CMSIS DSP library
Dependents: KL25Z_FFT_Demo Hat_Board_v5_1 KL25Z_FFT_Demo_tony KL25Z_FFT_Demo_tony ... more
Fork of mbed-dsp by
arm_biquad_cascade_df1_f32.c
00001 /* ---------------------------------------------------------------------- 00002 * Copyright (C) 2010-2013 ARM Limited. All rights reserved. 00003 * 00004 * $Date: 17. January 2013 00005 * $Revision: V1.4.1 00006 * 00007 * Project: CMSIS DSP Library 00008 * Title: arm_biquad_cascade_df1_f32.c 00009 * 00010 * Description: Processing function for the 00011 * floating-point Biquad cascade DirectFormI(DF1) filter. 00012 * 00013 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 00014 * 00015 * Redistribution and use in source and binary forms, with or without 00016 * modification, are permitted provided that the following conditions 00017 * are met: 00018 * - Redistributions of source code must retain the above copyright 00019 * notice, this list of conditions and the following disclaimer. 00020 * - Redistributions in binary form must reproduce the above copyright 00021 * notice, this list of conditions and the following disclaimer in 00022 * the documentation and/or other materials provided with the 00023 * distribution. 00024 * - Neither the name of ARM LIMITED nor the names of its contributors 00025 * may be used to endorse or promote products derived from this 00026 * software without specific prior written permission. 00027 * 00028 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00029 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00030 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00031 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00032 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00033 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00034 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00035 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00036 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00037 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00038 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00039 * POSSIBILITY OF SUCH DAMAGE. 00040 * -------------------------------------------------------------------- */ 00041 00042 #include "arm_math.h" 00043 00044 /** 00045 * @ingroup groupFilters 00046 */ 00047 00048 /** 00049 * @defgroup BiquadCascadeDF1 Biquad Cascade IIR Filters Using Direct Form I Structure 00050 * 00051 * This set of functions implements arbitrary order recursive (IIR) filters. 00052 * The filters are implemented as a cascade of second order Biquad sections. 00053 * The functions support Q15, Q31 and floating-point data types. 00054 * Fast version of Q15 and Q31 also supported on CortexM4 and Cortex-M3. 00055 * 00056 * The functions operate on blocks of input and output data and each call to the function 00057 * processes <code>blockSize</code> samples through the filter. 00058 * <code>pSrc</code> points to the array of input data and 00059 * <code>pDst</code> points to the array of output data. 00060 * Both arrays contain <code>blockSize</code> values. 00061 * 00062 * \par Algorithm 00063 * Each Biquad stage implements a second order filter using the difference equation: 00064 * <pre> 00065 * y[n] = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] 00066 * </pre> 00067 * A Direct Form I algorithm is used with 5 coefficients and 4 state variables per stage. 00068 * \image html Biquad.gif "Single Biquad filter stage" 00069 * Coefficients <code>b0, b1 and b2 </code> multiply the input signal <code>x[n]</code> and are referred to as the feedforward coefficients. 00070 * Coefficients <code>a1</code> and <code>a2</code> multiply the output signal <code>y[n]</code> and are referred to as the feedback coefficients. 00071 * Pay careful attention to the sign of the feedback coefficients. 00072 * Some design tools use the difference equation 00073 * <pre> 00074 * y[n] = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] - a1 * y[n-1] - a2 * y[n-2] 00075 * </pre> 00076 * In this case the feedback coefficients <code>a1</code> and <code>a2</code> must be negated when used with the CMSIS DSP Library. 00077 * 00078 * \par 00079 * Higher order filters are realized as a cascade of second order sections. 