Code supports writing to the SD card as well as working with the Volckens group smartphone apps for the mbed HRM1017

Dependencies:   ADS1115 BLE_API BME280 Calibration CronoDot EEPROM LSM303 MCP40D17 NCP5623BMUTBG SDFileSystem SI1145 STC3100 mbed nRF51822

Fork of UPAS_BLE_and_USB by Volckens Group Sensors

main.cpp

Committer:
joshuasmth04
Date:
2015-08-19
Revision:
71:78edbceff4fc
Parent:
70:81f04e69e08a
Child:
72:0b36575ab00d

File content as of revision 71:78edbceff4fc:

#include "mbed.h"
#include "SDFileSystem.h"
#include "Adafruit_ADS1015.h"
#include "MCP40D17.h"
#include "STC3100.h"
#include "LSM303.h"
#include "BME280.h"
#include "SI1145.h"
#include "NCP5623BMUTBG.h"
#include "CronoDot.h"
#include "EEPROM.h"
#include "Honduras_SerialMenu.h"
#include "BLEDevice.h" 
#include "BLE_Menu.h"

#define BLE_UUID_TXRX_SERVICE            0x0000 /**< The UUID of the Nordic UART Service. */
#define BLE_UUID_TX_CHARACTERISTIC       0x0002 /**< The UUID of the TX Characteristic. */
#define BLE_UUIDS_RX_CHARACTERISTIC      0x0003 /**< The UUID of the RX Characteristic. */

#define SERIAL_BAUD_RATE    9600
#define SCL         20
#define SDA         22
//#define Crono       0xD0       //D0 for the chronoDot

uint8_t txPayload[TXRX_BUF_LEN] = {0,};
uint8_t rxPayload[TXRX_BUF_LEN] = {0,};

static const uint8_t uart_base_uuid[] = {0x71, 0x3D, 0, 0, 0x50, 0x3E, 0x4C, 0x75, 0xBA, 0x94, 0x31, 0x48, 0xF1, 0x8D, 0x94, 0x1E};
static const uint8_t uart_tx_uuid[]   = {0x71, 0x3D, 0, 3, 0x50, 0x3E, 0x4C, 0x75, 0xBA, 0x94, 0x31, 0x48, 0xF1, 0x8D, 0x94, 0x1E};
static const uint8_t uart_rx_uuid[]   = {0x71, 0x3D, 0, 2, 0x50, 0x3E, 0x4C, 0x75, 0xBA, 0x94, 0x31, 0x48, 0xF1, 0x8D, 0x94, 0x1E};
static const uint8_t uart_base_uuid_rev[] = {0x1E, 0x94, 0x8D, 0xF1, 0x48, 0x31, 0x94, 0xBA, 0x75, 0x4C, 0x3E, 0x50, 0, 0, 0x3D, 0x71};

GattCharacteristic  txCharacteristic (uart_tx_uuid, txPayload, 1, TXRX_BUF_LEN, GattCharacteristic::BLE_GATT_CHAR_PROPERTIES_WRITE | GattCharacteristic::BLE_GATT_CHAR_PROPERTIES_WRITE_WITHOUT_RESPONSE);
GattCharacteristic  rxCharacteristic (uart_rx_uuid, rxPayload, 1, TXRX_BUF_LEN, GattCharacteristic::BLE_GATT_CHAR_PROPERTIES_NOTIFY);
GattCharacteristic *uartChars[] = {&txCharacteristic, &rxCharacteristic};
GattService         uartService(uart_base_uuid, uartChars, sizeof(uartChars) / sizeof(GattCharacteristic *));

BLEDevice   ble;
BLE_Menu    bleMenu(ble, txPayload, rxPayload, uart_base_uuid_rev, uart_base_uuid, uartService);

I2C i2c(p22, p20);
Adafruit_ADS1115 ads(&i2c);
MCP40D17 DigPot(&i2c);
BME280 bmesensor(p22, p20);
STC3100 gasG(p22, p20);
Serial  pc(USBTX, USBRX);
DigitalOut blower(p29, 0);
DigitalOut pbKill(p18, 1);
LSM303 movementsensor(p22, p20);
SI1145 lightsensor(p22, p20);
NCP5623BMUTBG RGB_LED(p22, p20);
CronoDot RTC(p22, p20);
EEPROM          E2PROM(p22, p20);
Honduras_SerialMenu     Menu;
//DigitalOut      GPS_EN(p4,0);                     //pin 4 is used to enable and disable the GPS, in order to recive serial communications

Timeout         stop;   //This is the stop call back object
Timeout         logg;    //This is the logging call back object
int RunReady =0;


