main_imu, MPU6050 , racolta_dati sono per il funzionamento dell' accelerometro. my_img_sd è una libreria per gestire i dati su un sd sulla quale vengono forniti solamente le funzioni di lettura e scrittura a blocchi i file trasmetti sono la definizione e implementazione delle funzioni del protoccolo per la gestione dell' invio dei dati con il relativo formato

Dependencies:   mbed

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers MPU6050.h Source File

MPU6050.h

00001 #ifndef MPU6050_H
00002 #define MPU6050_H
00003  
00004 #include "mpu_setting.h"
00005 
00006 // Set initial input parameters
00007 enum Ascale {
00008   AFS_2G = 0,
00009   AFS_4G,
00010   AFS_8G,
00011   AFS_16G
00012 };
00013 
00014 enum Gscale {
00015   GFS_250DPS = 0,
00016   GFS_500DPS,
00017   GFS_1000DPS,
00018   GFS_2000DPS
00019 };
00020 
00021 // Specify sensor full scale
00022 int Gscale = GFS_250DPS;
00023 int Ascale = AFS_4G;
00024 
00025 //Set up I2C, (SDA,SCL)
00026 
00027 //I2C i2c(I2C_SDA, I2C_SCL);
00028 
00029 //I2C i2c(PC_9, PA_8); /* setting port i2c imu */
00030 I2C i2c(PF_0, PF_1); //sda, scl -> usare la 3.3 V
00031 //I2C i2c(PB_9,PB_8);
00032 
00033 DigitalOut myled(LED1);
00034    
00035 float aRes, gRes; // scale resolutions per LSB for the sensors
00036   
00037 // Pin definitions
00038 int intPin = 12;  // These can be changed, 2 and 3 are the Arduinos ext int pins
00039 
00040 int16_t accelCount[3];  // Stores the 16-bit signed accelerometer sensor output
00041 float ax, ay, az;       // Stores the real accel value in g's
00042 int16_t gyroCount[3];   // Stores the 16-bit signed gyro sensor output
00043 float gx, gy, gz;       // Stores the real gyro value in degrees per seconds
00044 float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer
00045 int16_t tempCount;   // Stores the real internal chip temperature in degrees Celsius
00046 float temperature;
00047 float SelfTest[6];
00048 
00049 int delt_t = 0; // used to control display output rate
00050 int count = 0;  // used to control display output rate
00051 
00052 // parameters for 6 DoF sensor fusion calculations
00053 float PI = 3.14159265358979323846f;
00054 float GyroMeasError = PI * (60.0f / 180.0f);     // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3
00055 float beta = sqrt(3.0f / 4.0f) * GyroMeasError;  // compute beta
00056 float GyroMeasDrift = PI * (1.0f / 180.0f);      // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
00057 float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift;  // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
00058 float pitch, yaw, roll;
00059 float deltat = 0.0f;                              // integration interval for both filter schemes
00060 int lastUpdate = 0, firstUpdate = 0, Now = 0;     // used to calculate integration interval                               // used to calculate integration interval
00061 float q[4] = {1.0f, 0.0f, 0.0f, 0.0f};            // vector to hold quaternion
00062 
00063 class MPU6050 {
00064  
00065     protected:
00066  
00067     public:
00068   //===================================================================================================================
00069 //====== Set of useful function to access acceleratio, gyroscope, and temperature data
00070 //===================================================================================================================
00071 
00072     void writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
00073 {
00074    char data_write[2];
00075    data_write[0] = subAddress;
00076    data_write[1] = data;
00077    i2c.write(address, data_write, 2, 0);
00078 }
00079 
00080     char readByte(uint8_t address, uint8_t subAddress)
00081 {
00082     char data[1]; // `data` will store the register data     
00083     char data_write[1];
00084     data_write[0] = subAddress;
00085     i2c.write(address, data_write, 1, 1); // no stop
00086     i2c.read(address, data, 1, 0); 
00087     return data[0]; 
00088 }
00089 
00090     void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
00091 {     
00092     char data[14];
00093     char data_write[1];
00094     data_write[0] = subAddress;
00095     i2c.write(address, data_write, 1, 1); // no stop
00096     i2c.read(address, data, count, 0); 
00097     for(int ii = 0; ii < count; ii++) {
00098      dest[ii] = data[ii];
00099     }
00100 } 
00101  
00102 
00103 void getGres() {
00104   switch (Gscale)
00105   {
00106     // Possible gyro scales (and their register bit settings) are:
00107     // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS  (11). 
00108         // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
00109     case GFS_250DPS:
00110           gRes = 250.0/32768.0;
00111           break;
00112     case GFS_500DPS:
00113           gRes = 500.0/32768.0;
00114           break;
00115     case GFS_1000DPS:
00116           gRes = 1000.0/32768.0;
00117           break;
00118     case GFS_2000DPS:
00119           gRes = 2000.0/32768.0;
00120           break;
00121   }
00122 }
00123 
00124 void getAres() {
00125   switch (Ascale)
00126   {
00127     // Possible accelerometer scales (and their register bit settings) are:
00128     // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs  (11). 
