Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed
Fork of cansat_main by
Diff: MPU6050.h
- Revision:
- 8:d41f5d7d2aa5
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/MPU6050.h Wed Oct 24 09:08:53 2018 +0000
@@ -0,0 +1,702 @@
+#ifndef MPU6050_H
+#define MPU6050_H
+
+#include "mbed.h"
+
+/** MPU6050
+ *
+ * 三軸加速度&ジャイロセンサー
+ * 説明用に最低限のドキュメントを作成
+ */
+class MPU6050
+{
+protected:
+
+public:
+ // Set initial input parameters
+ enum Ascale {
+ AFS_2G = 0,
+ AFS_4G,
+ AFS_8G,
+ AFS_16G
+ };
+
+ enum Gscale {
+ GFS_250DPS = 0,
+ GFS_500DPS,
+ GFS_1000DPS,
+ GFS_2000DPS
+ };
+
+//===================================================================================================================
+//====== Set of useful function to access acceleratio, gyroscope, and temperature data
+//===================================================================================================================
+ /** センサの初期設定をする宣言
+ * @param 12c_sda SDAをつないだピン名
+ * @param i2c_scl SCLをつないだピン名
+ * @param adO AD0ピンがhighとlowのどちらになっているか、普通は書かなくてもよい
+ */
+ MPU6050( PinName i2c_sda, PinName i2c_scl, int ad0 = 0)
+ : i2c_p( new I2C( i2c_sda, i2c_scl ) ), i2c( *i2c_p ) {
+
+ // Using the GY-521 breakout board, I set ADO to 0 by grounding through a 4k7 resistor
+ // Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1
+ if(ad0 == 0) {
+ adr = 0x68 << 1;
+ } else {
+ adr = 0x69 << 1;
+ }
+
+ // Specify sensor full scale
+ _Gscale = GFS_250DPS;
+ _Ascale = AFS_2G;
+
+ _q[0] = 1.0f;
+ _q[1] = 0.0f;
+ _q[2] = 0.0f;
+ _q[3] = 0.0f;
+ deltat = 0.0f;
+
+ // parameters for 6 DoF sensor fusion calculations
+ float PI = 3.14159265358979323846f;
+ float GyroMeasError = PI * (60.0f / 180.0f); // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3
+ beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta
+ float GyroMeasDrift = PI * (1.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
+ zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
+
+ float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer
+ float SelfTest[6];
+
+ MPU6050SelfTest(SelfTest);
+ resetMPU6050();
+ calibrateMPU6050(gyroBias, accelBias);
+ initMPU6050();
+ }
+
+ // scale resolutions per LSB for the sensors
+ float getGres() {
+ float gRes;
+ switch (_Gscale) {
+ // Possible gyro scales (and their register bit settings) are:
+ // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11).
+ // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
+ case GFS_250DPS:
+ gRes = 250.0/32768.0;
+ break;
+ case GFS_500DPS:
+ gRes = 500.0/32768.0;
+ break;
+ case GFS_1000DPS:
+ gRes = 1000.0/32768.0;
+ break;
+ case GFS_2000DPS:
+ gRes = 2000.0/32768.0;
+ break;
+ }
+ return gRes;
+ }
+
+ float getAres() {
+ float aRes;
+ switch (_Ascale) {
+ // Possible accelerometer scales (and their register bit settings) are:
+ // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11).
+ // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
+ case AFS_2G:
+ aRes = 2.0/32768.0;
+ break;
+ case AFS_4G:
+ aRes = 4.0/32768.0;
+ break;
+ case AFS_8G:
+ aRes = 8.0/32768.0;
+ break;
+ case AFS_16G:
+ aRes = 16.0/32768.0;
+ break;
+ }
+ return aRes;
+ }
+
+
+ void readAccelData(float * destination) {//intからfloatに書き換えました。
+ /** 加速度の読み出し
+ * @param destination int[3]の配列を渡してください、加速度をxyz順に返します
+ */
+ uint8_t rawData[6]; // x/y/z accel register data stored here
+ readBytes(ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
+ destination[0] = (int)(((int8_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
+ destination[1] = (int)(((int8_t)rawData[2] << 8) | rawData[3]) ;
+ destination[2] = (int)(((int8_t)rawData[4] << 8) | rawData[5]) ;
+ }
+
+ void readGyroData(int * destination) {
+ /** 角速度の読み出し
+ * @param destination int[3]の配列を渡してください、角速度をxyz順に返します
+ */
+ uint8_t rawData[6]; // x/y/z gyro register data stored here
+ readBytes(GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
+ destination[0] = (int)(((int8_t)rawData[0] << 8) | rawData[1]) ; // 最上位ビットと最下位ビットを符号付16ビットに変換
+ destination[1] = (int)(((int8_t)rawData[2] << 8) | rawData[3]) ;
+ destination[2] = (int)(((int8_t)rawData[4] << 8) | rawData[5]) ;
+ }
+
+ int readTempData() {
+ /** 温度の読み出し
+ * @return int型の変数に代入してください、温度を返します
+ */
+ uint8_t rawData[2]; // x/y/z gyro register data stored here
+ readBytes(TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array
+ return (int)(((int8_t)rawData[0]) << 8 | rawData[1]) ; // Turn the MSB and LSB into a 16-bit value
+ }
+
+
+
+// Configure the motion detection control for low power accelerometer mode
+ void LowPowerAccelOnly() {
+
+// The sensor has a high-pass filter necessary to invoke to allow the sensor motion detection algorithms work properly
+// Motion detection occurs on free-fall (acceleration below a threshold for some time for all axes), motion (acceleration
+// above a threshold for some time on at least one axis), and zero-motion toggle (acceleration on each axis less than a
+// threshold for some time sets this flag, motion above the threshold turns it off). The high-pass filter takes gravity out
+// consideration for these threshold evaluations; otherwise, the flags would be set all the time!
+
+ uint8_t c = readByte(PWR_MGMT_1);
+ writeByte(PWR_MGMT_1, c & ~0x30); // Clear sleep and cycle bits [5:6]
+ writeByte(PWR_MGMT_1, c | 0x30); // Set sleep and cycle bits [5:6] to zero to make sure accelerometer is running
+
+ c = readByte(PWR_MGMT_2);
+ writeByte(PWR_MGMT_2, c & ~0x38); // Clear standby XA, YA, and ZA bits [3:5]
+ writeByte(PWR_MGMT_2, c | 0x00); // Set XA, YA, and ZA bits [3:5] to zero to make sure accelerometer is running
+
+ c = readByte(ACCEL_CONFIG);
+ writeByte(ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0]
+// Set high-pass filter to 0) reset (disable), 1) 5 Hz, 2) 2.5 Hz, 3) 1.25 Hz, 4) 0.63 Hz, or 7) Hold
+ writeByte(ACCEL_CONFIG, c | 0x00); // Set ACCEL_HPF to 0; reset mode disbaling high-pass filter
+
+ c = readByte(CONFIG);
+ writeByte(CONFIG, c & ~0x07); // Clear low-pass filter bits [2:0]
+ writeByte(CONFIG, c | 0x00); // Set DLPD_CFG to 0; 260 Hz bandwidth, 1 kHz rate
+
+ c = readByte(INT_ENABLE);
+ writeByte(INT_ENABLE, c & ~0xFF); // Clear all interrupts
+ writeByte(INT_ENABLE, 0x40); // Enable motion threshold (bits 5) interrupt only
+