//UPAS0011 CALIBRATION TRANSFER FUNCTION COEFFICIENTS FROM 'UPAS v2 OSU-calibration primary flow data.xlsx'
//mass flow sensor output signal (x) vs. mass flow (y)
        float MF4 = -2.5778;
        float MF3 = 15.031;
        float MF2 = -30.738;
        float MF1 = 27.914;
        float MF0 = -8.794;
//mass flow sensor polynomial deviation limits
        float omronVMin = 0.645; //V
        float omronVMax = 2.275; //V
        float omronMFMin = 0.010; //g/L
        float omronMFMax = 3.553; //g/L
//UPAS0011 values dig_pot=9.2763x4 - 85.942x3 + 303.77x2 - 512.82x + 376.73
        float DP4 = 9.2763;
        float DP3 = -85.942;
        float DP2 = 303.77;
        float DP1 = -512.82;
        float DP0 = 376.73;





float press;
float temp;
float rh;

int uv;
int vis;
int ir;

float compass;
float accel_x;
float accel_y;
float accel_z;
float accel_comp;
float mag_x;
float mag_y;
float mag_z;

int vInReading;
int vBlowerReading;
int omronDiff;
float omronVolt; //V
int omronReading;
float atmoRho; //g/L

float massflow; //g/min
float volflow; //L/min
float volflowSet = 1.0; //L/min
int   logInerval = 10;
double secondsD = 0;
float massflowSet;
float deltaVflow = 0.0;
float deltaMflow = 0.0;
float gainFlow;
float sampledVol; //L, total sampled volume

int digital_pot_setpoint; //min = 0x7F, max = 0x00
int digital_pot_set;
int digital_pot_change;
int digitalpotMax = 127;
int digitalpotMin = 2;

int dutyUp;
int dutyDown;
uint8_t f_sec, f_min, f_hour, f_date, f_month, f_year;

//int refresh_Time = 10;   // refresh time in s, note calling read_GPS()(or similar) will still take how ever long it needs(hopefully < 1s)

char device_name[] = "---------------";
char filename[] = "/sd/UPAS0011LOG000000000000---------------.txt";
SDFileSystem sd(SPIS_PSELMOSI, SPIS_PSELMISO, SPIS_PSELSCK, SPIS_PSELSS, "sd"); // I believe this matches Todd's pinout, let me know if this doesn't work. (p12, p13, p15, p14)


void disconnectionCallback(Gap::Handle_t handle, Gap::DisconnectionReason_t reason)
{
    bleMenu.disconnectionCallback();
}

void WrittenHandler(const GattCharacteristicWriteCBParams *Handler) // called any time the phone sends a message
{
    bleMenu.WrittenHandler(pc, txPayload, txCharacteristic,  Handler);
    //returns things to the txPayload
}

void check_stop()   // this checks if it's time to stop and shutdown
{
    //RTC.get_time(); //debug
    //pc.printf("%02d:%02d:%02d on %d/%d/%d) \r\n",RTC.hour, RTC.minutes, RTC.seconds, RTC.month, RTC.date, RTC.year);//debig
    if(RTC.compare(f_sec, f_min, f_hour, f_date, f_month, f_year)) {
        pbKill = 0; // this is were we shut everything down
    }
    stop.detach();
    stop.attach(&check_stop, 9);    
}


void log_data()
{
    logg.detach();
    logg.attach(&log_data, logInerval);
    RTC.get_time();
    secondsD = RTC.seconds;
    while(fmod(secondsD,logInerval)!=0){
        RTC.get_time();
        secondsD = RTC.seconds;
        }
    
    
    omronReading = ads.readADC_SingleEnded(0, 0xC583); // read channel 0 PGA = 2 : Full Scale Range = 2.048V
    omronVolt = (omronReading*4.096)/(32768*2);

    if(omronVolt<=omronVMin) {
        massflow = omronMFMin;
    } else if(omronVolt>=omronVMax) {
        massflow = omronMFMax;
    } else {
        massflow = MF4*pow(omronVolt,(float)4)+MF3*pow(omronVolt,(float)3)+MF2*pow(omronVolt,(float)2)+MF1*omronVolt+MF0;
    }

    atmoRho = ((press-((6.1078*pow((float)10,(float)((7.5*temp)/(237.3+temp))))*(rh/100)))*100)/(287.0531*(temp+273.15))+((6.1078*pow((float)10,(float)((7.5*temp)/(237.3+temp))))*(rh/100)*100)/(461.4964*(temp+273.15));
    volflow = massflow/atmoRho;
    sampledVol = sampledVol + ((((float)logInerval)/60.0)*volflow);
    deltaVflow = volflow-volflowSet;
    massflowSet = volflowSet*atmoRho;
    deltaMflow = massflow-massflowSet;

    if(abs(deltaMflow)>.025) {
        digital_pot_change = (int)(gainFlow*deltaMflow);


        if(abs(digital_pot_change)>=50) {
            digital_pot_set = (int)(digital_pot_set+(int)((10.0*deltaMflow)));
            RGB_LED.set_led(1,0,0);

