Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: WizziCom WizziDebug ram_fs modem_ref
Dependents: D7A_Localisation D7A_1x_demo_send_file_data_and_forget D7A_1x_demo_CodeUpgradeProtocol D7A_1x_demo_LoRaWAN ... more
modem_d7a.cpp
- Committer:
- Jeej
- Date:
- 2022-03-10
- Revision:
- 87:ae859849b6b4
- Parent:
- 80:c2e45d6eab29
File content as of revision 87:ae859849b6b4:
#include "mbed.h"
#include "modem_d7a.h"
#include "modem_cup.h"
#if 0
#define HELPER_PRINT(...) PRINT(__VA_ARGS__)
#else
#define HELPER_PRINT(...);
#endif
#define MODEM_VERSION_MAJOR 5
#define MODEM_VERSION_MINOR 6
#define MODEM_VERSION_PATCH 0
#define MODEM_DEVICE_ID 0x00001001
Semaphore g_s[MAX_USER_NB];
static WizziCom* g_modem_com;
// Callback for id User
static void modem_cb(uint8_t id)
{
(void)id;
HELPER_PRINT("CB ID:%d\n", id);
g_s[id].release();
}
static int g_boot_nb;
static int g_read_nb;
static int g_swr_nb;
static int g_hwr_nb;
static int g_pwc_nb;
static int g_fail_nb;
int my_alp_itf_d7a_cfg_size(d7a_sp_cfg_t* cfg)
{
int size = sizeof(d7a_sp_cfg_t) - sizeof(d7a_addressee_t);
size += D7A_ADDR_LEN(cfg->addressee.ctrl);
return size;
}
// ============================================================}}}
// Serial adapters to WizziLab's own architecture
// ============================================================{{{
static void modem_serial_input(WizziCom* com, WizziComPacket_t* pkt)
{
modem_ref_input(wizzicom_type_to_flow(pkt->type), pkt->data, pkt->length);
}
static int modem_serial_send(uint8_t type, uint8_t* data, uint8_t size)
{
// Retrieve Flow ID from header and send packet
g_modem_com->send((WizziComPacketType)type, size, data);
return size;
}
static Semaphore boot(0);
void my_startup_boot(u8 cause, u16 number)
{
HELPER_PRINT("Modem BOOT[%c] #%d\r\n", cause, number);
boot.release();
}
int modem_open(modem_ref_callbacks_t* callbacks)
{
static union {
uint8_t b[8];
uint32_t w[2];
} uid;
revision_t rev;
int err;
//for (int i = 0; i < MAX_USER_NB; i++)
//{
//g_s[i] = Semaphore(0);
//}
g_boot_nb++;
// Override boot callback to catch the first boot message
modem_ref_callbacks_t boot_callbacks = {
.read = NULL,
.write = NULL,
.read_fprop = NULL,
.flush = NULL,
.remove = NULL,
.udata = NULL,
.reset = NULL,
.boot = my_startup_boot,
};
// Open modem Com port
g_modem_com = new WizziCom(MODEM_PIN_RX, MODEM_PIN_TX, MODEM_PIN_IRQ_IN, MODEM_PIN_IRQ_OUT);
// open with user callbacks
modem_ref_open(modem_serial_send, callbacks);
// Redirect All Port traffic to modem_serial_input
g_modem_com->attach(modem_serial_input, WizziComPacketUntreated);
// Wait for modem power up
ThisThread::sleep_for(100);
// Try reading UID
err = modem_read_file(D7A_FID_UID, uid.b, 0, 8);
if (ALP_ERR_NONE > err)
{
PRINT("Trying software reset...\n");
// Open driver to catch boot packet
modem_ref_close();
modem_ref_open(NULL, &boot_callbacks);
// Try software reset
g_modem_com->send(WizziComPacketSysReset, 0, NULL);
if (!boot.try_acquire_for(1000))
{
PRINT("Trying hardware reset...\n");
// Assert reset pin
DigitalOut reset_low(MODEM_PIN_RESET, 0);
ThisThread::sleep_for(100);
// Release reset pin
DigitalIn reset_release(MODEM_PIN_RESET);
if (!boot.try_acquire_for(1000))
{
#if 0
// Modem not responding!