+// Motion detection interrupt requires the absolute value of any axis to lie above the detection threshold
+// for at least the counter duration
+ writeByte(MOT_THR, 0x80); // Set motion detection to 0.256 g; LSB = 2 mg
+ writeByte(MOT_DUR, 0x01); // Set motion detect duration to 1 ms; LSB is 1 ms @ 1 kHz rate
+
+ wait(0.1); // Add delay for accumulation of samples
+
+ c = readByte(ACCEL_CONFIG);
+ writeByte(ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0]
+ writeByte(ACCEL_CONFIG, c | 0x07); // Set ACCEL_HPF to 7; hold the initial accleration value as a referance
+
+ c = readByte(PWR_MGMT_2);
+ writeByte(PWR_MGMT_2, c & ~0xC7); // Clear standby XA, YA, and ZA bits [3:5] and LP_WAKE_CTRL bits [6:7]
+ writeByte(PWR_MGMT_2, c | 0x47); // Set wakeup frequency to 5 Hz, and disable XG, YG, and ZG gyros (bits [0:2])
+
+ c = readByte(PWR_MGMT_1);
+ writeByte(PWR_MGMT_1, c & ~0x20); // Clear sleep and cycle bit 5
+ writeByte(PWR_MGMT_1, c | 0x20); // Set cycle bit 5 to begin low power accelerometer motion interrupts
+
+ }
+
+
+ void resetMPU6050() {
+ // reset device
+ writeByte(PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
+ wait(0.1);
+ }
+
+
+ void initMPU6050() {
+// Initialize MPU6050 device
+// wake up device
+ writeByte(PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors
+ wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt
+
+// get stable time source
+ writeByte(PWR_MGMT_1, 0x01); // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
+
+// Configure Gyro and Accelerometer
+// Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively;
+// DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
+// Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
+ writeByte(CONFIG, 0x03);
+
+// Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
+ writeByte(SMPLRT_DIV, 0x04); // Use a 200 Hz rate; the same rate set in CONFIG above
+
+// Set gyroscope full scale range
+// Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
+ uint8_t c = readByte(GYRO_CONFIG);
+ writeByte(GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
+ writeByte(GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
+ writeByte(GYRO_CONFIG, c | _Gscale << 3); // Set full scale range for the gyro
+
+// Set accelerometer configuration
+ c = readByte(ACCEL_CONFIG);
+ writeByte(ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
+ writeByte(ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
+ writeByte(ACCEL_CONFIG, c | _Ascale << 3); // Set full scale range for the accelerometer
+
+ // Configure Interrupts and Bypass Enable
+ // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips
+ // can join the I2C bus and all can be controlled by the Arduino as master
+ writeByte(INT_PIN_CFG, 0x22);
+ writeByte(INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt
+ }
+
+// Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
+// of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
+ void calibrateMPU6050(float * dest1, float * dest2) {
+ uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
+ uint16_t ii, packet_count, fifo_count;
+ int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
+
+// reset device, reset all registers, clear gyro and accelerometer bias registers
+ writeByte(PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
+ wait(0.1);
+
+// get stable time source
+// Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
+ writeByte(PWR_MGMT_1, 0x01);
