Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of mbed-dev by
targets/TARGET_Realtek/TARGET_AMEBA/log_uart_api.c
- Committer:
- Anythingconnected
- Date:
- 2017-12-18
- Revision:
- 180:d79f997829d6
- Parent:
- 167:e84263d55307
File content as of revision 180:d79f997829d6:
/* mbed Microcontroller Library
* Copyright (c) 2013-2016 Realtek Semiconductor Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "objects.h"
#include "log_uart_api.h"
#include <string.h>
const u32 log_uart_support_rate[] = {
UART_BAUD_RATE_2400, UART_BAUD_RATE_4800, UART_BAUD_RATE_9600,
UART_BAUD_RATE_19200, UART_BAUD_RATE_38400, UART_BAUD_RATE_57600,
UART_BAUD_RATE_115200, UART_BAUD_RATE_921600, UART_BAUD_RATE_1152000,
0xFFFFFFFF
};
extern HAL_TIMER_OP HalTimerOp;
extern u32 ConfigDebugErr;
extern u32 ConfigDebugWarn;
extern u32 ConfigDebugInfo;
extern u32 CfgSysDebugErr;
extern u32 CfgSysDebugInfo;
extern u32 CfgSysDebugWarn;
extern HAL_Status RuartIsTimeout (u32 StartCount, u32 TimeoutCnt);
extern u32 HalLogUartInitSetting(HAL_LOG_UART_ADAPTER *pUartAdapter);
extern VOID HalLogUartSetBaudRate(HAL_LOG_UART_ADAPTER *pUartAdapter);
extern VOID HalLogUartSetLineCtrl(HAL_LOG_UART_ADAPTER *pUartAdapter);
extern VOID HalLogUartIrqHandle(VOID * Data);
int32_t log_uart_init (log_uart_t *obj, int baudrate, int data_bits, SerialParity parity, int stop_bits)
{
HAL_LOG_UART_ADAPTER *pUartAdapter;
int i;
_memset((void*)obj, 0, sizeof(log_uart_t));
pUartAdapter = &obj->log_hal_uart;
// Check Baud rate
for (i=0; log_uart_support_rate[i]!=0xFFFFFF; i++) {
if (log_uart_support_rate[i] == baudrate) {
break;
}
}
if (log_uart_support_rate[i]== 0xFFFFFF) {
DBG_UART_ERR("log_uart_init: Not support Baud Rate %d\n", baudrate);
return -1;
}
// check word width
if ((data_bits < 5) || (data_bits > 8)) {
DBG_UART_ERR("log_uart_init: Not support Word Width %d\n", data_bits);
return -1;
}
//4 Inital Log uart
pUartAdapter->BaudRate = baudrate;
pUartAdapter->DataLength = data_bits-5;
pUartAdapter->FIFOControl = FCR_FIFO_EN | FCR_TX_TRIG_HF | FCR_RX_TRIG_HF;
// only enable Rx linstatus at initial,
// Tx & Rx interrupt will be enabled @ transfer start time
pUartAdapter->IntEnReg = IER_ELSI;
switch (parity) {
case ParityNone:
pUartAdapter->Parity = LCR_PARITY_NONE;
break;
case ParityOdd:
pUartAdapter->Parity = LCR_PARITY_ODD;
break;
case ParityEven:
pUartAdapter->Parity = LCR_PARITY_EVEN;
break;
default:
DBG_UART_ERR("log_uart_init: Not support parity type %d\n", parity);
return -1;
}
if (stop_bits > 1) {
// if width is 5 bits, stop bit will be 1.5 bit
pUartAdapter->Stop = LCR_STOP_2B;
} else {
pUartAdapter->Stop = LCR_STOP_1B;
}
//4 Initial Log Uart
HalLogUartInitSetting(pUartAdapter);
// disable all debug message
ConfigDebugErr = 0;
ConfigDebugWarn = 0;
ConfigDebugInfo = 0;
CfgSysDebugErr = 0;
CfgSysDebugInfo = 0;
CfgSysDebugWarn = 0;
return 0;
}
void log_uart_free(log_uart_t *obj)
{
LOG_UART_ADAPTER UartAdapter;
// Recover the Log UART for debug message printing
//4 Release log uart reset and clock
LOC_UART_FCTRL(OFF);
LOC_UART_FCTRL(ON);
ACTCK_LOG_UART_CCTRL(ON);
//4 Inital Log uart
UartAdapter.BaudRate = UART_BAUD_RATE_38400;
UartAdapter.DataLength = UART_DATA_LEN_8BIT;
UartAdapter.FIFOControl = 0xC1;