PRINT("Trying power cycle.\n");
// Assert power pin
DigitalOut power_high(D12, 1);
ThisThread::sleep_for(1000);
// Release reset pin
DigitalIn power_release(D12);
if (boot.try_acquire_for(1000))
{
g_pwc_nb++;
PRINT("Modem is up after power cycle.\n");
}
else
#endif
{
// Modem not responding!
g_fail_nb++;
PRINT("Failed to open modem.\n");
return -1;
}
}
else
{
g_hwr_nb++;
PRINT("Modem is up after hardware reset.\n");
}
}
else
{
g_swr_nb++;
PRINT("Modem is up after software reset.\n");
}
// Re-open with user callbacks
modem_ref_close();
modem_ref_open(modem_serial_send, callbacks);
}
else
{
g_read_nb++;
PRINT("Modem is up.\n");
}
PRINT("Boot stats: boot:%d read:%d swr:%d hwr:%d pwc:%d fail:%d\n", g_boot_nb, g_read_nb, g_swr_nb, g_hwr_nb, g_pwc_nb, g_fail_nb);
ThisThread::sleep_for(100);
modem_read_file(D7A_FID_UID, uid.b, 0, 8);
modem_read_file(D7A_FID_FIRMWARE_VERSION, (uint8_t*)&rev, 0, sizeof(revision_t));
PRINT("------------ D7A Modem infos ------------\r\n");
PRINT_DATA(" - UID: ", "%02X", uid.b, 8, "\r\n");
PRINT(" - Manufacturer ID: %08X\r\n", rev.manufacturer_id);
PRINT(" - Device ID: %08X\r\n", rev.device_id);
PRINT(" - Hardware version: %08X\r\n", rev.hw_version);
PRINT(" - Firmware version: v%d.%d.%d [%02X]\r\n", rev.fw_version.major, rev.fw_version.minor, rev.fw_version.patch, rev.fw_version.id);
PRINT(" - CUP max size: %d\r\n", rev.cup_max_size);
PRINT("-----------------------------------------\r\n");
FLUSH();
modem_cup_update(&rev);
return 0;
}
int modem_close(void)
{
modem_ref_close();
delete g_modem_com;
return 0;
}
static int _modem_d7a_send(void* itf, alp_payload_t* alp, alp_payload_t** alp_rsp, uint32_t timeout)
{
u8 id = modem_ref_get_id(modem_cb);
int err = ALP_ERR_UNKNOWN;
// Make sure Semaphore is taken
g_s[id].try_acquire();
modem_ref_alp(itf, alp, alp_rsp, id);
if (!g_s[id].try_acquire_for(timeout))
{
PRINT("Modem_d7a timeout (%dms) on id %d\n", timeout, id);
err = ALP_ERR_UNKNOWN;
}
else
{
err = ALP_ERR_NONE;
}
modem_ref_free_id(id);
return err;
}
static int _modem_get_istatus(alp_payload_t* alp, void* istatus)
{
alp_payload_t* alp_tmp = alp_payload_get(alp, ALP_OPCODE_RSP_ISTATUS);
if (alp_tmp)
{
alp_parsed_chunk_t r;
u8* p = alp_tmp->d;
alp_parse_chunk(&p, &r);
memcpy(istatus, r.data, r.meta.itf.length);
return ALP_ERR_NONE;
}
else
{
PRINT("No metadata\n");
}
return ALP_ERR_UNKNOWN;
}
int modem_raw_alp(alp_payload_t* alp, alp_payload_t** alp_rsp)
{
return _modem_d7a_send(NULL, alp, alp_rsp, MODEM_TIMEOUT_LOCAL);
}
int modem_remote_raw_alp(void* itf, alp_payload_t* alp, alp_payload_t** alp_rsp)
{
return _modem_d7a_send(itf, alp, alp_rsp, MODEM_TIMEOUT_DISTANT);
}
static int _modem_send_alp(void* itf, void *istatus, alp_payload_t* alp, uint32_t timeout)
{
int err = ALP_ERR_UNKNOWN;
alp_payload_t* alp_rsp = NULL;
err = _modem_d7a_send(itf, alp, &alp_rsp, timeout);
do {
if (ALP_ERR_NONE > err) { PRINT("Send ALP timeout\n"); break; }