        } else if(digital_pot_change+digital_pot_set>=digitalpotMax&abs(digital_pot_change)<50) {
            digital_pot_set = digitalpotMax;
            RGB_LED.set_led(1,0,0);
        } else if(digital_pot_change+digital_pot_set<=digitalpotMin&abs(digital_pot_change)<50) {
            digital_pot_set = digitalpotMin;
            RGB_LED.set_led(1,0,0);
        } else {
            digital_pot_set = (digital_pot_set+ digital_pot_change);
            RGB_LED.set_led(1,1,0);
        }

        DigPot.writeRegister(digital_pot_set);

    } else {
        RGB_LED.set_led(0,1,0);
    }

    movementsensor.getACCEL();
    movementsensor.getCOMPASS();
    compass = movementsensor.getCOMPASS_HEADING();
    accel_x = movementsensor.AccelData.x;
    accel_y = movementsensor.AccelData.y;
    accel_z = movementsensor.AccelData.z;
    accel_comp = pow(accel_x,(float)2)+pow(accel_y,(float)2)+pow(accel_z,(float)2)-1.0;
    mag_x = movementsensor.MagData.x;
    mag_y = movementsensor.MagData.y;
    mag_z = movementsensor.MagData.z;

    vInReading = ads.readADC_SingleEnded(1, 0xD583); // read channel 0
    vBlowerReading = ads.readADC_SingleEnded(2, 0xE783); // read channel 0
    omronDiff = ads.readADC_Differential(0x8583); // differential channel 2-3
    press = bmesensor.getPressure();
    temp = bmesensor.getTemperature()-5.0;
    rh = bmesensor.getHumidity();
    uv =  lightsensor.getUV();
    vis = lightsensor.getVIS();
    ir = lightsensor.getIR();

    //Mount the filesystem
    //sd.mount();
    FILE *fp = fopen(filename, "a");
    fprintf(fp, "%02d,%02d,%02d,%02d,%02d,%02d,%1.3f,%1.3f,%2.2f,%4.2f,%2.1f,%1.3f,%1.3f,%5.1f,%1.1f,%1.1f,%1.1f,%1.1f,%d,%d,%d,%d,%d,%d,%d,%d,%d,%1.3f,%1.3f,%f\r\n",RTC.year, RTC.month,RTC.date,RTC.hour,RTC.minutes,RTC.seconds,omronVolt,massflow,temp,press,rh,atmoRho,volflow,sampledVol,accel_x,accel_y,accel_z,accel_comp,uv,omronReading, vInReading, vBlowerReading, omronDiff,gasG.getAmps(), gasG.getVolts(), gasG.getCharge(),digital_pot_set, deltaMflow, deltaVflow, compass);
    fclose(fp);
    //Unmount the filesystem
    //sd.unmount();

    //wait(1.2);
    
}

int main()
{

// Setup and Initialization
//---------------------------------------------------------------------------------------------//
    
    //**************//BLE initialization//**************//
    //bleMenu.read_settings(E2PROM, device_name);
    uint8_t BLE_name[] = {device_name[0], device_name[1], device_name[2], device_name[3], device_name[4], device_name[5], device_name[6], device_name[7], device_name[8]};
    ble.init(); 
   // setup advertising 
    ble.accumulateAdvertisingPayload(GapAdvertisingData::BREDR_NOT_SUPPORTED);
    ble.setAdvertisingType(GapAdvertisingParams::ADV_CONNECTABLE_UNDIRECTED);
    ble.accumulateAdvertisingPayload(GapAdvertisingData::SHORTENED_LOCAL_NAME,(const uint8_t *)BLE_name, sizeof(BLE_name) - 1); // ~8 char max!
    ble.accumulateAdvertisingPayload(GapAdvertisingData::COMPLETE_LIST_128BIT_SERVICE_IDS,(const uint8_t *)uart_base_uuid_rev, sizeof(uart_base_uuid));
    // 100ms; in multiples of 0.625ms. 
    ble.setAdvertisingInterval(160);
    ble.addService(uartService);
    ble.startAdvertising();     
    ble.onDisconnection(disconnectionCallback); //what happens when disconected
    ble.onDataWritten(WrittenHandler);          //what happens when the phone sends a message
    //**************//BLE initialization//**************//
    