UartAdapter.IntEnReg = 0x00;
UartAdapter.Parity = UART_PARITY_DISABLE;
UartAdapter.Stop = UART_STOP_1BIT;
// un_register current IRQ first
InterruptUnRegister(&(obj->log_hal_uart.IrqHandle));
//4 Initial Log Uart
HalLogUartInit(UartAdapter);
}
void log_uart_baud(log_uart_t *obj, int baudrate)
{
HAL_LOG_UART_ADAPTER *pUartAdapter;
int i;
pUartAdapter = &obj->log_hal_uart;
// Check Baud rate
for (i=0; log_uart_support_rate[i]!=0xFFFFFFFF; i++) {
if (log_uart_support_rate[i] == baudrate) {
break;
}
}
if (log_uart_support_rate[i]== 0xFFFFFF) {
DBG_UART_ERR("log_uart_baud: Not support Baud Rate %d\n", baudrate);
return;
}
pUartAdapter->BaudRate = baudrate;
HalLogUartSetBaudRate(pUartAdapter);
}
void log_uart_format(log_uart_t *obj, int data_bits, SerialParity parity, int stop_bits)
{
HAL_LOG_UART_ADAPTER *pUartAdapter;
pUartAdapter = &obj->log_hal_uart;
// check word width
if ((data_bits < 5) || (data_bits > 8)) {
DBG_UART_ERR("log_uart_format: Not support Word Width %d\n", data_bits);
return;
}
//4 Inital Log uart
pUartAdapter->DataLength = data_bits - 5;
switch (parity) {
case ParityNone:
pUartAdapter->Parity = LCR_PARITY_NONE;
break;
case ParityOdd:
pUartAdapter->Parity = LCR_PARITY_ODD;
break;
case ParityEven:
pUartAdapter->Parity = LCR_PARITY_EVEN;
break;
default:
DBG_UART_ERR("log_uart_format: Not support parity type %d\n", parity);
return;
}
if (stop_bits > 1) {
// if width is 5 bits, stop bit will be 1.5 bit
pUartAdapter->Stop = LCR_STOP_2B;
} else {
pUartAdapter->Stop = LCR_STOP_1B;
}
HalLogUartSetLineCtrl(pUartAdapter);
}
/******************************************************************************
* INTERRUPTS HANDLING
******************************************************************************/
void log_uart_irq_handler(log_uart_t *obj, loguart_irq_handler handler, uint32_t id)
{
HAL_LOG_UART_ADAPTER *pUartAdapter;
pUartAdapter = &(obj->log_hal_uart);
pUartAdapter->api_irq_handler = handler;
pUartAdapter->api_irq_id = id;
}
void log_uart_irq_set(log_uart_t *obj, LOG_UART_INT_ID irq, uint32_t enable)
{
HAL_LOG_UART_ADAPTER *pUartAdapter;
u8 int_en=0;
pUartAdapter = &(obj->log_hal_uart);
switch (irq) {
case IIR_RX_RDY:
int_en = IER_ERBFI;
break;
case IIR_THR_EMPTY:
int_en = IER_ETBEI;
break;
case IIR_RX_LINE_STATUS:
int_en = IER_ELSI;
break;
case IIR_MODEM_STATUS:
int_en = IER_EDSSI;
break;
default:
DBG_UART_WARN("log_uart_irq_set: Unknown Irq Id\n");
return;
}
if (enable) {
pUartAdapter->IntEnReg |= int_en;
} else {
// disable
pUartAdapter->IntEnReg &= (~int_en);
}
HalLogUartSetIntEn(pUartAdapter);
}
/******************************************************************************
* READ/WRITE
******************************************************************************/
char log_uart_getc(log_uart_t *obj)
{
HAL_LOG_UART_ADAPTER *pUartAdapter=(PHAL_LOG_UART_ADAPTER)&(obj->log_hal_uart);
while (!log_uart_readable(obj));
return (char)(HAL_UART_READ32(UART_REV_BUF_OFF) & 0xFF);
}
void log_uart_putc(log_uart_t *obj, char c)
{
HAL_LOG_UART_ADAPTER *pUartAdapter=(PHAL_LOG_UART_ADAPTER)&(obj->log_hal_uart);
while (!log_uart_writable(obj));
HAL_UART_WRITE8(UART_TRAN_HOLD_OFF, c);
}
int log_uart_readable(log_uart_t *obj)
{