err = alp_payload_get_err(alp_rsp);
if (ALP_ERR_NONE > err) { PRINT("Send ALP err %d\n", err); break; }
if (istatus)
{
_modem_get_istatus(alp_rsp, istatus);
}
} while (0);
alp_payload_free(alp_rsp);
return err;
}
static int _modem_read_file(uint8_t* itf, void *istatus, uint8_t fid, void *data, uint32_t offset, uint32_t length, uint32_t timeout)
{
int err = ALP_ERR_UNKNOWN;
alp_payload_t* alp = NULL;
alp_payload_t* alp_rsp = NULL;
alp = alp_payload_f_rd_data(NULL, fid, offset, length, false);
err = _modem_d7a_send(NULL, alp, &alp_rsp, timeout);
do {
if (ALP_ERR_NONE > err) { PRINT("Read file timeout\n"); break; }
err = alp_payload_get_err(alp_rsp);
if (ALP_ERR_NONE > err) { PRINT("Read file err %d\n", err); break; }
alp = alp_payload_get(alp_rsp, ALP_OPCODE_RSP_F_DATA);
if (alp)
{
alp_parsed_chunk_t r;
u8* p = alp->d;
alp_parse_chunk(&p, &r);
memcpy(data, r.data, r.meta.f_data.length);
}
else
{
PRINT("Read file no payload\n");
err = ALP_ERR_UNKNOWN;
break;
}
if (istatus)
{
_modem_get_istatus(alp_rsp, istatus);
}
} while (0);
alp_payload_free(alp_rsp);
return err;
}
int modem_read_file(uint8_t fid, void *data, uint32_t offset, uint32_t length)
{
return _modem_read_file(NULL, NULL, fid, data, offset, length, MODEM_TIMEOUT_LOCAL);
}
int modem_remote_read_file(uint8_t* itf, void *istatus, uint8_t fid, void *data, uint32_t offset, uint32_t length)
{
return _modem_read_file(itf, istatus, fid, data, offset, length, MODEM_TIMEOUT_DISTANT);
}
int modem_write_file(uint8_t fid, void *data, uint32_t offset, uint32_t length)
{
alp_payload_t* alp = alp_payload_f_wr_data(NULL, fid, data, offset, length, false);
return _modem_send_alp(NULL, NULL, alp, MODEM_TIMEOUT_LOCAL);
}
int modem_remote_write_file(uint8_t* itf, void *istatus , uint8_t fid, void *data, uint32_t offset, uint32_t length)
{
alp_payload_t* alp = alp_payload_f_wr_data(NULL, fid, data, offset, length, false);
return _modem_send_alp(itf, istatus, alp, MODEM_TIMEOUT_DISTANT);
}
int modem_flush_file(uint8_t fid)
{
alp_payload_t* alp = alp_payload_f_flush(NULL, fid, false);
return _modem_send_alp(NULL, NULL, alp, MODEM_TIMEOUT_LOCAL);
}
int modem_declare_file(uint8_t fid, alp_file_header_t* header)
{
alp_payload_t* alp = alp_payload_f_declare(NULL, fid, header);
return _modem_send_alp(NULL, NULL, alp, MODEM_TIMEOUT_LOCAL);
}
int modem_notify_file(uint8_t fid, uint32_t offset, uint32_t length)
{
alp_payload_t* alp = alp_payload_f_touch(NULL, fid, offset, length, false);
return _modem_send_alp(NULL, NULL, alp, MODEM_TIMEOUT_LOCAL);
}
static int _modem_d7a_itf_enable(u8 enable)
{
alp_payload_t* alp = alp_payload_activate_itf(NULL, ALP_ITF_TYPE_D7A, 24, 0, ALP_D7A_ISTAT_RESP | ALP_D7A_ISTAT_UNS | ALP_D7A_ISTAT_EOP, enable);
return _modem_send_alp(NULL, NULL, alp, MODEM_TIMEOUT_LOCAL);
}
int modem_d7a_enable_itf(void)
{
return _modem_d7a_itf_enable(true);
}
int modem_d7a_disable_itf(void)
{
return _modem_d7a_itf_enable(false);
