Code supports writing to the SD card as well as working with the Volckens group smartphone apps for the mbed HRM1017

Dependencies:   ADS1115 BLE_API BME280 Calibration CronoDot EEPROM LSM303 MCP40D17 NCP5623BMUTBG SDFileSystem SI1145 STC3100 mbed nRF51822

Fork of UPAS_BLE_and_USB by Volckens Group Sensors

main.cpp

Committer:
lionberg
Date:
2015-07-06
Revision:
60:5913d77c8a4a
Parent:
59:a9b21b3d9afc
Child:
62:edc9632bcc43

File content as of revision 60:5913d77c8a4a:

#include "mbed.h"
#include "SDFileSystem.h"
#include "Adafruit_ADS1015.h"
#include "MCP40D17.h"
#include "STC3100.h"
#include "LSM303.h"
#include "BME280.h"
#include "SI1145.h"
#include "NCP5623BMUTBG.h"
#include "CronoDot.h"
#include "EEPROM.h"
#include "UPAS_Serial.h"

#define SERIAL_BAUD_RATE    9600
#define SCL         20
#define SDA         22
//#define Crono       0xD0       //D0 for the chronoDot

I2C i2c(p22, p20);
Adafruit_ADS1115 ads(&i2c);
MCP40D17 DigPot(&i2c);
BME280 bmesensor(p22, p20);
STC3100 gasG(p22, p20);
Serial  pc(USBTX, USBRX);
DigitalOut blower(p29, 0);
DigitalOut pbKill(p18, 1);
LSM303 movementsensor(p22, p20);
SI1145 lightsensor(p22, p20);
NCP5623BMUTBG RGB_LED(p22, p20);
CronoDot RTC(p22, p20);
EEPROM          E2PROM(p22, p20);
UPAS_Serial     Menu;

Timeout         stop;   //This is the stop call back object

//UPAS0012 CALIBRATION TRANSFER FUNCTION COEFFICIENTS FROM 'UPAS v2 OSU-calibration primary flow data.xlsx'
//mass flow sensor output signal (x) vs. mass flow (y)
//y = -0.6154x4 + 3.7873x3 - 7.2564x2 + 7.0202x - 1.9413
float MF4 = -0.6154;
float MF3 = 3.7873;
float MF2 = -7.2564;
float MF1 = 7.0202;
float MF0 = -1.9413;
//Mass flow sensor polynomial deviation limits
float omronVMin = 0.425; //V
float omronVMax = 2.005; //V
float omronMFMin = 0.002; //g/L
float omronMFMax = 3.544; //g/L
//DIGITAL POTENTIOSTAT dig-pot vs m_dot POLYNOMIAL TRANSFER FUNCTION COEFFICIENTS FROM 'UPAS v2 OSU-calibration primary flow data.xlsx'
//y = 5.3839x4 - 51.627x3 + 191.09x2 - 345.9x + 277.63
float DP4 = 5.3839;
float DP3 = -51.627;
float DP2 = 191.09;
float DP1 = -345.9;
float DP0 = 277.63;

float press;
float temp;
float rh;

int uv;
int vis;
int ir;

float accel_x;
float accel_y;
float accel_z;
float accel_comp;
float mag_x;
float mag_y;
float mag_z;

int vInReading;
int vBlowerReading;
int omronDiff;
float omronVolt; //V
int omronReading;
float atmoRho; //g/L

float massflow; //g/min
float volflow; //L/min
float volflowSet = 1.0; //L/min
int   logInerval = 10;
double secondsD = 0;
float massflowSet;
float deltaVflow = 0.0;
float deltaMflow = 0.0;
float gainFlow;
float sampledVol; //L, total sampled volume

int digital_pot_setpoint; //min = 0x7F, max = 0x00
int digital_pot_set;
int digital_pot_change;
int digitalpotMax = 127;
int digitalpotMin = 2;

int dutyUp;
int dutyDown;

int refresh_Time = 10;   // refresh time in s, note calling read_GPS()(or similar) will still take how ever long it needs(hopefully < 1s)

char device_name[] = "---------------";
char filename[] = "/sd/UPAS0012LOG000000000000---------------.txt";
SDFileSystem sd(SPIS_PSELMOSI, SPIS_PSELMISO, SPIS_PSELSCK, SPIS_PSELSS, "sd"); // I believe this matches Todd's pinout, let me know if this doesn't work. (p12, p13, p15, p14)