    Menu.read_menu(E2PROM, RunReady, volflowSet, device_name, dutyUp, dutyDown);       //Read all data from the EEPROM here
    
    //Test for errors
    if(RTC.OSF()) {                 //Don't proceed if the RTC needs reset
        RGB_LED.set_led(0,1,1); // error code/color
        pc.printf("DATE/TIMESTAMP NEEDS TO BE RECALIBRATED!!\r\n");
        Menu.Start(pc, E2PROM, RTC, RunReady, volflowSet, device_name, dutyUp, dutyDown);  //Forces you to open the menu
        Menu.save_menu(E2PROM, RunReady, volflowSet, device_name, dutyUp, dutyDown);       //Save all data to the EEPROM
    }
    //RunReady = 0; //debug always open the menu
    if(RunReady == 0){
        RGB_LED.set_led(0,1,1); // error code/color
        pc.printf("Change Name\r\n");
        while(RunReady == 0){
            RGB_LED.set_led(0,1,1);   // error code/color
            Menu.Start(pc, E2PROM, RTC, RunReady, volflowSet, device_name, dutyUp, dutyDown);  //Forces you to open the menu
            RGB_LED.set_led(0,10,10); // error code/color
            bleMenu.open_menu(txPayload, rxCharacteristic, device_name, RTC, RunReady);
        }
        //RunReady = 1;
        Menu.save_menu(E2PROM, RunReady, volflowSet, device_name, dutyUp, dutyDown);       //Save all data to the EEPROM
        pbKill = 0;
    }
    
    RunReady = 0;
    Menu.save_menu(E2PROM, RunReady, volflowSet, device_name, dutyUp, dutyDown);       //Save all data to the EEPROM      

    stop.attach(&check_stop, 60);    // check if we should shut down every 5 seconds, starting 60s after the start.

    if(volflowSet==1.0) {
        gainFlow = 100;
    } else if(volflowSet==2.0) {
        gainFlow = 25;
    } else {
        gainFlow = 25;
    }

    RGB_LED.set_led(1,0,0);
    press = bmesensor.getPressure();
    temp = bmesensor.getTemperature();
    rh = bmesensor.getHumidity();

    atmoRho = ((press-((6.1078*pow((float)10,(float)((7.5*temp)/(237.3+temp))))*(rh/100)))*100)/(287.0531*(temp+273.15))+((6.1078*pow((float)10,(float)((7.5*temp)/(237.3+temp))))*(rh/100)*100)/(461.4964*(temp+273.15));
    massflowSet = volflowSet*atmoRho;
    //Digtal pot tf from file: UPAS v2 OSU-PrimaryFlowData FullSet 2015-05-29 CQ mods.xlsx
    digital_pot_setpoint = (int)floor(DP4*pow(massflowSet,4)+DP3*pow(massflowSet,3)+DP2*pow(massflowSet,2)+DP1*massflowSet+DP0); //min = 0x7F, max = 0x00

    if(digital_pot_setpoint>=digitalpotMax) {
        digital_pot_setpoint = digitalpotMax;
    } else if(digital_pot_setpoint<=digitalpotMin) {
        digital_pot_setpoint = digitalpotMin;
    }

    DigPot.writeRegister(digital_pot_setpoint);
    wait(1);
    blower = 1;

    RTC.get_time();
    f_sec = RTC.seconds;
    f_min = RTC.minutes;
    f_hour = RTC.hour;
    if(RTC.month == 1 | RTC.month == 3 | RTC.month == 5 | RTC.month == 7 | RTC.month == 8 | RTC.month == 10){
        if(RTC.date == 31){
            f_date = 1;
            f_month = RTC.month +1;
            f_year = RTC.year; 
            }
        else{
            f_date = RTC.date+1;
            f_month = RTC.month;
            f_year = RTC.year;
            }
        }
    else if(RTC.month == 4 | RTC.month == 6 | RTC.month == 9 | RTC.month == 11){
        if(RTC.date == 30){
            f_date = 1;
            f_month = RTC.month +1;
            f_year = RTC.year; 
            }
        else{
            f_date = RTC.date+1;
            f_month = RTC.month;
            f_year = RTC.year;
            }
        }
    else if(RTC.month == 2){
        if(RTC.year == 16 | RTC.year == 20 | RTC.year == 24| RTC.year == 28){
            if(RTC.date == 29){
                f_date = 1;
                f_month = RTC.month +1;
                f_year = RTC.year; 
                }
            else{
                f_date = RTC.date+1;
                f_month = RTC.month;
                f_year = RTC.year;
                }
            }
        else{
            if(RTC.date == 28){
                f_date = 1;
                f_month = RTC.month +1;
                f_year = RTC.year; 
                }
            else{
                f_date = RTC.date+1;
                f_month = RTC.month;
                f_year = RTC.year;
                }
         }
        }
    else if(RTC.month == 12){
            if(RTC.date == 31){
                    f_date = 1;
                    f_month = 1;
                    f_year = RTC.year+1; 
                    }
            else{
                    f_date = RTC.date+1;
                    f_month = RTC.month;
                    f_year = RTC.year;
                    }
       }
   