+ writeByte(PWR_MGMT_2, 0x00);
+ wait(0.2);
+
+// Configure device for bias calculation
+ writeByte(INT_ENABLE, 0x00); // Disable all interrupts
+ writeByte(FIFO_EN, 0x00); // Disable FIFO
+ writeByte(PWR_MGMT_1, 0x00); // Turn on internal clock source
+ writeByte(I2C_MST_CTRL, 0x00); // Disable I2C master
+ writeByte(USER_CTRL, 0x00); // Disable FIFO and I2C master modes
+ writeByte(USER_CTRL, 0x0C); // Reset FIFO and DMP
+ wait(0.015);
+
+// Configure MPU6050 gyro and accelerometer for bias calculation
+ writeByte(CONFIG, 0x01); // Set low-pass filter to 188 Hz
+ writeByte(SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz
+ writeByte(GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity
+ writeByte(ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
+
+ uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec
+ uint16_t accelsensitivity = 16384; // = 16384 LSB/g
+
+// Configure FIFO to capture accelerometer and gyro data for bias calculation
+ writeByte(USER_CTRL, 0x40); // Enable FIFO
+ writeByte(FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 1024 bytes in MPU-6050)
+ wait(0.08); // accumulate 80 samples in 80 milliseconds = 960 bytes
+
+// At end of sample accumulation, turn off FIFO sensor read
+ writeByte(FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO
+ readBytes(FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
+ fifo_count = ((uint16_t)data[0] << 8) | data[1];
+ packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
+
+ for (ii = 0; ii < packet_count; ii++) {
+ int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
+ readBytes(FIFO_R_W, 12, &data[0]); // read data for averaging
+ accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO
+ accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ;
+ accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ;
+ gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ;
+ gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ;
+ gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
+
+ accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
+ accel_bias[1] += (int32_t) accel_temp[1];
+ accel_bias[2] += (int32_t) accel_temp[2];
+ gyro_bias[0] += (int32_t) gyro_temp[0];
+ gyro_bias[1] += (int32_t) gyro_temp[1];
+ gyro_bias[2] += (int32_t) gyro_temp[2];
+
+ }
+ accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
+ accel_bias[1] /= (int32_t) packet_count;
+ accel_bias[2] /= (int32_t) packet_count;
+ gyro_bias[0] /= (int32_t) packet_count;
+ gyro_bias[1] /= (int32_t) packet_count;
+ gyro_bias[2] /= (int32_t) packet_count;
+
+ if(accel_bias[2] > 0L) {
+ accel_bias[2] -= (int32_t) accelsensitivity; // Remove gravity from the z-axis accelerometer bias calculation
+ } else {
+ accel_bias[2] += (int32_t) accelsensitivity;
+ }
+
+// Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
+ data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
+ data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
+ data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF;
+ data[3] = (-gyro_bias[1]/4) & 0xFF;
+ data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF;
+ data[5] = (-gyro_bias[2]/4) & 0xFF;
+
+// Push gyro biases to hardware registers
+ writeByte(XG_OFFS_USRH, data[0]);
+ writeByte(XG_OFFS_USRL, data[1]);
+ writeByte(YG_OFFS_USRH, data[2]);
+ writeByte(YG_OFFS_USRL, data[3]);
+ writeByte(ZG_OFFS_USRH, data[4]);