/*void check_stop()   // this checks if it's time to stop and shutdown
{
    //RTC.get_time(); //debug
    //pc.printf("%02d:%02d:%02d on %d/%d/%d) \r\n",RTC.hour, RTC.minutes, RTC.seconds, RTC.month, RTC.date, RTC.year);//debig
    if(RTC.compare(Menu.f_sec, Menu.f_min, Menu.f_hour, Menu.f_day, Menu.f_month, Menu.f_year)) {
        pbKill = 0; // this is were we shut everything down
    }
    wait(0.1);
    stop.detach();
    stop.attach(&check_stop, 5);    // checks stop time every 5 seconds
}*/


void log_data()
{
    RTC.get_time();
    omronReading = ads.readADC_SingleEnded(0, 0xC583); // read channel 0 PGA = 2 : Full Scale Range = 2.048V
    omronVolt = (omronReading*4.096)/(32768*2);

    if(omronVolt<=omronVMin) {
        massflow = omronMFMin;
    } else if(omronVolt>=omronVMax) {
        massflow = omronMFMax;
    } else {
        massflow = MF4*pow(omronVolt,(float)4)+MF3*pow(omronVolt,(float)3)+MF2*pow(omronVolt,(float)2)+MF1*omronVolt+MF0;
    }

    atmoRho = ((press-((6.1078*pow((float)10,(float)((7.5*temp)/(237.3+temp))))*(rh/100)))*100)/(287.0531*(temp+273.15))+((6.1078*pow((float)10,(float)((7.5*temp)/(237.3+temp))))*(rh/100)*100)/(461.4964*(temp+273.15));
    volflow = massflow/atmoRho;
    sampledVol = sampledVol + ((((float)logInerval)/60.0)*volflow);
    deltaVflow = volflow-volflowSet;
    massflowSet = volflowSet*atmoRho;
    deltaMflow = massflow-massflowSet;

    if(abs(deltaMflow)>.025) {
        digital_pot_change = (int)(gainFlow*deltaMflow);


        if(abs(digital_pot_change)>=50) {
            digital_pot_set = (int)(digital_pot_set+(int)((10.0*deltaMflow)));
            RGB_LED.set_led(1,0,0);

        } else if(digital_pot_change+digital_pot_set>=digitalpotMax&abs(digital_pot_change)<50) {
            digital_pot_set = digitalpotMax;
            RGB_LED.set_led(1,0,0);
        } else if(digital_pot_change+digital_pot_set<=digitalpotMin&abs(digital_pot_change)<50) {
            digital_pot_set = digitalpotMin;
            RGB_LED.set_led(1,0,0);
        } else {
            digital_pot_set = (digital_pot_set+ digital_pot_change);
            RGB_LED.set_led(1,1,0);
        }

        DigPot.writeRegister(digital_pot_set);

    } else {
        RGB_LED.set_led(0,1,0);
    }

    movementsensor.getACCEL();
    movementsensor.getCOMPASS();
    accel_x = movementsensor.AccelData.x;
    accel_y = movementsensor.AccelData.y;
    accel_z = movementsensor.AccelData.z;
    accel_comp = pow(accel_x,(float)2)+pow(accel_y,(float)2)+pow(accel_z,(float)2)-1.0;
    mag_x = movementsensor.MagData.x;
    mag_y = movementsensor.MagData.y;
    mag_z = movementsensor.MagData.z;

    vInReading = ads.readADC_SingleEnded(1, 0xD583); // read channel 0
    vBlowerReading = ads.readADC_SingleEnded(2, 0xE783); // read channel 0
    omronDiff = ads.readADC_Differential(0x8583); // differential channel 2-3
    press = bmesensor.getPressure();
    temp = bmesensor.getTemperature()-5.0;
    rh = bmesensor.getHumidity();
    uv =  lightsensor.getUV();
    vis = lightsensor.getVIS();
    ir = lightsensor.getIR();

