Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed
Controller.cpp
00001 /* 00002 * Controller.cpp 00003 * Copyright (c) 2018, ZHAW 00004 * All rights reserved. 00005 */ 00006 00007 #include <cmath> 00008 #include "Controller.h" 00009 00010 using namespace std; 00011 00012 const float Controller::PERIOD = 0.001f; // period of control task, given in [s] 00013 const float Controller::PI = 3.14159265f; // the constant PI 00014 const float Controller::WHEEL_DISTANCE = 0.170f; // distance between wheels, given in [m] 00015 const float Controller::WHEEL_RADIUS = 0.0375f; // radius of wheels, given in [m] 00016 const float Controller::COUNTS_PER_TURN = 1200.0f; // resolution of encoder counter 00017 const float Controller::LOWPASS_FILTER_FREQUENCY = 300.0f; // frequency of lowpass filter for actual speed values, given in [rad/s] 00018 const float Controller::KN = 40.0f; // speed constant of motor, given in [rpm/V] 00019 const float Controller::KP = 0.2f; // speed controller gain, given in [V/rpm] 00020 const float Controller::MAX_VOLTAGE = 12.0f; // supply voltage for power stage in [V] 00021 const float Controller::MIN_DUTY_CYCLE = 0.02f; // minimum allowed value for duty cycle (2%) 00022 const float Controller::MAX_DUTY_CYCLE = 0.98f; // maximum allowed value for duty cycle (98%) 00023 const float Controller::SIGMA_TRANSLATION = 0.0001; // standard deviation of estimated translation per period, given in [m] 00024 const float Controller::SIGMA_ORIENTATION = 0.0002; // standard deviation of estimated orientation per period, given in [rad] 00025 const float Controller::SIGMA_DISTANCE = 0.01; // standard deviation of distance measurement, given in [m] 00026 const float Controller::SIGMA_GAMMA = 0.03; // standard deviation of angle measurement, given in [rad] 00027 00028 /** 00029 * Creates and initializes a Controller object. 00030 * @param pwmLeft a pwm output object to set the duty cycle for the left motor. 00031 * @param pwmRight a pwm output object to set the duty cycle for the right motor. 00032 * @param counterLeft an encoder counter object to read the position of the left motor. 00033 * @param counterRight an encoder counter object to read the position of the right motor. 00034 */ 00035 Controller::Controller(PwmOut& pwmLeft, PwmOut& pwmRight, EncoderCounter& counterLeft, EncoderCounter& counterRight) : pwmLeft(pwmLeft), pwmRight(pwmRight), counterLeft(counterLeft), counterRight(counterRight) { 00036 00037 // initialize periphery drivers 00038 00039 pwmLeft.period(0.00005f); 00040 pwmLeft.write(0.5f); 00041 00042 pwmRight.period(0.00005f); 00043 pwmRight.write(0.5f); 00044 00045 // initialize local variables 00046 00047 translationalMotion.setProfileVelocity(1.5f); 00048 translationalMotion.setProfileAcceleration(1.5f); 00049 translationalMotion.setProfileDeceleration(3.0f); 00050 00051 rotationalMotion.setProfileVelocity(3.0f); 00052 