+ writeByte(ZG_OFFS_USRL, data[5]);
+
+ dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
+ dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
+ dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
+
+// Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
+// factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
+// non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
+// compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
+// the accelerometer biases calculated above must be divided by 8.
+
+ int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
+ readBytes(XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
+ accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
+ readBytes(YA_OFFSET_H, 2, &data[0]);
+ accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
+ readBytes(ZA_OFFSET_H, 2, &data[0]);
+ accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
+
+ uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
+ uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
+
+ for(ii = 0; ii < 3; ii++) {
+ if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
+ }
+
+ // Construct total accelerometer bias, including calculated average accelerometer bias from above
+ accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
+ accel_bias_reg[1] -= (accel_bias[1]/8);
+ accel_bias_reg[2] -= (accel_bias[2]/8);
+
+ data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
+ data[1] = (accel_bias_reg[0]) & 0xFF;
+ data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
+ data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
+ data[3] = (accel_bias_reg[1]) & 0xFF;
+ data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
+ data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
+ data[5] = (accel_bias_reg[2]) & 0xFF;
+ data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
+
+ // Push accelerometer biases to hardware registers
+// writeByte(XA_OFFSET_H, data[0]);
+// writeByte(XA_OFFSET_L_TC, data[1]);
+// writeByte(YA_OFFSET_H, data[2]);
+// writeByte(YA_OFFSET_L_TC, data[3]);
+// writeByte(ZA_OFFSET_H, data[4]);
+// writeByte(ZA_OFFSET_L_TC, data[5]);
+
+// Output scaled accelerometer biases for manual subtraction in the main program
+ dest2[0] = (float)accel_bias[0]/(float)accelsensitivity;
+ dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
+ dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
+ }
+
+
+// Accelerometer and gyroscope self test; check calibration wrt factory settings
+ void MPU6050SelfTest(float * destination) { // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
+ uint8_t rawData[4] = {0, 0, 0, 0};
+ uint8_t selfTest[6];
+ float factoryTrim[6];
+
+ // Configure the accelerometer for self-test
+ writeByte(ACCEL_CONFIG, 0xF0); // Enable self test on all three axes and set accelerometer range to +/- 8 g
+ writeByte(GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
+ wait(0.25); // Delay a while to let the device execute the self-test
+ rawData[0] = readByte(SELF_TEST_X); // X-axis self-test results
+ rawData[1] = readByte(SELF_TEST_Y); // Y-axis self-test results
+ rawData[2] = readByte(SELF_TEST_Z); // Z-axis self-test results
+ rawData[3] = readByte(SELF_TEST_A); // Mixed-axis self-test results
+ // Extract the acceleration test results first
+ selfTest[0] = (rawData[0] >> 3) | (rawData[3] & 0x30) >> 4 ; // XA_TEST result is a five-bit unsigned integer