00080 * <code>numStages</code> refers to the number of second order stages used. 00081 * For example, an 8th order filter would be realized with <code>numStages=4</code> second order stages. 00082 * \image html BiquadCascade.gif "8th order filter using a cascade of Biquad stages" 00083 * A 9th order filter would be realized with <code>numStages=5</code> second order stages with the coefficients for one of the stages configured as a first order filter (<code>b2=0</code> and <code>a2=0</code>). 00084 * 00085 * \par 00086 * The <code>pState</code> points to state variables array. 00087 * Each Biquad stage has 4 state variables <code>x[n-1], x[n-2], y[n-1],</code> and <code>y[n-2]</code>. 00088 * The state variables are arranged in the <code>pState</code> array as: 00089 * <pre> 00090 * {x[n-1], x[n-2], y[n-1], y[n-2]} 00091 * </pre> 00092 * 00093 * \par 00094 * The 4 state variables for stage 1 are first, then the 4 state variables for stage 2, and so on. 00095 * The state array has a total length of <code>4*numStages</code> values. 00096 * The state variables are updated after each block of data is processed, the coefficients are untouched. 00097 * 00098 * \par Instance Structure 00099 * The coefficients and state variables for a filter are stored together in an instance data structure. 00100 * A separate instance structure must be defined for each filter. 00101 * Coefficient arrays may be shared among several instances while state variable arrays cannot be shared. 00102 * There are separate instance structure declarations for each of the 3 supported data types. 00103 * 00104 * \par Init Functions 00105 * There is also an associated initialization function for each data type. 00106 * The initialization function performs following operations: 00107 * - Sets the values of the internal structure fields. 00108 * - Zeros out the values in the state buffer. 00109 * To do this manually without calling the init function, assign the follow subfields of the instance structure: 00110 * numStages, pCoeffs, pState. Also set all of the values in pState to zero. 00111 * 00112 * \par 00113 * Use of the initialization function is optional. 00114 * However, if the initialization function is used, then the instance structure cannot be placed into a const data section. 00115 * To place an instance structure into a const data section, the instance structure must be manually initialized. 00116 * Set the values in the state buffer to zeros before static initialization. 00117 * The code below statically initializes each of the 3 different data type filter instance structures 00118 * <pre> 00119 * arm_biquad_casd_df1_inst_f32 S1 = {numStages, pState, pCoeffs}; 00120 * arm_biquad_casd_df1_inst_q15 S2 = {numStages, pState, pCoeffs, postShift}; 00121 * arm_biquad_casd_df1_inst_q31 S3 = {numStages, pState, pCoeffs, postShift}; 00122 * </pre> 00123 * where <code>numStages</code> is the number of Biquad stages in the filter; <code>pState</code> is the address of the state buffer; 00124 * <code>pCoeffs</code> is the address of the coefficient buffer; <code>postShift</code> shift to be applied. 00125 * 00126 * \par Fixed-Point Behavior 00127 * Care must be taken when using the Q15 and Q31 versions of the Biquad Cascade filter functions. 00128 * Following issues must be considered: 00129 * - Scaling of coefficients 00130 * - Filter gain 00131 * - Overflow and saturation 00132 * 00133 * \par 00134 * <b>Scaling of coefficients: </b> 00135 * Filter coefficients are represented as fractional values and 00136 * coefficients are restricted to lie in the range <code>[-1 +1)</code>. 00137 * The fixed-point functions have an additional scaling parameter <code>postShift</code> 00138 * which allow the filter coefficients to exceed the range <code>[+1 -1)</code>. 00139 * At the output of the filter's accumulator is a shift register which shifts the result by <code>postShift</code> bits. 00140 * \image html BiquadPostshift.gif "Fixed-point Biquad with shift by postShift bits after accumulator" 00141 * This essentially scales the filter coefficients by <code>2^postShift</code>. 00142 * For example, to realize the coefficients 00143 * <pre> 00144 * {1.5, -0.8, 1.2, 1.6, -0.9} 00145 * </pre> 00146 * set the pCoeffs array to: 00147 * <pre> 00148 * {0.75, -0.4, 0.6, 0.8, -0.45} 00149 * </pre> 00150 * and set <code>postShift=1</code> 00151 * 00152 * \par 00153 * <b>Filter gain: </b> 00154 * The frequency response of a Biquad filter is a function of its coefficients. 