}
static int modem_lwan_set_urc(void)
{
alp_payload_t* alp = alp_payload_urcc_en(NULL, ALP_URC_TYPE_ITF_BUSY, FID_LWAN_ITF, 1);
return _modem_send_alp(NULL, NULL, alp, MODEM_TIMEOUT_LOCAL);
}
static int modem_lwan_enable_itf(void)
{
alp_payload_t* alp = alp_payload_activate_itf(NULL, ALP_ITF_TYPE_LWAN, 1, FID_LWAN_ITF, 0, true);
return _modem_send_alp(NULL, NULL, alp, MODEM_TIMEOUT_LOCAL);
}
int modem_lwan_open(void)
{
int err = ALP_ERR_UNKNOWN;
err = modem_lwan_set_urc();
if (ALP_ERR_NONE > err) { return err; }
err = modem_lwan_enable_itf();
return err;
}
int modem_lwan_set_cfg(lwan_cfg_t* cfg)
{
return modem_write_file(FID_LWAN_CFG, cfg, 0, sizeof(lwan_cfg_t));
}
int modem_lwan_set_nls(lwan_nls_t* nls)
{
return modem_write_file(FID_LWAN_NLS, nls, 0, sizeof(lwan_nls_t));
}
int modem_lwan_send(alp_payload_t* alp)
{
alp_itf_lwan_cfg_t itf = { .type = ALP_ITF_TYPE_LWAN };
return _modem_d7a_send((void*)&itf, alp, NULL, MODEM_TIMEOUT_DISTANT);
}
int modem_lwan_get_status(lwan_status_t* status)
{
return modem_read_file(FID_LWAN_STATUS, status, 0, sizeof(lwan_status_t));
}
void modem_print_error(uint8_t itf, int error)
{
if (ALP_ERR_ITF_START >= error && ALP_ERR_ITF_END < error)
{
error -= ALP_ERR_ITF_START;
// Interface specific error
if (ALP_ITF_TYPE_HOST == itf)
{
PRINT("ITF[%02X] Error %d\r\n", itf, error);
}
else if (ALP_ITF_TYPE_COM == itf)
{
PRINT("ITF[%02X] Error %d\r\n", itf, error);
}
else if (ALP_ITF_TYPE_D7A == itf)
{
PRINT("ITF[%02X] ", itf);
switch (error)
{
/// No error
case D7A_ERROR_NO: // = 0,
PRINT("D7A_ERROR_NO\r\n");
break;
/// Resource busy
case D7A_ERROR_BUSY: // = -1,
PRINT("D7A_ERROR_BUSY\r\n");
break;
/// Bad parameter
case D7A_ERROR_BAD_PARAM: // = -2,
PRINT("D7A_ERROR_BAD_PARAM\r\n");
break;
/// Duty cycle limit overflow
case D7A_ERROR_DUTY_CYCLE: // = -3,
PRINT("D7A_ERROR_DUTY_CYCLE\r\n");
break;
/// CCA timeout
case D7A_ERROR_CCA_TO: // = -4,
PRINT("D7A_ERROR_CCA_TO\r\n");
break;
/// Security frame counter overflow
case D7A_ERROR_NLS_KEY: // = -5,
PRINT("D7A_ERROR_NLS_KEY\r\n");
break;
/// TX stream underflow
case D7A_ERROR_TX_UDF: // = -6,
PRINT("D7A_ERROR_TX_UDF\r\n");
break;
/// RX stream overflow
case D7A_ERROR_RX_OVF: // = -7,
PRINT("D7A_ERROR_RX_OVF\r\n");
break;
/// RX checksum
case D7A_ERROR_RX_CRC: // = -8,
PRINT("D7A_ERROR_RX_CRC\r\n");
break;
/// Abort
case D7A_ERROR_ABORT: // = -9,
PRINT("D7A_ERROR_ABORT\r\n");
break;
/// No ACK received
case D7A_ERROR_NO_ACK: // = -10,
PRINT("D7A_ERROR_NO_ACK\r\n");
break;
/// RX timeout
case D7A_ERROR_RX_TO: // = -11,
PRINT("D7A_ERROR_RX_TO\r\n");
break;
default:
PRINT("Unknown Error %d\r\n", error);
break;
}
}
else if (ALP_ITF_TYPE_LWAN == itf)
{
PRINT("ITF[%02X] Error %d\r\n", itf, error);
}
else
{
PRINT("ITF[%02X] Error %d\r\n", itf, error);
}
}
else
{
PRINT("ITF[%02X] ALP: ", itf);
switch (error)
{
// Not really errors, more like status