HAL_LOG_UART_ADAPTER *pUartAdapter=(PHAL_LOG_UART_ADAPTER)&(obj->log_hal_uart);
volatile u8 line_status;
line_status = HAL_UART_READ8(UART_LINE_STATUS_REG_OFF);
if (line_status & LSR_DR) {
return 1;
} else {
return 0;
}
}
int log_uart_writable(log_uart_t *obj)
{
HAL_LOG_UART_ADAPTER *pUartAdapter=(PHAL_LOG_UART_ADAPTER)&(obj->log_hal_uart);
volatile u8 line_status;
line_status = HAL_UART_READ8(UART_LINE_STATUS_REG_OFF);
if (line_status & LSR_THRE) {
return 1;
} else {
return 0;
}
}
void log_uart_clear(log_uart_t *obj)
{
HAL_LOG_UART_ADAPTER *pUartAdapter=(PHAL_LOG_UART_ADAPTER)&(obj->log_hal_uart);
HalLogUartRstFIFO(pUartAdapter, (LOG_UART_RST_TX_FIFO|LOG_UART_RST_TX_FIFO));
pUartAdapter->TxCount = 0;
pUartAdapter->RxCount = 0;
}
void log_uart_clear_tx(log_uart_t *obj)
{
HAL_LOG_UART_ADAPTER *pUartAdapter=(PHAL_LOG_UART_ADAPTER)&(obj->log_hal_uart);
HalLogUartRstFIFO(pUartAdapter, LOG_UART_RST_TX_FIFO);
pUartAdapter->TxCount = 0;
}
void log_uart_clear_rx(log_uart_t *obj)
{
HAL_LOG_UART_ADAPTER *pUartAdapter=(PHAL_LOG_UART_ADAPTER)&(obj->log_hal_uart);
HalLogUartRstFIFO(pUartAdapter, LOG_UART_RST_RX_FIFO);
pUartAdapter->RxCount = 0;
}
void log_uart_break_set(log_uart_t *obj)
{
HAL_LOG_UART_ADAPTER *pUartAdapter=(PHAL_LOG_UART_ADAPTER)&(obj->log_hal_uart);
u32 RegValue;
RegValue = HAL_UART_READ32(UART_LINE_CTL_REG_OFF);
RegValue |= LCR_BC;
HAL_UART_WRITE32(UART_LINE_CTL_REG_OFF, RegValue);
}
void log_uart_break_clear(log_uart_t *obj)
{
HAL_LOG_UART_ADAPTER *pUartAdapter=(PHAL_LOG_UART_ADAPTER)&(obj->log_hal_uart);
u32 RegValue;
RegValue = HAL_UART_READ32(UART_LINE_CTL_REG_OFF);
RegValue &= ~LCR_BC;
HAL_UART_WRITE32(UART_LINE_CTL_REG_OFF, RegValue);
}
void log_uart_tx_comp_handler(log_uart_t *obj, void *handler, uint32_t id)
{
HAL_LOG_UART_ADAPTER *pUartAdapter=(PHAL_LOG_UART_ADAPTER)&(obj->log_hal_uart);
pUartAdapter->TxCompCallback = (void(*)(void*))handler;
pUartAdapter->TxCompCbPara = (void*)id;
}
void log_uart_rx_comp_handler(log_uart_t *obj, void *handler, uint32_t id)
{
HAL_LOG_UART_ADAPTER *pUartAdapter=&(obj->log_hal_uart);
pUartAdapter->RxCompCallback = (void(*)(void*))handler;
pUartAdapter->RxCompCbPara = (void*)id;
}
void log_uart_line_status_handler(log_uart_t *obj, void *handler, uint32_t id)
{
HAL_LOG_UART_ADAPTER *pUartAdapter=&(obj->log_hal_uart);
pUartAdapter->LineStatusCallback = (void(*)(void*, u8))handler;
pUartAdapter->LineStatusCbPara = (void*)id;
}
// Blocked(busy wait) receive, return received bytes count
int32_t log_uart_recv (log_uart_t *obj, char *prxbuf, uint32_t len, uint32_t timeout_ms)
{
HAL_LOG_UART_ADAPTER *pUartAdapter=&(obj->log_hal_uart);
int ret;
ret = (int)HalLogUartRecv(pUartAdapter, prxbuf, len, timeout_ms);
return (ret);
}
// Blocked(busy wait) send, return transmitted bytes count
int32_t log_uart_send (log_uart_t *obj, char *ptxbuf, uint32_t len, uint32_t timeout_ms)
{
HAL_LOG_UART_ADAPTER *pUartAdapter=&(obj->log_hal_uart);
int ret;
ret = (int)HalLogUartSend(pUartAdapter, ptxbuf, len, timeout_ms);
return (ret);
}
// Interrupt mode(no wait) receive, return HAL function result
int32_t log_uart_recv_stream (log_uart_t *obj, char *prxbuf, uint32_t len)
{
HAL_LOG_UART_ADAPTER *pUartAdapter=&(obj->log_hal_uart);
int ret;