+ selfTest[1] = (rawData[1] >> 3) | (rawData[3] & 0x0C) >> 4 ; // YA_TEST result is a five-bit unsigned integer
+ selfTest[2] = (rawData[2] >> 3) | (rawData[3] & 0x03) >> 4 ; // ZA_TEST result is a five-bit unsigned integer
+ // Extract the gyration test results first
+ selfTest[3] = rawData[0] & 0x1F ; // XG_TEST result is a five-bit unsigned integer
+ selfTest[4] = rawData[1] & 0x1F ; // YG_TEST result is a five-bit unsigned integer
+ selfTest[5] = rawData[2] & 0x1F ; // ZG_TEST result is a five-bit unsigned integer
+ // Process results to allow final comparison with factory set values
+ factoryTrim[0] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[0] - 1.0f)/30.0f))); // FT[Xa] factory trim calculation
+ factoryTrim[1] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[1] - 1.0f)/30.0f))); // FT[Ya] factory trim calculation
+ factoryTrim[2] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[2] - 1.0f)/30.0f))); // FT[Za] factory trim calculation
+ factoryTrim[3] = ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[3] - 1.0f) )); // FT[Xg] factory trim calculation
+ factoryTrim[4] = (-25.0f*131.0f)*(pow( 1.046f , (selfTest[4] - 1.0f) )); // FT[Yg] factory trim calculation
+ factoryTrim[5] = ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[5] - 1.0f) )); // FT[Zg] factory trim calculation
+
+// Output self-test results and factory trim calculation if desired
+// Serial.println(selfTest[0]); Serial.println(selfTest[1]); Serial.println(selfTest[2]);
+// Serial.println(selfTest[3]); Serial.println(selfTest[4]); Serial.println(selfTest[5]);
+// Serial.println(factoryTrim[0]); Serial.println(factoryTrim[1]); Serial.println(factoryTrim[2]);
+// Serial.println(factoryTrim[3]); Serial.println(factoryTrim[4]); Serial.println(factoryTrim[5]);
+
+// Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
+// To get to percent, must multiply by 100 and subtract result from 100
+ for (int i = 0; i < 6; i++) {
+ destination[i] = 100.0f + 100.0f*(selfTest[i] - factoryTrim[i])/factoryTrim[i]; // Report percent differences
+ }
+
+ }
+
+
+// Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
+// (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
+// which fuses acceleration and rotation rate to produce a quaternion-based estimate of relative
+// device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
+// The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
+// but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
+ void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz) {
+ float q1 = _q[0], q2 = _q[1], q3 = _q[2], q4 = _q[3]; // short name local variable for readability
+ float norm; // vector norm
+ float f1, f2, f3; // objective funcyion elements
+ float J_11or24, J_12or23, J_13or22, J_14or21, J_32, J_33; // objective function Jacobian elements
+ float qDot1, qDot2, qDot3, qDot4;
+ float hatDot1, hatDot2, hatDot3, hatDot4;
+ float gerrx, gerry, gerrz, gbiasx, gbiasy, gbiasz; // gyro bias error
+
+ // Auxiliary variables to avoid repeated arithmetic
+ float _halfq1 = 0.5f * q1;
+ float _halfq2 = 0.5f * q2;
+ float _halfq3 = 0.5f * q3;
+ float _halfq4 = 0.5f * q4;
+ float _2q1 = 2.0f * q1;
+ float _2q2 = 2.0f * q2;
+ float _2q3 = 2.0f * q3;
+ float _2q4 = 2.0f * q4;
+// float _2q1q3 = 2.0f * q1 * q3;
+// float _2q3q4 = 2.0f * q3 * q4;
+
+ // Normalise accelerometer measurement
+ norm = sqrt(ax * ax + ay * ay + az * az);