00129         // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
00130     case AFS_2G:
00131           aRes = 2.0/32768.0;
00132           break;
00133     case AFS_4G:
00134           aRes = 4.0/32768.0;
00135           break;
00136     case AFS_8G:
00137           aRes = 8.0/32768.0;
00138           break;
00139     case AFS_16G:
00140           aRes = 16.0/32768.0;
00141           break;
00142   }
00143 }
00144 
00145 
00146 void readAccelData(int16_t * destination)
00147 {
00148   uint8_t rawData[6];  // x/y/z accel register data stored here
00149   readBytes(MPU6050_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers into data array
00150   destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
00151   destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;  
00152   destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; 
00153 }
00154 
00155 void readGyroData(int16_t * destination)
00156 {
00157   uint8_t rawData[6];  // x/y/z gyro register data stored here
00158   readBytes(MPU6050_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers sequentially into data array
00159   destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
00160   destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;  
00161   destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; 
00162 }
00163 
00164 int16_t readTempData()
00165 {
00166   uint8_t rawData[2];  // x/y/z gyro register data stored here
00167   readBytes(MPU6050_ADDRESS, TEMP_OUT_H, 2, &rawData[0]);  // Read the two raw data registers sequentially into data array 
00168   return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ;  // Turn the MSB and LSB into a 16-bit value
00169 }
00170 
00171 
00172 
00173 // Configure the motion detection control for low power accelerometer mode
00174 void LowPowerAccelOnly()
00175 {
00176 
00177 // The sensor has a high-pass filter necessary to invoke to allow the sensor motion detection algorithms work properly
00178 // Motion detection occurs on free-fall (acceleration below a threshold for some time for all axes), motion (acceleration
00179 // above a threshold for some time on at least one axis), and zero-motion toggle (acceleration on each axis less than a 
00180 // threshold for some time sets this flag, motion above the threshold turns it off). The high-pass filter takes gravity out
00181 // consideration for these threshold evaluations; otherwise, the flags would be set all the time!
00182   
00183   uint8_t c = readByte(MPU6050_ADDRESS, PWR_MGMT_1);
00184   writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x30); // Clear sleep and cycle bits [5:6]
00185   writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c |  0x30); // Set sleep and cycle bits [5:6] to zero to make sure accelerometer is running
00186 
00187   c = readByte(MPU6050_ADDRESS, PWR_MGMT_2);
00188   writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0x38); // Clear standby XA, YA, and ZA bits [3:5]
00189   writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c |  0x00); // Set XA, YA, and ZA bits [3:5] to zero to make sure accelerometer is running
00190     
00191   c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
00192   writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0]
00193 // Set high-pass filter to 0) reset (disable), 1) 5 Hz, 2) 2.5 Hz, 3) 1.25 Hz, 4) 0.63 Hz, or 7) Hold
00194   writeByte(MPU6050_ADDRESS, ACCEL_CONFIG,  c | 0x00);  // Set ACCEL_HPF to 0; reset mode disbaling high-pass filter
00195 
00196   c = readByte(MPU6050_ADDRESS, CONFIG);
00197   writeByte(MPU6050_ADDRESS, CONFIG, c & ~0x07); // Clear low-pass filter bits [2:0]
00198   writeByte(MPU6050_ADDRESS, CONFIG, c |  0x00);  // Set DLPD_CFG to 0; 260 Hz bandwidth, 1 kHz rate
00199     
00200   c = readByte(MPU6050_ADDRESS, INT_ENABLE);
00201   writeByte(MPU6050_ADDRESS, INT_ENABLE, c & ~0xFF);  // Clear all interrupts
00202   writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x40);  // Enable motion threshold (bits 5) interrupt only
00203   
00204 // Motion detection interrupt requires the absolute value of any axis to lie above the detection threshold
00205 // for at least the counter duration
00206   writeByte(MPU6050_ADDRESS, MOT_THR, 0x80); // Set motion detection to 0.256 g; LSB = 2 mg
00207   writeByte(MPU6050_ADDRESS, MOT_DUR, 0x01); // Set motion detect duration to 1  ms; LSB is 1 ms @ 1 kHz rate
00208   
00209   wait(0.1);  // Add delay for accumulation of samples
00210   
00211   c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
00212   writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0]
00213   writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c |  0x07);  // Set ACCEL_HPF to 7; hold the initial accleration value as a referance
00214    
00215   c = readByte(MPU6050_ADDRESS, PWR_MGMT_2);
00216   writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0xC7); // Clear standby XA, YA, and ZA bits [3:5] and LP_WAKE_CTRL bits [6:7]
00217   writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c |  0x47); // Set wakeup frequency to 5 Hz, and disable XG, YG, and ZG gyros (bits [0:2])  
00218 
00219   c = readByte(MPU6050_ADDRESS, PWR_MGMT_1);
00220   writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x20); // Clear sleep and cycle bit 5
00221   writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c |  0x20); // Set cycle bit 5 to begin low power accelerometer motion interrupts
00222 
00223 }
00224 
00225 
00226 void resetMPU6050() {
00227   // reset device
00228   writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
00229   wait(0.1);
00230   }
00231   
00232   
00233 void initMPU6050()