rotationalMotion.setProfileAcceleration(15.0f); 00053 rotationalMotion.setProfileDeceleration(15.0f); 00054 00055 translationalVelocity = 0.0f; 00056 rotationalVelocity = 0.0f; 00057 actualTranslationalVelocity = 0.0f; 00058 actualRotationalVelocity = 0.0f; 00059 00060 previousValueCounterLeft = counterLeft.read(); 00061 previousValueCounterRight = counterRight.read(); 00062 00063 speedLeftFilter.setPeriod(PERIOD); 00064 speedLeftFilter.setFrequency(LOWPASS_FILTER_FREQUENCY); 00065 00066 speedRightFilter.setPeriod(PERIOD); 00067 speedRightFilter.setFrequency(LOWPASS_FILTER_FREQUENCY); 00068 00069 desiredSpeedLeft = 0.0f; 00070 desiredSpeedRight = 0.0f; 00071 00072 actualSpeedLeft = 0.0f; 00073 actualSpeedRight = 0.0f; 00074 00075 x = 0.0f; 00076 y = 0.0f; 00077 alpha = 0.0f; 00078 00079 p[0][0] = 0.001f; 00080 p[0][1] = 0.0f; 00081 p[0][2] = 0.0f; 00082 p[1][0] = 0.0f; 00083 p[1][1] = 0.001f; 00084 p[1][2] = 0.0f; 00085 p[2][0] = 0.0f; 00086 p[2][1] = 0.0f; 00087 p[2][2] = 0.001f; 00088 00089 // start periodic task 00090 00091 ticker.attach(callback(this, &Controller::run), PERIOD); 00092 } 00093 00094 /** 00095 * Deletes the Controller object and releases all allocated resources. 00096 */ 00097 Controller::~Controller() { 00098 00099 ticker.detach(); 00100 } 00101 00102 /** 00103 * Sets the desired translational velocity of the robot. 00104 * @param velocity the desired translational velocity, given in [m/s]. 00105 */ 00106 void Controller::setTranslationalVelocity(float velocity) { 00107 00108 this->translationalVelocity = velocity; 00109 } 00110 00111 /** 00112 * Sets the desired rotational velocity of the robot. 00113 * @param velocity the desired rotational velocity, given in [rad/s]. 00114 */ 00115 void Controller::setRotationalVelocity(float velocity) { 00116 00117 this->rotationalVelocity = velocity; 00118 } 00119 00120 /** 00121 * Gets the actual translational velocity of the robot. 00122 * @return the actual translational velocity, given in [m/s]. 00123 */ 00124 float Controller::getActualTranslationalVelocity() { 00125 00126 return actualTranslationalVelocity; 00127 } 00128 00129 /** 00130 * Gets the actual rotational velocity of the robot. 00131 * @return the actual rotational velocity, given in [rad/s]. 00132 */ 00133 float Controller::getActualRotationalVelocity() { 00134 00135 return actualRotationalVelocity; 00136 } 00137 00138 /** 00139 * Sets the actual x coordinate of the robots position. 00140 * @param x the x coordinate of the position, given in [m]. 00141 */ 00142 void Controller::setX(float x) { 00143 00144 this->x = x; 00145 } 00146 00147 /** 00148 * Gets the actual x coordinate of the robots position. 00149 * @return the x coordinate of the position, given in [m]. 00150 */ 00151 float Controller::getX() { 00152 00153 return x; 00154 } 00155 00156 /** 00157 * Sets the actual y coordinate of the robots position. 