    //Mount the filesystem
    //sd.mount();
    FILE *fp = fopen(filename, "a");
    fprintf(fp, "%02d,%02d,%02d,%02d,%02d,%02d,%1.3f,%1.3f,%2.2f,%4.2f,%2.1f,%1.3f,%1.3f,%5.1f,%1.1f,%1.1f,%1.1f,%1.1f,%d,%d,%d,%d,%d,%d,%d,%d,%d,%1.3f,%1.3f\r\n",RTC.year, RTC.month,RTC.date,RTC.hour,RTC.minutes,RTC.seconds,omronVolt,massflow,temp,press,rh,atmoRho,volflow,sampledVol,accel_x,accel_y,accel_z,accel_comp,uv,omronReading, vInReading, vBlowerReading, omronDiff,gasG.getAmps(), gasG.getVolts(), gasG.getCharge(),digital_pot_set, deltaMflow, deltaVflow);
    fclose(fp);
    //Unmount the filesystem
    //sd.unmount();

    wait(1);
}

int main()
{

// Setup and Initialization
//---------------------------------------------------------------------------------------------//

    Timer refresh_Timer;        //sets up a timer for use in loop; how often do we log data?
    refresh_Timer.start();      //starts the clock on the timer
    RGB_LED.set_led(0,1,1);
    refresh_Timer.reset(); // resets the timer to zero

    Menu.read_menu(E2PROM, refresh_Time, volflowSet, device_name, dutyUp, dutyDown);       //Read all data from the EEPROM here
fix_error:
    Menu.Start(pc, E2PROM, RTC, refresh_Time, volflowSet, device_name, dutyUp, dutyDown);  //Forces you to open the menu
    Menu.save_menu(E2PROM, refresh_Time, volflowSet, device_name, dutyUp, dutyDown);       //Save all data to the EEPROM

    //Test for errors
    if(RTC.OSF()) {                 //Don't proceed if the RTC needs reset
        RGB_LED.set_led(1,0,0); // error code/color
        pc.printf("DATE/TIMESTAMP NEEDS TO BE RECALIBRATED!!\r\n");
        goto fix_error;
    }
    RTC.get_time();
    if(RTC.compare(Menu.f_sec, Menu.f_min, Menu.f_hour, Menu.f_day, Menu.f_month, Menu.f_year)) {  //Don't proceed if it's already time to stop
        RGB_LED.set_led(1,0,0); // error code/color
        pc.printf("Please fix the START or STOP times before exiting!\r\n");
        goto fix_error;
    }
    pc.printf("You're done, you can now disconect the USB cable.");

    RGB_LED.set_led(1,1,0);
    while(!RTC.compare(Menu.s_sec, Menu.s_min, Menu.s_hour, Menu.s_day, Menu.s_month, Menu.s_year)) {  // this while waits for the start time by looping until the start time
        // serial print a count down??
    }
    //stop.attach(&check_stop, 30);    // check if we should shut down every 5 seconds, starting 60s after the start.


    if(volflowSet==1.0) {
        gainFlow = 100;
    } else if(volflowSet==2.0) {
        gainFlow = 25;
    } else {
        gainFlow = 25;
    }

    RGB_LED.set_led(1,0,0);
    press = bmesensor.getPressure();
    temp = bmesensor.getTemperature();
    rh = bmesensor.getHumidity();

    atmoRho = ((press-((6.1078*pow((float)10,(float)((7.5*temp)/(237.3+temp))))*(rh/100)))*100)/(287.0531*(temp+273.15))+((6.1078*pow((float)10,(float)((7.5*temp)/(237.3+temp))))*(rh/100)*100)/(461.4964*(temp+273.15));
    massflowSet = volflowSet*atmoRho;
    //Digtal pot tf from file: UPAS v2 OSU-PrimaryFlowData FullSet 2015-05-29 CQ mods.xlsx
    digital_pot_setpoint = (int)floor(DP4*pow(massflowSet,4)+DP3*pow(massflowSet,3)+DP2*pow(massflowSet,2)+DP1*massflowSet+DP0); //min = 0x7F, max = 0x00

    if(digital_pot_setpoint>=digitalpotMax) {
        digital_pot_setpoint = digitalpotMax;
    } else if(digital_pot_setpoint<=digitalpotMin) {
        digital_pot_setpoint = digitalpotMin;
    }

