CMSIS DSP library

Dependents:   KL25Z_FFT_Demo Hat_Board_v5_1 KL25Z_FFT_Demo_tony KL25Z_FFT_Demo_tony ... more

Fork of mbed-dsp by mbed official

Revision:
1:fdd22bb7aa52
Child:
2:da51fb522205
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/cmsis_dsp/MatrixFunctions/arm_mat_scale_f32.c	Wed Nov 28 12:30:09 2012 +0000
@@ -0,0 +1,179 @@
+/* ----------------------------------------------------------------------    
+* Copyright (C) 2010 ARM Limited. All rights reserved.    
+*    
+* $Date:        15. February 2012  
+* $Revision:     V1.1.0  
+*    
+* Project:         CMSIS DSP Library    
+* Title:        arm_mat_scale_f32.c    
+*    
+* Description:    Multiplies a floating-point matrix by a scalar.    
+*    
+* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
+*  
+* Version 1.1.0 2012/02/15 
+*    Updated with more optimizations, bug fixes and minor API changes.  
+*   
+* Version 1.0.10 2011/7/15  
+*    Big Endian support added and Merged M0 and M3/M4 Source code.   
+*    
+* Version 1.0.3 2010/11/29   
+*    Re-organized the CMSIS folders and updated documentation.    
+*     
+* Version 1.0.2 2010/11/11    
+*    Documentation updated.     
+*    
+* Version 1.0.1 2010/10/05     
+*    Production release and review comments incorporated.    
+*    
+* Version 1.0.0 2010/09/20     
+*    Production release and review comments incorporated.    
+*    
+* Version 0.0.5  2010/04/26     
+*    incorporated review comments and updated with latest CMSIS layer    
+*    
+* Version 0.0.3  2010/03/10     
+*    Initial version    
+* -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+
+/**        
+ * @ingroup groupMatrix        
+ */
+
+/**        
+ * @defgroup MatrixScale Matrix Scale        
+ *        
+ * Multiplies a matrix by a scalar.  This is accomplished by multiplying each element in the        
+ * matrix by the scalar.  For example:        
+ * \image html MatrixScale.gif "Matrix Scaling of a 3 x 3 matrix"        
+ *        
+ * The function checks to make sure that the input and output matrices are of the same size.        
+ *        
+ * In the fixed-point Q15 and Q31 functions, <code>scale</code> is represented by        
+ * a fractional multiplication <code>scaleFract</code> and an arithmetic shift <code>shift</code>.        
+ * The shift allows the gain of the scaling operation to exceed 1.0.        
+ * The overall scale factor applied to the fixed-point data is        
+ * <pre>        
+ *     scale = scaleFract * 2^shift.        
+ * </pre>        
+ */
+
+/**        
+ * @addtogroup MatrixScale        
+ * @{        
+ */
+
+/**        
+ * @brief Floating-point matrix scaling.        
+ * @param[in]       *pSrc points to input matrix structure        
+ * @param[in]       scale scale factor to be applied         
+ * @param[out]      *pDst points to output matrix structure        
+ * @return             The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>         
+ * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.        
+ *        
+ */
+
+arm_status arm_mat_scale_f32(
+  const arm_matrix_instance_f32 * pSrc,
+  float32_t scale,
+  arm_matrix_instance_f32 * pDst)
+{
+  float32_t *pIn = pSrc->pData;                  /* input data matrix pointer */
+  float32_t *pOut = pDst->pData;                 /* output data matrix pointer */
+  uint32_t numSamples;                           /* total number of elements in the matrix */
+  uint32_t blkCnt;                               /* loop counters */
+  arm_status status;                             /* status of matrix scaling     */
+
+#ifndef ARM_MATH_CM0
+
+  float32_t in1, in2, in3, in4;                  /* temporary variables */
+  float32_t out1, out2, out3, out4;              /* temporary variables */
+
+#endif //      #ifndef ARM_MATH_CM0
+
+#ifdef ARM_MATH_MATRIX_CHECK
+  /* Check for matrix mismatch condition */
+  if((pSrc->numRows != pDst->numRows) || (pSrc->numCols != pDst->numCols))
+  {
+    /* Set status as ARM_MATH_SIZE_MISMATCH */
+    status = ARM_MATH_SIZE_MISMATCH;
+  }
+  else
+#endif /*    #ifdef ARM_MATH_MATRIX_CHECK    */
+  {
+    /* Total number of samples in the input matrix */
+    numSamples = (uint32_t) pSrc->numRows * pSrc->numCols;
+
+#ifndef ARM_MATH_CM0
+
+    /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+    /* Loop Unrolling */
+    blkCnt = numSamples >> 2;
+
+    /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.    
+     ** a second loop below computes the remaining 1 to 3 samples. */
+    while(blkCnt > 0u)
+    {
+      /* C(m,n) = A(m,n) * scale */
+      /* Scaling and results are stored in the destination buffer. */
+      in1 = pIn[0];
+      in2 = pIn[1];
+      in3 = pIn[2];
+      in4 = pIn[3];
+
+      out1 = in1 * scale;
+      out2 = in2 * scale;
+      out3 = in3 * scale;
+      out4 = in4 * scale;
+
+
+      pOut[0] = out1;
+      pOut[1] = out2;
+      pOut[2] = out3;
+      pOut[3] = out4;
+
+      /* update pointers to process next sampels */
+      pIn += 4u;
+      pOut += 4u;
+
+      /* Decrement the numSamples loop counter */
+      blkCnt--;
+    }
+
+    /* If the numSamples is not a multiple of 4, compute any remaining output samples here.    
+     ** No loop unrolling is used. */
+    blkCnt = numSamples % 0x4u;
+
+#else
+
+    /* Run the below code for Cortex-M0 */
+
+    /* Initialize blkCnt with number of samples */
+    blkCnt = numSamples;
+
+#endif /* #ifndef ARM_MATH_CM0 */
+
+    while(blkCnt > 0u)
+    {
+      /* C(m,n) = A(m,n) * scale */
+      /* The results are stored in the destination buffer. */
+      *pOut++ = (*pIn++) * scale;
+
+      /* Decrement the loop counter */
+      blkCnt--;
+    }
+
+    /* Set status as ARM_MATH_SUCCESS */
+    status = ARM_MATH_SUCCESS;
+  }
+
+  /* Return to application */
+  return (status);
+}
+
+/**        
+ * @} end of MatrixScale group        
+ */