00155 * It is possible for the gain through the filter to exceed 1.0 meaning that the filter increases the amplitude of certain frequencies. 00156 * This means that an input signal with amplitude < 1.0 may result in an output > 1.0 and these are saturated or overflowed based on the implementation of the filter. 00157 * To avoid this behavior the filter needs to be scaled down such that its peak gain < 1.0 or the input signal must be scaled down so that the combination of input and filter are never overflowed. 00158 * 00159 * \par 00160 * <b>Overflow and saturation: </b> 00161 * For Q15 and Q31 versions, it is described separately as part of the function specific documentation below. 00162 */ 00163 00164 /** 00165 * @addtogroup BiquadCascadeDF1 00166 * @{ 00167 */ 00168 00169 /** 00170 * @param[in] *S points to an instance of the floating-point Biquad cascade structure. 00171 * @param[in] *pSrc points to the block of input data. 00172 * @param[out] *pDst points to the block of output data. 00173 * @param[in] blockSize number of samples to process per call. 00174 * @return none. 00175 * 00176 */ 00177 00178 void arm_biquad_cascade_df1_f32( 00179 const arm_biquad_casd_df1_inst_f32 * S, 00180 float32_t * pSrc, 00181 float32_t * pDst, 00182 uint32_t blockSize) 00183 { 00184 float32_t *pIn = pSrc; /* source pointer */ 00185 float32_t *pOut = pDst; /* destination pointer */ 00186 float32_t *pState = S->pState; /* pState pointer */ 00187 float32_t *pCoeffs = S->pCoeffs; /* coefficient pointer */ 00188 float32_t acc; /* Simulates the accumulator */ 00189 float32_t b0, b1, b2, a1, a2; /* Filter coefficients */ 00190 float32_t Xn1, Xn2, Yn1, Yn2; /* Filter pState variables */ 00191 float32_t Xn; /* temporary input */ 00192 uint32_t sample, stage = S->numStages; /* loop counters */ 00193 00194 00195 #ifndef ARM_MATH_CM0_FAMILY 00196 00197 /* Run the below code for Cortex-M4 and Cortex-M3 */ 00198 00199 do 00200 { 00201 /* Reading the coefficients */ 00202 b0 = *pCoeffs++; 00203 b1 = *pCoeffs++; 00204 b2 = *pCoeffs++; 00205 a1 = *pCoeffs++; 00206 a2 = *pCoeffs++; 00207 00208 /* Reading the pState values */ 00209 Xn1 = pState[0]; 00210 Xn2 = pState[1]; 00211 Yn1 = pState[2]; 00212 Yn2 = pState[3]; 00213 00214 /* Apply loop unrolling and compute 4 output values simultaneously. */ 00215 /* The variable acc hold output values that are being computed: 00216 * 00217 * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] 00218 * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] 00219 * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] 00220 * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] 00221 */ 00222 00223 sample = blockSize >> 2u; 00224 00225 /* First part of the processing with loop unrolling. Compute 4 outputs at a time. 00226 ** a second loop below computes the remaining 1 to 3 samples. */ 00227 while(sample > 0u) 00228 { 00229 /* Read the first input */ 00230 Xn = *pIn++; 00231 00232 /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ 00233 Yn2 = (b0 * Xn) + (b1 * Xn1) + (b2 * Xn2) + (a1 * Yn1) + (a2 * Yn2); 00234 00235 /* Store the result in the accumulator in the destination buffer. */ 00236 *pOut++ = Yn2; 00237 00238 /* Every time after the output is computed state should be updated. */ 00239 /* The states should be updated as: */ 00240 /* Xn2 = Xn1 */ 00241 /* Xn1 = Xn */ 00242 /* Yn2 = Yn1 */ 00243 /* Yn1 = acc */ 00244 00245 /* Read the second input */ 00246 Xn2 = *pIn++; 00247 00248 /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ 00249 Yn1 = (b0 * Xn2) + (b1 * Xn) + (b2 * Xn1) + (a1 * Yn2) + (a2 * Yn1); 00250 00251 /* Store the result in the accumulator in the destination buffer. */ 00252 *pOut++ = Yn1; 00253 00254 /* Every time after the output is computed state should be updated. */ 00255 /* The states should be updated as: */ 00256 /* Xn2 = Xn1 */ 00257 /* Xn1 = Xn */ 00258 /* Yn2 = Yn1 */ 00259 /* Yn1 = acc */ 00260 00261 /* Read the third input */ 00262 Xn1 = *pIn++; 00263 00264 /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ 00265 Yn2 = (b0 * Xn1) + (b1 * Xn2) + (b2 * Xn) + (a1 * Yn1) + (a2 * Yn2); 00266 00267 /* Store the result in the accumulator in the destination buffer. */ 00268 *pOut++ = Yn2; 00269 00270 /* Every time after the output is computed state should be updated. */ 00271 /* The states should be updated as: */ 00272 /* Xn2 = Xn1 */ 00273 /* Xn1 = Xn */ 00274 /* Yn2 = Yn1 */ 00275 /* Yn1 = acc */ 00276 00277 /* Read the forth input */ 00278 Xn = *pIn++; 00279 00280 /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ 00281 Yn1 = (b0 * Xn) + (b1 * Xn1) + (b2 * Xn2) + (a1 * Yn2) + (a2 * Yn1); 00282 00283 /* Store the result in the accumulator in the destination buffer. */ 00284 *pOut++ = Yn1; 00285 00286 /* Every time after the output is computed state should be updated. */ 00287 /* The states should be updated as: */ 00288 /* Xn2 = Xn1 */ 00289 /* Xn1 = Xn */ 00290 /* Yn2 = Yn1 */ 00291 /* Yn1 = acc */ 00292 Xn2 = Xn1; 00293 Xn1 = Xn; 00294 00295 /* decrement the loop counter */ 00296 sample--; 00297 00298 } 00299 00300 /* If the blockSize is not a multiple of 4, compute any remaining output samples here. 00301 ** No loop unrolling is used. */ 00302 sample = blockSize & 0x3u; 00303 00304 while(sample > 0u) 00305 { 00306 /* Read the input */ 00307 Xn = *pIn++; 00308 00309 /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ 00310 acc = (b0 * Xn) + (b1 * Xn1) + (b2 * Xn2) + (a1 * Yn1) + (a2 * Yn2); 00311 00312 /* Store the result in the accumulator in the destination buffer. */ 00313 *pOut++ = acc; 00314 00315 /* Every time after the output is computed state should be updated. */ 00316 /* The states should be updated as: */ 00317 /* Xn2 = Xn1 */ 00318 /* Xn1 = Xn */ 00319 /* Yn2 = Yn1 */ 00320 /* Yn1 = acc */ 00321 Xn2 = Xn1; 00322 Xn1 = Xn; 00323 Yn2 = Yn1; 00324 Yn1 = acc; 00325 00326 /* decrement the loop counter */ 00327 sample--; 00328 00329 } 00330 00331 /* Store the updated state variables back into the pState array */ 00332 *pState++ = Xn1; 00333 *pState++ = Xn2; 00334 *pState++ = Yn1; 00335 *pState++ = Yn2; 00336 00337 /* The first stage goes from the input buffer to the output buffer. */ 00338 /* Subsequent numStages occur in-place in the output buffer */ 00339 pIn = pDst; 00340 00341 /* Reset the output pointer */ 00342 pOut = pDst; 00343 00344 /* decrement the loop counter */ 00345 stage--; 00346 00347 } while(stage > 0u); 00348 00349 #else 00350 00351 /* Run the below code for Cortex-M0 */ 00352 00353 do 00354 { 00355 /* Reading the coefficients */ 00356 b0 = *pCoeffs++; 00357 b1 = *pCoeffs++; 00358 b2 = *pCoeffs++; 00359 a1 = *pCoeffs++; 00360 a2 = *pCoeffs++; 00361 00362 /* Reading the pState values */ 00363 Xn1 = pState[0]; 00364 Xn2 = pState[1]; 00365 Yn1 = pState[2]; 00366 Yn2 = pState[3]; 00367 00368 /* The variables acc holds the output value that is computed: 00369 * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] 00370 */ 00371 00372 sample = blockSize; 00373 00374 while(sample > 0u) 00375 { 00376 /* Read the input */ 00377 Xn = *pIn++; 00378 00379 /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ 00380 acc = (b0 * Xn) + (b1 * Xn1) + (b2 * Xn2) + (a1 * Yn1) + (a2 * Yn2); 00381 00382 /* Store the result in the accumulator in the destination buffer. */ 00383 *pOut++ = acc; 00384 00385 /* Every time after the output is computed state should be updated. */ 00386 /* The states should be updated as: */ 00387 /* Xn2 = Xn1 */ 00388 /* Xn1 = Xn */ 00389 /* Yn2 = Yn1 */ 00390 /* Yn1 = acc */ 00391 Xn2 = Xn1; 00392 Xn1 = Xn; 00393 Yn2 = Yn1; 00394 Yn1 = acc; 00395 00396 /* decrement the loop counter */ 00397 sample--; 00398 } 00399 00400 /* Store the updated state variables back into the pState array */ 00401 *pState++ = Xn1; 00402 *pState++ = Xn2; 00403 *pState++ = Yn1; 00404 *pState++ = Yn2; 00405 00406 /* The first stage goes from the input buffer to the output buffer. */ 00407 /* Subsequent numStages occur in-place in the output buffer */ 00408 pIn = pDst; 00409 00410 /* Reset the output pointer */ 00411 pOut = pDst; 00412 00413 /* decrement the loop counter */ 00414 stage--; 00415 00416 } while(stage > 0u); 00417 00418 #endif /* #ifndef ARM_MATH_CM0_FAMILY */ 00419 00420 } 00421 00422 00423 /** 00424 * @} end of BiquadCascadeDF1 group 00425 */
Generated on Tue Jul 12 2022 12:36:53 by 1.7.2