00158 * @param y the y coordinate of the position, given in [m]. 00159 */ 00160 void Controller::setY(float y) { 00161 00162 this->y = y; 00163 } 00164 00165 /** 00166 * Gets the actual y coordinate of the robots position. 00167 * @return the y coordinate of the position, given in [m]. 00168 */ 00169 float Controller::getY() { 00170 00171 return y; 00172 } 00173 00174 /** 00175 * Sets the actual orientation of the robot. 00176 * @param alpha the orientation, given in [rad]. 00177 */ 00178 void Controller::setAlpha(float alpha) { 00179 00180 this->alpha = alpha; 00181 } 00182 00183 /** 00184 * Gets the actual orientation of the robot. 00185 * @return the orientation, given in [rad]. 00186 */ 00187 float Controller::getAlpha() { 00188 00189 return alpha; 00190 } 00191 00192 /** 00193 * Correct the pose with given actual and measured coordinates of a beacon. 00194 * @param xActual the actual x coordinate of the beacon, given in [m]. 00195 * @param yActual the actual y coordinate of the beacon, given in [m]. 00196 * @param xMeasured the x coordinate of the beacon measured with a sensor(i.e. a laser scanner), given in [m]. 00197 * @param yMeasured the y coordinate of the beacon measured with a sensor(i.e. a laser scanner), given in [m]. 00198 */ 00199 void Controller::correctPoseWithBeacon(float xActual, float yActual, float xMeasured, float yMeasured) { 00200 00201 // create copies of current state and covariance matrix for Kalman filter P 00202 00203 float x = this->x; 00204 float y = this->y; 00205 float alpha = this->alpha; 00206 00207 float p[3][3]; 00208 00209 for (int i = 0; i < 3; i++) { 00210 for (int j = 0; j < 3; j++) { 00211 p[i][j] = this->p[i][j]; 00212 } 00213 } 00214 00215 // calculate covariance matrix of innovation S 00216 00217 float s[2][2]; 00218 float r = sqrt((xActual-x)*(xActual-x)+(yActual-y)*(yActual-y)); 00219 00220 s[0][0] = 1.0f/r/r*(p[1][0]*xActual*yActual+p[1][1]*yActual*yActual+r*r*SIGMA_DISTANCE*SIGMA_DISTANCE+p[0][0]*(xActual-x)*(xActual-x)-p[1][0]*yActual*x+p[0][1]*(xActual-x)*(yActual-y)-p[1][0]*xActual*y-2.0f*p[1][1]*yActual*y+p[1][0]*x*y+p[1][1]*y*y); 00221 s[0][1] = -(1.0f/r/r/r*(-p[1][1]*xActual*yActual+p[1][0]*yActual*yActual-p[0][2]*xActual*r*r-p[1][2]*yActual*r*r-p[0][1]*(xActual-x)*(xActual-x)+p[1][1]*yActual*x+p[0][2]*r*r*x+p[0][0]*(xActual-x)*(yActual-y)+p[1][1]*xActual*y-2.0f*p[1][0]*yActual*y+p[1][2]*r*r*y-p[1][1]*x*y+p[1][0]*y*y)); 00222 s[1][0] = ((xActual-x)*(p[2][0]*r*r+p[1][0]*(xActual-x)+p[0][0]*(-yActual+y))+(yActual-y)*(p[2][1]*r*r+p[1][1]*(xActual-x)+p[0][1]*(-yActual+y)))/r/r/r; 00223 s[1][1] = p[2][2]+SIGMA_GAMMA*SIGMA_GAMMA+p[1][2]*(xActual-x)/r/r+p[0][2]*(-yActual+y)/r/r-(yActual-y)*(p[2][0]*r*r+p[1][0]*(xActual-x)+p[0][0]*(-yActual+y))/r/r/r/r+(xActual-x)*(p[2][1]*r*r+p[1][1]*(xActual-x)+p[0][1]*(-yActual+y))/r/r/r/r; 00224 00225 // calculate Kalman matrix K 00226 00227 float k[3][2]; 00228 