+ if (norm == 0.0f) return; // handle NaN
+ norm = 1.0f/norm;
+ ax *= norm;
+ ay *= norm;
+ az *= norm;
+
+ // Compute the objective function and Jacobian
+ f1 = _2q2 * q4 - _2q1 * q3 - ax;
+ f2 = _2q1 * q2 + _2q3 * q4 - ay;
+ f3 = 1.0f - _2q2 * q2 - _2q3 * q3 - az;
+ J_11or24 = _2q3;
+ J_12or23 = _2q4;
+ J_13or22 = _2q1;
+ J_14or21 = _2q2;
+ J_32 = 2.0f * J_14or21;
+ J_33 = 2.0f * J_11or24;
+
+ // Compute the gradient (matrix multiplication)
+ hatDot1 = J_14or21 * f2 - J_11or24 * f1;
+ hatDot2 = J_12or23 * f1 + J_13or22 * f2 - J_32 * f3;
+ hatDot3 = J_12or23 * f2 - J_33 *f3 - J_13or22 * f1;
+ hatDot4 = J_14or21 * f1 + J_11or24 * f2;
+
+ // Normalize the gradient
+ norm = sqrt(hatDot1 * hatDot1 + hatDot2 * hatDot2 + hatDot3 * hatDot3 + hatDot4 * hatDot4);
+ hatDot1 /= norm;
+ hatDot2 /= norm;
+ hatDot3 /= norm;
+ hatDot4 /= norm;
+
+ // Compute estimated gyroscope biases
+ gerrx = _2q1 * hatDot2 - _2q2 * hatDot1 - _2q3 * hatDot4 + _2q4 * hatDot3;
+ gerry = _2q1 * hatDot3 + _2q2 * hatDot4 - _2q3 * hatDot1 - _2q4 * hatDot2;
+ gerrz = _2q1 * hatDot4 - _2q2 * hatDot3 + _2q3 * hatDot2 - _2q4 * hatDot1;
+
+ // Compute and remove gyroscope biases
+ gbiasx += gerrx * deltat * zeta;
+ gbiasy += gerry * deltat * zeta;
+ gbiasz += gerrz * deltat * zeta;
+// gx -= gbiasx;
+// gy -= gbiasy;
+// gz -= gbiasz;
+
+ // Compute the quaternion derivative
+ qDot1 = -_halfq2 * gx - _halfq3 * gy - _halfq4 * gz;
+ qDot2 = _halfq1 * gx + _halfq3 * gz - _halfq4 * gy;
+ qDot3 = _halfq1 * gy - _halfq2 * gz + _halfq4 * gx;
+ qDot4 = _halfq1 * gz + _halfq2 * gy - _halfq3 * gx;
+
+ // Compute then integrate estimated quaternion derivative
+ q1 += (qDot1 -(beta * hatDot1)) * deltat;
+ q2 += (qDot2 -(beta * hatDot2)) * deltat;
+ q3 += (qDot3 -(beta * hatDot3)) * deltat;
+ q4 += (qDot4 -(beta * hatDot4)) * deltat;
+
+ // Normalize the quaternion
+ norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion
+ norm = 1.0f/norm;
+ _q[0] = q1 * norm;
+ _q[1] = q2 * norm;
+ _q[2] = q3 * norm;
+ _q[3] = q4 * norm;
+
+ }
+
+private:
+// Define registers per MPU6050, Register Map and Descriptions, Rev 4.2, 08/19/2013 6 DOF Motion sensor fusion device
+// Invensense Inc., www.invensense.com
+// See also MPU-6050 Register Map and Descriptions, Revision 4.0, RM-MPU-6050A-00, 9/12/2012 for registers not listed in
+// above document; the MPU6050 and MPU 9150 are virtually identical but the latter has an on-board magnetic sensor
+ enum register_adr{
+ XGOFFS_TC = 0x00, // Bit 7 PWR_MODE, bits 6:1 XG_OFFS_TC, bit 0 OTP_BNK_VLD
+ YGOFFS_TC = 0x01,
+ ZGOFFS_TC = 0x02,
+ X_FINE_GAIN = 0x03, // [7:0] fine gain
+ Y_FINE_GAIN = 0x04,
+ Z_FINE_GAIN = 0x05,
+ XA_OFFSET_H = 0x06, // User-defined trim values for accelerometer
+ XA_OFFSET_L_TC = 0x07,
+ YA_OFFSET_H = 0x08,
+ YA_OFFSET_L_TC = 0x09,
+ ZA_OFFSET_H = 0x0A,
+ ZA_OFFSET_L_TC = 0x0B,
+ SELF_TEST_X = 0x0D,
+ SELF_TEST_Y = 0x0E,
+ SELF_TEST_Z = 0x0F,
+ SELF_TEST_A = 0x10,
+ XG_OFFS_USRH = 0x13, // User-defined trim values for gyroscope; supported in MPU-6050?
+ XG_OFFS_USRL = 0x14,
+ YG_OFFS_USRH = 0x15,
+ YG_OFFS_USRL = 0x16,
+ ZG_OFFS_USRH = 0x17,
+ ZG_OFFS_USRL = 0x18,
+ SMPLRT_DIV = 0x19,
+ CONFIG = 0x1A,
+ GYRO_CONFIG = 0x1B,
+ ACCEL_CONFIG = 0x1C,
+ FF_THR = 0x1D, // Free-fall
+ FF_DUR = 0x1E, // Free-fall
+ MOT_THR = 0x1F, // Motion detection threshold bits [7:0]
+ MOT_DUR = 0x20, // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms
+ ZMOT_THR = 0x21, // Zero-motion detection threshold bits [7:0]
+ ZRMOT_DUR = 0x22, // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms
+ FIFO_EN = 0x23,
+ I2C_MST_CTRL = 0x24,
+ I2C_SLV0_ADDR = 0x25,
+ I2C_SLV0_REG = 0x26,
+ I2C_SLV0_CTRL = 0x27,
+ I2C_SLV1_ADDR = 0x28,
+ I2C_SLV1_REG = 0x29,
+ I2C_SLV1_CTRL = 0x2A,
+ I2C_SLV2_ADDR = 0x2B,
+ I2C_SLV2_REG = 0x2C,
+ I2C_SLV2_CTRL = 0x2D,
+ I2C_SLV3_ADDR = 0x2E,
+ I2C_SLV3_REG = 0x2F,
+ I2C_SLV3_CTRL = 0x30,
+ I2C_SLV4_ADDR = 0x31,
+ I2C_SLV4_REG = 0x32,
+ I2C_SLV4_DO = 0x33,
+ I2C_SLV4_CTRL = 0x34,
+ I2C_SLV4_DI = 0x35,
+ I2C_MST_STATUS = 0x36,
+ INT_PIN_CFG = 0x37,
+ INT_ENABLE = 0x38,
+ DMP_INT_STATUS = 0x39, // Check DMP interrupt
+ INT_STATUS = 0x3A,
+ ACCEL_XOUT_H = 0x3B,
+ ACCEL_XOUT_L = 0x3C,
+ ACCEL_YOUT_H = 0x3D,
+ ACCEL_YOUT_L = 0x3E,
+ ACCEL_ZOUT_H = 0x3F,
+ ACCEL_ZOUT_L = 0x40,
+ TEMP_OUT_H = 0x41,
+ TEMP_OUT_L = 0x42,
+ GYRO_XOUT_H = 0x43,
+ GYRO_XOUT_L = 0x44,
+ GYRO_YOUT_H = 0x45,
+ GYRO_YOUT_L = 0x46,
+ GYRO_ZOUT_H = 0x47,
+ GYRO_ZOUT_L = 0x48,
+ EXT_SENS_DATA_00 = 0x49,
+ EXT_SENS_DATA_01 = 0x4A,
+ EXT_SENS_DATA_02 = 0x4B,
+ EXT_SENS_DATA_03 = 0x4C,
+ EXT_SENS_DATA_04 = 0x4D,
+ EXT_SENS_DATA_05 = 0x4E,
+ EXT_SENS_DATA_06 = 0x4F,
+ EXT_SENS_DATA_07 = 0x50,
+ EXT_SENS_DATA_08 = 0x51,
+ EXT_SENS_DATA_09 = 0x52,
+ EXT_SENS_DATA_10 = 0x53,
+ EXT_SENS_DATA_11 = 0x54,
+ EXT_SENS_DATA_12 = 0x55,
+ EXT_SENS_DATA_13 = 0x56,
+ EXT_SENS_DATA_14 = 0x57,
+ EXT_SENS_DATA_15 = 0x58,
+ EXT_SENS_DATA_16 = 0x59,
+ EXT_SENS_DATA_17 = 0x5A,
+ EXT_SENS_DATA_18 = 0x5B,
+ EXT_SENS_DATA_19 = 0x5C,
+ EXT_SENS_DATA_20 = 0x5D,
+ EXT_SENS_DATA_21 = 0x5E,
+ EXT_SENS_DATA_22 = 0x5F,
+ EXT_SENS_DATA_23 = 0x60,
+ MOT_DETECT_STATUS = 0x61,
+ I2C_SLV0_DO = 0x63,
+ I2C_SLV1_DO = 0x64,
+ I2C_SLV2_DO = 0x65,
+ I2C_SLV3_DO = 0x66,
+ I2C_MST_DELAY_CTRL = 0x67,
+ SIGNAL_PATH_RESET = 0x68,
+ MOT_DETECT_CTRL = 0x69,
+ USER_CTRL = 0x6A, // Bit 7 enable DMP, bit 3 reset DMP
+ PWR_MGMT_1 = 0x6B, // Device defaults to the SLEEP mode
+ PWR_MGMT_2 = 0x6C,
+ DMP_BANK = 0x6D, // Activates a specific bank in the DMP
+ DMP_RW_PNT = 0x6E, // Set read/write pointer to a specific start address in specified DMP bank
+ DMP_REG = 0x6F, // Register in DMP from which to read or to which to write
+ DMP_REG_1 = 0x70,
+ DMP_REG_2 = 0x71,
+ FIFO_COUNTH = 0x72,
+ FIFO_COUNTL = 0x73,
+ FIFO_R_W = 0x74,
+ WHO_AM_I_MPU6050 = 0x75, // Should return 0x68
+ };
+
+ int _Gscale;
+ int _Ascale;
+
+ float _q[4]; // vector to hold quaternion
+ float beta;
+ float zeta;
+ float deltat; // integration interval for both filter schemes
+
+ //I2C
+ I2C *i2c_p;
+ I2C &i2c;
+ char adr;
+
+ void writeByte(uint8_t address, uint8_t data) {
+ char data_write[2];
+ data_write[0] = address;
+ data_write[1] = data;
+ i2c.write(adr, data_write, 2, 0);
+ }
+
+ char readByte(uint8_t address) {
+ char data[1]; // `data` will store the register data
+ char data_write[1];
+ data_write[0] = address;
+ i2c.write(adr, data_write, 1, 1); // no stop
+ i2c.read(adr, data, 1, 0);
+ return data[0];
+ }
+
+ void readBytes(uint8_t address, uint8_t count, uint8_t * dest) {
+ char data[14];
+ char data_write[1];
+ data_write[0] = address;
+ i2c.write(adr, data_write, 1, 1); // no stop
+ i2c.read(adr, data, count, 0);
+ for(int ii = 0; ii < count; ii++) {
+ dest[ii] = data[ii];
+ }
+ }
+
+};
+#endif
\ No newline at end of file