    
    sprintf(filename, "/sd/UPAS0011LOG %02d-%02d-%02d %02d=%02d=%02d %s.txt",RTC.year,RTC.month,RTC.date,RTC.hour,RTC.minutes,RTC.seconds,device_name);
    FILE *fp = fopen(filename, "w");
    fclose(fp);
    //pc.printf("%d\r\n",digital_pot_setpoint);

    //---------------------------------------------------------------------------------------------//
    //Following lines are needed to enter into the initiallization flow control loop

    wait(10);

    omronReading = ads.readADC_SingleEnded(0, 0xC583); // read channel 0 PGA = 2 : Full Scale Range = 2.048V
    omronVolt = (omronReading*4.096)/(32768*2);
    if(omronVolt<=omronVMin) {
        massflow = omronMFMin;
    } else if(omronVolt>=omronVMax) {
        massflow = omronMFMax;
    } else {
        massflow = MF4*pow(omronVolt,(float)4)+MF3*pow(omronVolt,(float)3)+MF2*pow(omronVolt,(float)2)+MF1*omronVolt+MF0;
    }
    deltaMflow = massflow-massflowSet;
    digital_pot_set = digital_pot_setpoint;
    wait(5);

    //---------------------------------------------------------------------------------------------//
    //Sets the flow withen +-1.5% of the desired flow rate based on mass flow

    while(abs(deltaMflow)>.015) {
    
        omronReading = ads.readADC_SingleEnded(0, 0xC583); // read channel 0 PGA = 2 : Full Scale Range = 2.048V
        omronVolt = (omronReading*4.096)/(32768*2);
        //Mass Flow tf from file: UPAS v2 OSU-PrimaryFlowData FullSet 2015-05-29 CQ mods.xlsx
        if(omronVolt<=omronVMin) {
            massflow = omronMFMin;
        } else if(omronVolt>=omronVMax) {
            massflow = omronMFMax;
        } else {
            massflow = MF4*pow(omronVolt,(float)4)+MF3*pow(omronVolt,(float)3)+MF2*pow(omronVolt,(float)2)+MF1*omronVolt+MF0;
        }

        atmoRho = ((press-((6.1078*pow((float)10,(float)((7.5*temp)/(237.3+temp))))*(rh/100)))*100)/(287.0531*(temp+273.15))+((6.1078*pow((float)10,(float)((7.5*temp)/(237.3+temp))))*(rh/100)*100)/(461.4964*(temp+273.15));
        volflow = massflow/atmoRho;
        massflowSet = volflowSet*atmoRho;
        deltaMflow = massflow-massflowSet;
        //pc.printf("%f,%f,%f,%f,%d,%u,%x\r\n",volflow,massflow,massflowSet,deltaMflow,digital_pot_set,digital_pot_set,digital_pot_set);
        pc.printf("%d,%d,%d,%d,%d,%d\r\n",f_sec,f_min,f_hour,f_date,f_month,f_year,digital_pot_set);
        digital_pot_set = (int)(digital_pot_set+(int)((gainFlow*deltaMflow)));
        if(digital_pot_set>=digitalpotMax) {
            digital_pot_set = digitalpotMax;
        } else if(digital_pot_set<=digitalpotMin) {
            digital_pot_set = digitalpotMin;
        }

        wait(2);
        DigPot.writeRegister(digital_pot_set);
        wait(1);


    }

    sampledVol = 0.0;
    RGB_LED.set_led(0,1,0);
    


    //** end of initalization **//

    //---------------------------------------------------------------------------------------------//
    //---------------------------------------------------------------------------------------------//
    //---------------------------------------------------------------------------------------------//
    // Main Control Loop

    logg.attach(&log_data, logInerval); // uses callbacks or block Interrupts for anything that uses i2c
    while(1) {
        //__disable_irq();  // Disable Interrupts
        //RTC.get_time();
        //__enable_irq();   // Enable Interrupts
        //secondsD = (double)RTC.seconds;
        //if(fmod(secondsD,logInerval)==0) {
            //log_data();
        //}
    }

}