
00441       m1 = t3[1] * twI;
00442       m2 = t3[1] * twR;
00443       m3 = t3[0] * twI;
00444       
00445       *p3++ = m0 + m1;
00446       *p3++ = m2 - m3;
00447       // use vertical symmetry col 3
00448       // 0.9988 - 0.0491i  <==>  -0.9988 - 0.0491i
00449       // Bottom
00450       m0 = -t3[3] * twR;
00451       m1 = t3[2] * twI;
00452       m2 = t3[2] * twR;
00453       m3 = t3[3] * twI;
00454       
00455       *pEnd3-- = m0 - m1;
00456       *pEnd3-- = m3 - m2;
00457       
00458       // COL 4
00459       twR = tw4[0];
00460       twI = tw4[1];
00461       tw4 += twMod4;
00462       // Top
00463       m0 = t4[0] * twR;
00464       m1 = t4[1] * twI;
00465       m2 = t4[1] * twR;
00466       m3 = t4[0] * twI;
00467       
00468       *p4++ = m0 + m1;
00469       *p4++ = m2 - m3;
00470       // use vertical symmetry col 4
00471       // 0.9973 - 0.0736i  <==>  -0.0736 + 0.9973i
00472       // Bottom
00473       m0 = t4[3] * twI;
00474       m1 = t4[2] * twR;
00475       m2 = t4[2] * twI;
00476       m3 = t4[3] * twR;
00477       
00478       *pEnd4-- = m0 - m1;
00479       *pEnd4-- = m2 + m3;
00480    }
00481 
00482    //MIDDLE
00483    // Twiddle factors are 
00484    //  1.0000  0.7071-0.7071i  -1.0000i  -0.7071-0.7071i
00485    p1ap3_0 = p1[0] + p3[0];
00486    p1sp3_0 = p1[0] - p3[0];
00487    p1ap3_1 = p1[1] + p3[1];
00488    p1sp3_1 = p1[1] - p3[1];
00489 
00490    // col 2
00491    t2[0] = p1sp3_0 + p2[1] - p4[1];
00492    t2[1] = p1sp3_1 - p2[0] + p4[0];
00493    // col 3
00494    t3[0] = p1ap3_0 - p2[0] - p4[0];
00495    t3[1] = p1ap3_1 - p2[1] - p4[1];
00496    // col 4
00497    t4[0] = p1sp3_0 - p2[1] + p4[1];
00498    t4[1] = p1sp3_1 + p2[0] - p4[0];
00499    // col 1 - Top
00500    *p1++ = p1ap3_0 + p2[0] + p4[0];
00501    *p1++ = p1ap3_1 + p2[1] + p4[1];
00502    
00503    // COL 2
00504    twR = tw2[0];
00505    twI = tw2[1];
00506    
00507    m0 = t2[0] * twR;
00508    m1 = t2[1] * twI;
00509    m2 = t2[1] * twR;
00510    m3 = t2[0] * twI;
00511    
00512    *p2++ = m0 + m1;
00513    *p2++ = m2 - m3;
00514       // COL 3
00515    twR = tw3[0];
00516    twI = tw3[1];
00517    
00518    m0 = t3[0] * twR;
00519    m1 = t3[1] * twI;
00520    m2 = t3[1] * twR;
00521    m3 = t3[0] * twI;
00522    
00523    *p3++ = m0 + m1;
00524    *p3++ = m2 - m3;
00525    // COL 4
00526    twR = tw4[0];
00527    twI = tw4[1];
00528    
00529    m0 = t4[0] * twR;
00530    m1 = t4[1] * twI;
00531    m2 = t4[1] * twR;
00532    m3 = t4[0] * twI;
00533    
00534    *p4++ = m0 + m1;
00535    *p4++ = m2 - m3;
00536 
00537    // first col
00538    arm_radix8_butterfly_f32( pCol1, L, (float32_t *) S->pTwiddle, 4u);
00539    // second col
00540    arm_radix8_butterfly_f32( pCol2, L, (float32_t *) S->pTwiddle, 4u);
00541    // third col
00542    arm_radix8_butterfly_f32( pCol3, L, (float32_t *) S->pTwiddle, 4u);
00543    // fourth col
00544    arm_radix8_butterfly_f32( pCol4, L, (float32_t *) S->pTwiddle, 4u);
00545 
00546 }
00547 
00548 /**
00549 * @addtogroup ComplexFFT   
00550 * @{   
00551 */
00552 
00553 /**   
00554 * @details   
00555 * @brief       Processing function for the floating-point complex FFT.
00556 * @param[in]      *S    points to an instance of the floating-point CFFT structure.  
00557 * @param[in, out] *p1   points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place.  
00558 * @param[in]     ifftFlag       flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.  
00559 * @param[in]     bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.  
00560 * @return none.  
00561 */
00562 
00563 void arm_cfft_f32( 
00564    const arm_cfft_instance_f32 * S, 
00565    float32_t * p1,
00566    uint8_t ifftFlag,
00567    uint8_t bitReverseFlag)
00568 {
00569 
00570    uint32_t  L = S->fftLen, l;
00571    float32_t invL, * pSrc;
00572 
00573   if(ifftFlag == 1u)
00574   {
00575       /*  Conjugate input data  */
00576       pSrc = p1 + 1;
00577       for(l=0; l<L; l++) {
00578           *pSrc = -*pSrc;
00579            pSrc += 2;
00580       }
00581   }
00582 
00583         switch (L) {
00584         case 16: 
00585         case 128:
00586         case 1024:
00587              arm_cfft_radix8by2_f32  ( (arm_cfft_instance_f32 *) S, p1);
00588              break;
00589         case 32:
00590         case 256:
00591         case 2048:
00592              arm_cfft_radix8by4_f32  ( (arm_cfft_instance_f32 *) S, p1);
00593              break;
00594         case 64:
00595         case 512:
00596         case 4096:
00597           arm_radix8_butterfly_f32( p1, L, (float32_t *) S->pTwiddle, 1);
00598              break;
00599         }  
00600 
00601     if( bitReverseFlag )
00602         arm_bitreversal_32((uint32_t*)p1,S->bitRevLength,S->pBitRevTable);
00603 
00604   if(ifftFlag == 1u)
00605   {
00606       invL = 1.0f/(float32_t)L;
00607       /*  Conjugate and scale output data */
00608       pSrc = p1;
00609       for(l=0; l<L; l++) {
00610          *pSrc++ *=   invL ;
00611          *pSrc  = -(*pSrc) * invL;
00612                  pSrc++;
00613       }
00614   }
00615 }
00616