case ALP_ERR_ITF_FULL: // 0x02: For interfaces supporting buffering, indicates buffer reached maximum capacity (no data loss)
PRINT("ALP_ERR_ITF_FULL\r\n");
break;
case ALP_ERR_PARTIAL_COMPLETION: // 0x01: Action received and partially completed at response. To be completed after response
PRINT("ALP_ERR_PARTIAL_COMPLETION\r\n");
break;
// ALP Errors
case ALP_ERR_NONE: // 0x00: Action completed (OK)
PRINT("ALP_ERR_NONE\r\n");
break;
case ALP_ERR_FILE_NOT_FOUND: // 0xFF: Error access file: File ID does not exist
PRINT("ALP_ERR_FILE_NOT_FOUND\r\n");
break;
case ALP_ERR_FILE_EXIST: // 0xFE: Error create file: File ID already exists
PRINT("ALP_ERR_FILE_EXIST\r\n");
break;
case ALP_ERR_FILE_NOT_RESTORABLE: // 0xFD: Error restore file: File is not restorable
PRINT("ALP_ERR_FILE_NOT_RESTORABLEr\n");
break;
case ALP_ERR_PERMISSION_DENIED: // 0xFC: Error access file: Insufficient permissions
PRINT("ALP_ERR_PERMISSION_DENIED\r\n");
break;
case ALP_ERR_LENGTH_OVERFLOW: // 0xFB: Error create file: Supplied length (in header) is beyond file limits
PRINT("ALP_ERR_LENGTH_OVERFLOW\r\n");
break;
case ALP_ERR_ALLOC_OVERFLOW: // 0xFA: Error create file: Supplied allocation (in header) is beyond file limits
PRINT("ALP_ERR_ALLOC_OVERFLOW\r\n");
break;
case ALP_ERR_OFFSET_OVERFLOW: // 0xF9: Error write: Supplied start offset is out of bounds of file allocation
PRINT("ALP_ERR_OFFSET_OVERFLOW\r\n");
break;
case ALP_ERR_WRITE_OVERFLOW: // 0xF8: Error complete write: Supplied data goes beyond file allocation
PRINT("ALP_ERR_WRITE_OVERFLOW\r\n");
break;
case ALP_ERR_WRITE_ERROR: // 0xF7: Error write: impossible to write in storage location
PRINT("ALP_ERR_WRITE_ERROR\r\n");
break;
case ALP_ERR_OPERATION_UNKNOWN: // 0xF6: Error unknown Operation
PRINT("ALP_ERR_OPERATION_UNKNOWN\r\n");
break;
case ALP_ERR_OPERAND_INCOMPLETE: // 0xF5: Error incomplete Operand
PRINT("ALP_ERR_OPERAND_INCOMPLETE\r\n");
break;
case ALP_ERR_OPERAND_WRONG_FORMAT: // 0xF4: Error wrong Operand format
PRINT("ALP_ERR_OPERAND_WRONG_FORMAT\r\n");
break;
case ALP_ERR_ITF_INVALID: // 0xF3: Error invalid interface
PRINT("ALP_ERR_ITF_INVALID\r\n");
break;
case ALP_ERR_ITF_OVERFLOW: // 0xF2: Error interface overflown (i.e. resources exhausted, buffer full with data discarded)
PRINT("ALP_ERR_ITF_OVERFLOW\r\n");
break;
case ALP_ERR_QUERY_FAIL: // 0xF1: (Group of) Query result was false (Informative error code).
PRINT("ALP_ERR_QUERY_FAIL\r\n");
break;
case ALP_ERR_ITF_NOT_SPECIFIED:
PRINT("ALP_ERR_ITF_NOT_SPECIFIED\r\n");
break;
// Other Errors
case ALP_ERR_UNKNOWN: // 0x80: Unknown error
PRINT("ALP_ERR_UNKNOWN\r\n");
break;
case ALP_ERR_FS_TIMEOUT: // 0x81: Internal FS Error
PRINT("ALP_ERR_FS_TIMEOUT\r\n");
break;
case ALP_ERR_ITF_UNKNOWN: // 0x82: Unknown Interface
PRINT("ALP_ERR_ITF_UNKNOWN\r\n");
break;
case ALP_ERR_ITF_TIMEOUT: // 0x83: Internal ITF Error
PRINT("ALP_ERR_ITF_TIMEOUT\r\n");
break;
default:
PRINT("Unknown Error %d\r\n", error);
break;
}
}
}