00229 k[0][0] = -((s[1][0]*(-p[0][2]+(p[0][1]*(-xActual+x))/r/r+(p[0][0]*(yActual-y))/r/r))/(-(s[0][1]*s[1][0])+s[0][0]*s[1][1]))+(s[1][1]*((p[0][0]*(-xActual+x))/r+(p[0][1]*(-yActual+y))/r))/(-(s[0][1]*s[1][0])+s[0][0]*s[1][1]); 00230 k[0][1] = (s[0][0]*(-p[0][2]+(p[0][1]*(-xActual+x))/r/r+(p[0][0]*(yActual-y))/r/r))/(-(s[0][1]*s[1][0])+s[0][0]*s[1][1])-(s[0][1]*((p[0][0]*(-xActual+x))/r+(p[0][1]*(-yActual+y))/r))/(-(s[0][1]*s[1][0])+s[0][0]*s[1][1]); 00231 k[1][0] = -((s[1][0]*(-p[1][2]+(p[1][1]*(-xActual+x))/r/r+(p[1][0]*(yActual-y))/r/r))/(-(s[0][1]*s[1][0])+s[0][0]*s[1][1]))+(s[1][1]*((p[1][0]*(-xActual+x))/r+(p[1][1]*(-yActual+y))/r))/(-(s[0][1]*s[1][0])+s[0][0]*s[1][1]); 00232 k[1][1] = (s[0][0]*(-p[1][2]+(p[1][1]*(-xActual+x))/r/r+(p[1][0]*(yActual-y))/r/r))/(-(s[0][1]*s[1][0])+s[0][0]*s[1][1])-(s[0][1]*((p[1][0]*(-xActual+x))/r+(p[1][1]*(-yActual+y))/r))/(-(s[0][1]*s[1][0])+s[0][0]*s[1][1]); 00233 k[2][0] = -((s[1][0]*(-p[2][2]+(p[2][1]*(-xActual+x))/r/r+(p[2][0]*(yActual-y))/r/r))/(-(s[0][1]*s[1][0])+s[0][0]*s[1][1]))+(s[1][1]*((p[2][0]*(-xActual+x))/r+(p[2][1]*(-yActual+y))/r))/(-(s[0][1]*s[1][0])+s[0][0]*s[1][1]); 00234 k[2][1] = (s[0][0]*(-p[2][2]+(p[2][1]*(-xActual+x))/r/r+(p[2][0]*(yActual-y))/r/r))/(-(s[0][1]*s[1][0])+s[0][0]*s[1][1])-(s[0][1]*((p[2][0]*(-xActual+x))/r+(p[2][1]*(-yActual+y))/r))/(-(s[0][1]*s[1][0])+s[0][0]*s[1][1]); 00235 00236 // calculate pose correction 00237 00238 float distanceMeasured = sqrt((xMeasured-x)*(xMeasured-x)+(yMeasured-y)*(yMeasured-y)); 00239 float gammaMeasured = atan2(yMeasured-y, xMeasured-x)-alpha; 00240 00241 if (gammaMeasured > PI) gammaMeasured -= 2.0f*PI; 00242 else if (gammaMeasured < -PI) gammaMeasured += 2.0f*PI; 00243 00244 float distanceEstimated = sqrt((xActual-x)*(xActual-x)+(yActual-y)*(yActual-y)); 00245 float gammaEstimated = atan2(yActual-y, xActual-x)-alpha; 00246 00247 if (gammaEstimated > PI) gammaEstimated -= 2.0f*PI; 00248 else if (gammaEstimated < -PI) gammaEstimated += 2.0f*PI; 00249 00250 x += k[0][0]*(distanceMeasured-distanceEstimated)+k[0][1]*(gammaMeasured-gammaEstimated); 00251 y += k[1][0]*(distanceMeasured-distanceEstimated)+k[1][1]*(gammaMeasured-gammaEstimated); 00252 alpha += k[2][0]*(distanceMeasured-distanceEstimated)+k[2][1]*(gammaMeasured-gammaEstimated); 00253 00254 this->x = x; 00255 this->y = y; 00256 this->alpha = alpha; 00257 00258 // calculate correction of covariance matrix for Kalman filter P 00259 00260 p[0][0] = k[0][1]*p[2][0]+p[0][0]*(1-(k[0][0]*(-xActual+x))/r-(k[0][1]*(yActual-y))/r/r)+p[1][0]*(-((k[0][1]*(-xActual+x))/r/r)-(k[0][0]*(-yActual+y))/r); 00261 p[0][1] = k[0][1]*p[2][1]+p[0][1]*(1-(k[0][0]*(-xActual+x))/r-(k[0][1]*(yActual-y))/r/r)+p[1][1]*(-((k[0][1]*(-xActual+x))/r/r)-(k[0][0]*(-yActual+y))/r); 00262 p[0][2] = k[0][1]*p[2][2]+p[0][2]*(1-(k[0][0]*(-xActual+x))/r-(k[0][1]*(yActual-y))/r/r)+p[1][2]*(-((k[0][1]*(-xActual+x))/r/r)-(k[0][0]*(-yActual+y))/r); 