ret = (int)HalLogUartIntRecv(pUartAdapter, (u8*)prxbuf, len);
return (ret);
}
// Interrupt Mode(no wait) send, return HAL function result
int32_t log_uart_send_stream (log_uart_t *obj, char *ptxbuf, uint32_t len)
{
HAL_LOG_UART_ADAPTER *pUartAdapter=&(obj->log_hal_uart);
int ret;
ret = (int)HalLogUartIntSend(pUartAdapter, (u8*)ptxbuf, len);
return (ret);
}
// Interrupt mode(no wait) receive with timeout
// return the byte count received before timeout, or error(<0)
int32_t log_uart_recv_stream_timeout (log_uart_t *obj, char *prxbuf, uint32_t len,
uint32_t timeout_ms, void *force_cs)
{
HAL_LOG_UART_ADAPTER *pUartAdapter=&(obj->log_hal_uart);
uint32_t TimeoutCount=0, StartCount;
int ret;
void (*task_yield)(void);
task_yield = NULL;
ret = (int)HalLogUartIntRecv(pUartAdapter, (u8*)prxbuf, len);
if ((ret == HAL_OK) && (timeout_ms > 0)) {
TimeoutCount = (timeout_ms*1000/TIMER_TICK_US);
StartCount = HalTimerOp.HalTimerReadCount(1);
task_yield = (void (*)(void))force_cs;
while (pUartAdapter->RxCount > 0) {
if (HAL_TIMEOUT == RuartIsTimeout(StartCount, TimeoutCount)) {
HalLogUartAbortIntRecv(pUartAdapter);
break;
}
if (NULL != task_yield) {
task_yield();
}
}
return (len - pUartAdapter->RxCount);
} else {
return (-ret);
}
}
// Abort Interrupt Mode TX and return how many bytes data has been sent
int32_t log_uart_send_stream_abort (log_uart_t *obj)
{
HAL_LOG_UART_ADAPTER *pUartAdapter=&(obj->log_hal_uart);
int ret;
HalLogUartAbortIntSend(pUartAdapter);
ret = (u32)pUartAdapter->pTxBuf - (u32)pUartAdapter->pTxStartAddr;
return (ret);
}
// Abort Interrupt Mode RX and return how many bytes data has been received
int32_t log_uart_recv_stream_abort (log_uart_t *obj)
{
HAL_LOG_UART_ADAPTER *pUartAdapter=&(obj->log_hal_uart);
int ret;
HalLogUartAbortIntRecv(pUartAdapter);
ret = (u32)pUartAdapter->pRxBuf - (u32)pUartAdapter->pRxStartAddr;
return (ret);
}
void log_uart_disable (log_uart_t *obj)
{
HAL_LOG_UART_ADAPTER *pUartAdapter=&(obj->log_hal_uart);
HalLogUartDisable(pUartAdapter);
}
void log_uart_enable (log_uart_t *obj)
{
HAL_LOG_UART_ADAPTER *pUartAdapter=&(obj->log_hal_uart);
HalLogUartEnable(pUartAdapter);
}
// to read Line-Status register
// Bit 0: RX Data Ready
// Bit 1: Overrun Error
// Bit 2: Parity Error
// Bit 3: Framing Error
// Bit 4: Break Interrupt (received data input is held in 0 state for a longer than a full word tx time)
// Bit 5: TX FIFO empty (THR empty)
// Bit 6: TX FIFO empty (THR & TSR both empty)
// Bit 7: Receiver FIFO Error (parity error, framing error or break indication)
uint8_t log_uart_raed_lsr(log_uart_t *obj)
{
uint8_t LineStatus;
LineStatus = HAL_UART_READ8(UART_LINE_STATUS_REG_OFF);
return LineStatus;
}
// to read Modem-Status register
// Bit 0: DCTS, The CTS line has changed its state
// Bit 1: DDSR, The DSR line has changed its state
// Bit 2: TERI, RI line has changed its state from low to high state
// Bit 3: DDCD, DCD line has changed its state
// Bit 4: Complement of the CTS input
// Bit 5: Complement of the DSR input
// Bit 6: Complement of the RI input
// Bit 7: Complement of the DCD input
uint8_t log_uart_raed_msr(log_uart_t *obj)
{
uint8_t RegValue;
RegValue = HAL_UART_READ8(UART_MODEM_STATUS_REG_OFF);
return RegValue;
}