    DigPot.writeRegister(digital_pot_setpoint);
    wait(1);
    blower = 1;

    RTC.get_time();
    sprintf(filename, "/sd/UPAS0012LOG %02d-%02d-%02d %02d=%02d=%02d %s.txt",RTC.year,RTC.month,RTC.date,RTC.hour,RTC.minutes,RTC.seconds,device_name);
    FILE *fp = fopen(filename, "w");
    fclose(fp);
    //pc.printf("%d\r\n",digital_pot_setpoint);

    //---------------------------------------------------------------------------------------------//
    //Following lines are needed to enter into the initiallization flow control loop

    wait(10);

    omronReading = ads.readADC_SingleEnded(0, 0xC583); // read channel 0 PGA = 2 : Full Scale Range = 2.048V
    omronVolt = (omronReading*4.096)/(32768*2);
    if(omronVolt<=omronVMin) {
        massflow = omronMFMin;
    } else if(omronVolt>=omronVMax) {
        massflow = omronMFMax;
    } else {
        massflow = MF4*pow(omronVolt,(float)4)+MF3*pow(omronVolt,(float)3)+MF2*pow(omronVolt,(float)2)+MF1*omronVolt+MF0;
    }
    deltaMflow = massflow-massflowSet;
    digital_pot_set = digital_pot_setpoint;
    wait(5);

    //---------------------------------------------------------------------------------------------//
    //Sets the flow withen +-1.5% of the desired flow rate based on mass flow

    while(abs(deltaMflow)>.015) {

        omronReading = ads.readADC_SingleEnded(0, 0xC583); // read channel 0 PGA = 2 : Full Scale Range = 2.048V
        omronVolt = (omronReading*4.096)/(32768*2);
        //Mass Flow tf from file: UPAS v2 OSU-PrimaryFlowData FullSet 2015-05-29 CQ mods.xlsx
        if(omronVolt<=omronVMin) {
            massflow = omronMFMin;
        } else if(omronVolt>=omronVMax) {
            massflow = omronMFMax;
        } else {
            massflow = MF4*pow(omronVolt,(float)4)+MF3*pow(omronVolt,(float)3)+MF2*pow(omronVolt,(float)2)+MF1*omronVolt+MF0;
        }

        atmoRho = ((press-((6.1078*pow((float)10,(float)((7.5*temp)/(237.3+temp))))*(rh/100)))*100)/(287.0531*(temp+273.15))+((6.1078*pow((float)10,(float)((7.5*temp)/(237.3+temp))))*(rh/100)*100)/(461.4964*(temp+273.15));
        volflow = massflow/atmoRho;
        massflowSet = volflowSet*atmoRho;
        deltaMflow = massflow-massflowSet;
        //pc.printf("%f,%f,%f,%f,%d,%u,%x\r\n",omronVolt,massflow,massflowSet,deltaMflow,digital_pot_set,digital_pot_set,digital_pot_set);
        digital_pot_set = (int)(digital_pot_set+(int)((gainFlow*deltaMflow)));
        if(digital_pot_set>=digitalpotMax) {
            digital_pot_set = digitalpotMax;
        } else if(digital_pot_set<=digitalpotMin) {
            digital_pot_set = digitalpotMin;
        }

        wait(2);
        DigPot.writeRegister(digital_pot_set);
        wait(1);


    }

    sampledVol = 0.0;
    RGB_LED.set_led(0,1,0);
    refresh_Timer.reset();  //restarts the clock on the timer

    //** end of initalization **//

    //---------------------------------------------------------------------------------------------//
    //---------------------------------------------------------------------------------------------//
    //---------------------------------------------------------------------------------------------//
    // Main Control Loop

    while(1) {

        RTC.get_time();
        secondsD = (double)RTC.seconds;

        if(fmod(secondsD,logInerval)==0) {

            log_data();
            refresh_Timer.reset(); // resets the timer to zero

            if(RTC.compare(Menu.f_sec, Menu.f_min, Menu.f_hour, Menu.f_day, Menu.f_month, Menu.f_year)) {
                pbKill = 0; // this is were we shut everything down
            }

        }
    }

}