00263 00264 p[1][0] = k[1][1]*p[2][0]+p[0][0]*(-((k[1][0]*(-xActual+x))/r)-(k[1][1]*(yActual-y))/r/r)+p[1][0]*(1-(k[1][1]*(-xActual+x))/r/r-(k[1][0]*(-yActual+y))/r); 00265 p[1][1] = k[1][1]*p[2][1]+p[0][1]*(-((k[1][0]*(-xActual+x))/r)-(k[1][1]*(yActual-y))/r/r)+p[1][1]*(1-(k[1][1]*(-xActual+x))/r/r-(k[1][0]*(-yActual+y))/r); 00266 p[1][2] = k[1][1]*p[2][2]+p[0][2]*(-((k[1][0]*(-xActual+x))/r)-(k[1][1]*(yActual-y))/r/r)+p[1][2]*(1-(k[1][1]*(-xActual+x))/r/r-(k[1][0]*(-yActual+y))/r); 00267 00268 p[2][0] = (1+k[2][1])*p[2][0]+p[0][0]*(-((k[2][0]*(-xActual+x))/r)-(k[2][1]*(yActual-y))/r/r)+p[1][0]*(-((k[2][1]*(-xActual+x))/r/r)-(k[2][0]*(-yActual+y))/r); 00269 p[2][1] = (1+k[2][1])*p[2][1]+p[0][1]*(-((k[2][0]*(-xActual+x))/r)-(k[2][1]*(yActual-y))/r/r)+p[1][1]*(-((k[2][1]*(-xActual+x))/r/r)-(k[2][0]*(-yActual+y))/r); 00270 p[2][2] = (1+k[2][1])*p[2][2]+p[0][2]*(-((k[2][0]*(-xActual+x))/r)-(k[2][1]*(yActual-y))/r/r)+p[1][2]*(-((k[2][1]*(-xActual+x))/r/r)-(k[2][0]*(-yActual+y))/r); 00271 00272 for (int i = 0; i < 3; i++) { 00273 for (int j = 0; j < 3; j++) { 00274 this->p[i][j] = p[i][j]; 00275 } 00276 } 00277 } 00278 00279 /** 00280 * This method is called periodically by the ticker object and contains the 00281 * algorithm of the speed controller. 00282 */ 00283 void Controller::run() { 00284 00285 // calculate the planned velocities using the motion planner 00286 00287 translationalMotion.incrementToVelocity(translationalVelocity, PERIOD); 00288 rotationalMotion.incrementToVelocity(rotationalVelocity, PERIOD); 00289 00290 // calculate the values 'desiredSpeedLeft' and 'desiredSpeedRight' using the kinematic model 00291 00292 desiredSpeedLeft = (translationalMotion.velocity-WHEEL_DISTANCE/2.0f*rotationalMotion.velocity)/WHEEL_RADIUS*60.0f/2.0f/PI; 00293 desiredSpeedRight = -(translationalMotion.velocity+WHEEL_DISTANCE/2.0f*rotationalMotion.velocity)/WHEEL_RADIUS*60.0f/2.0f/PI; 00294 00295 // calculate actual speed of motors in [rpm] 00296 00297 short valueCounterLeft = counterLeft.read(); 00298 short valueCounterRight = counterRight.read(); 00299 00300 short countsInPastPeriodLeft = valueCounterLeft-previousValueCounterLeft; 00301 short countsInPastPeriodRight = valueCounterRight-previousValueCounterRight; 00302 00303 previousValueCounterLeft = valueCounterLeft; 00304 previousValueCounterRight = valueCounterRight; 00305 00306 actualSpeedLeft = speedLeftFilter.filter((float)countsInPastPeriodLeft/COUNTS_PER_TURN/PERIOD*60.0f); 00307 actualSpeedRight = speedRightFilter.filter((float)countsInPastPeriodRight/COUNTS_PER_TURN/PERIOD*60.0f); 00308 00309 // calculate motor phase voltages 00310 00311 float voltageLeft = KP*(desiredSpeedLeft-actualSpeedLeft)+desiredSpeedLeft/KN; 00312 float voltageRight = KP*(desiredSpeedRight-actualSpeedRight)+desiredSpeedRight/KN; 00313 00314 // calculate, limit and set duty cycles 00315 00316 float dutyCycleLeft = 0.5f+0.5f*voltageLeft/MAX_VOLTAGE; 00317 if (dutyCycleLeft < MIN_DUTY_CYCLE) dutyCycleLeft = MIN_DUTY_CYCLE; 00318 else if (dutyCycleLeft > MAX_DUTY_CYCLE) dutyCycleLeft = MAX_DUTY_CYCLE; 00319 pwmLeft.write(dutyCycleLeft); 00320 00321 float dutyCycleRight = 0.5f+0.5f*voltageRight/MAX_VOLTAGE; 00322 if (dutyCycleRight < MIN_DUTY_CYCLE) dutyCycleRight = MIN_DUTY_CYCLE; 00323 else if (dutyCycleRight > MAX_DUTY_CYCLE) dutyCycleRight = MAX_DUTY_CYCLE; 00324 pwmRight.write(dutyCycleRight); 00325 00326 // calculate the values 'actualTranslationalVelocity' and 'actualRotationalVelocity' using the kinematic model 00327 00328 actualTranslationalVelocity = (actualSpeedLeft-actualSpeedRight)*2.0f*PI/60.0f*WHEEL_RADIUS/2.0f; 00329 actualRotationalVelocity = (-actualSpeedRight-actualSpeedLeft)*2.0f*PI/60.0f*WHEEL_RADIUS/WHEEL_DISTANCE; 00330 00331 // calculate the actual robot pose 00332 00333 float deltaTranslation = actualTranslationalVelocity*PERIOD; 00334 float deltaOrientation = actualRotationalVelocity*PERIOD; 00335 00336 float sinAlpha = sin(alpha+deltaOrientation); 00337 float cosAlpha = cos(alpha+deltaOrientation); 00338 00339 x += cosAlpha*deltaTranslation; 00340 y += sinAlpha*deltaTranslation; 00341 float alpha = this->alpha+deltaOrientation; 00342 00343 while (alpha > PI) alpha -= 2.0f*PI; 00344 while (alpha < -PI) alpha += 2.0f*PI; 00345 00346 this->alpha = alpha; 00347 00348 // calculate covariance matrix for Kalman filter P 00349 00350 p[0][0] = p[0][0]+SIGMA_TRANSLATION*SIGMA_TRANSLATION*cosAlpha*cosAlpha+deltaTranslation*deltaTranslation*(SIGMA_ORIENTATION*SIGMA_ORIENTATION+p[2][2])*sinAlpha*sinAlpha-deltaTranslation*(p[0][2]+p[2][0])*sinAlpha; 00351 p[0][1] = p[0][1]-deltaTranslation*p[2][1]*sinAlpha+cosAlpha*(deltaTranslation*p[0][2]+(SIGMA_TRANSLATION*SIGMA_TRANSLATION-deltaTranslation*deltaTranslation*(SIGMA_ORIENTATION*SIGMA_ORIENTATION+p[2][2]))*sinAlpha); 00352 p[0][2] = p[0][2]-deltaTranslation*(SIGMA_ORIENTATION*SIGMA_ORIENTATION+p[2][2])*sinAlpha; 00353 00354 p[1][0] = p[1][0]-deltaTranslation*p[1][2]*sinAlpha+cosAlpha*(deltaTranslation*p[2][0]+(SIGMA_TRANSLATION*SIGMA_TRANSLATION-deltaTranslation*deltaTranslation*(SIGMA_ORIENTATION*SIGMA_ORIENTATION+p[2][2]))*sinAlpha); 00355 p[1][1] = p[1][1]+deltaTranslation*deltaTranslation*(SIGMA_ORIENTATION*SIGMA_ORIENTATION+p[2][2])*cosAlpha*cosAlpha+deltaTranslation*(p[1][2]+p[2][1])*cosAlpha+SIGMA_TRANSLATION*SIGMA_TRANSLATION*sinAlpha*sinAlpha; 00356 p[1][2] = p[1][2]+deltaTranslation*(SIGMA_ORIENTATION*SIGMA_ORIENTATION+p[2][2])*cosAlpha; 00357 00358 p[2][0] = p[2][0]-deltaTranslation*(SIGMA_ORIENTATION*SIGMA_ORIENTATION+p[2][2])*sinAlpha; 00359 p[2][1] = p[2][1]+deltaTranslation*(SIGMA_ORIENTATION*SIGMA_ORIENTATION+p[2][2])*cosAlpha; 00360 p[2][2] = p[2][2]+SIGMA_ORIENTATION*SIGMA_ORIENTATION; 00361 } 00362
Generated on Sun Jul 23 2023 17:17:31 by
1.7.2