00234 {  
00235  // Initialize MPU6050 device
00236  // wake up device
00237   writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors 
00238   wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt  
00239 
00240  // get stable time source
00241   writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01);  // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
00242 
00243  // Configure Gyro and Accelerometer
00244  // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively; 
00245  // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
00246  // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
00247   writeByte(MPU6050_ADDRESS, CONFIG, 0x03);  
00248  
00249  // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
00250   writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x04);  // Use a 200 Hz rate; the same rate set in CONFIG above
00251  
00252  // Set gyroscope full scale range
00253  // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
00254   uint8_t c =  readByte(MPU6050_ADDRESS, GYRO_CONFIG);
00255   writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] 
00256   writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
00257   writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c | Gscale << 0); // Set full scale range for the gyro
00258    
00259  // Set accelerometer configuration
00260   c =  readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
00261   writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] 
00262   writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
00263   writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | Ascale << 0); // Set full scale range for the accelerometer 
00264 
00265   // Configure Interrupts and Bypass Enable
00266   // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips 
00267   // can join the I2C bus and all can be controlled by the Arduino as master
00268    writeByte(MPU6050_ADDRESS, INT_PIN_CFG, 0x22);    
00269    writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x01);  // Enable data ready (bit 0) interrupt
00270 }
00271 
00272 // Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
00273 // of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
00274 void calibrateMPU6050(float * dest1, float * dest2)
00275 {  
00276   uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
00277   uint16_t ii, packet_count, fifo_count;
00278   int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
00279   
00280 // reset device, reset all registers, clear gyro and accelerometer bias registers
00281   writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
00282   wait_ms(100);  
00283    
00284 // get stable time source
00285 // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
00286   writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01);  
00287   writeByte(MPU6050_ADDRESS, PWR_MGMT_2, 0x00); 
00288   wait_ms(200);
00289   
00290 // Configure device for bias calculation
00291   writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x00);   // Disable all interrupts
00292   writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00);      // Disable FIFO
00293   writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00);   // Turn on internal clock source
00294   writeByte(MPU6050_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
00295   writeByte(MPU6050_ADDRESS, USER_CTRL, 0x00);    // Disable FIFO and I2C master modes
00296   writeByte(MPU6050_ADDRESS, USER_CTRL, 0x0C);    // Reset FIFO and DMP
00297   wait_ms(20);
00298   
00299 // Configure MPU6050 gyro and accelerometer for bias calculation
00300   writeByte(MPU6050_ADDRESS, CONFIG, 0x01);      // Set low-pass filter to 188 Hz
00301   writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x00);  // Set sample rate to 1 kHz
00302   writeByte(MPU6050_ADDRESS, GYRO_CONFIG, 0x00);  // Set gyro full-scale to 250 degrees per second, maximum sensitivity
00303   writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
00304  
00305   uint16_t  gyrosensitivity  = 131;   // = 131 LSB/degrees/sec
00306   uint16_t  accelsensitivity = 16384;  // = 16384 LSB/g
00307 
00308 // Configure FIFO to capture accelerometer and gyro data for bias calculation
00309   writeByte(MPU6050_ADDRESS, USER_CTRL, 0x40);   // Enable FIFO  
00310   writeByte(MPU6050_ADDRESS, FIFO_EN, 0x78);     // Enable gyro and accelerometer sensors for FIFO  (max size 1024 bytes in MPU-6050)
00311   wait_us(78250); // accumulate 80 samples in 80 milliseconds = 960 bytes
00312 
00313 // At end of sample accumulation, turn off FIFO sensor read
00314   writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00);        // Disable gyro and accelerometer sensors for FIFO
00315   readBytes(MPU6050_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
00316   fifo_count = ((uint16_t)data[0] << 8) | data[1];
00317   packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
00318    // pc.printf("packet = %d", packet_count);
00319     
00320   for (ii = 0; ii < packet_count; ii++) {
00321     int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
00322     readBytes(MPU6050_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
00323     accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1]  ) ;  // Form signed 16-bit integer for each sample in FIFO
00324     accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3]  ) ;
00325     accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5]  ) ;    
00326     gyro_temp[0]  = (int16_t) (((int16_t)data[6] << 8) | data[7]  ) ;
00327     gyro_temp[1]  = (int16_t) (((int16_t)data[8] << 8) | data[9]  ) ;
00328     gyro_temp[2]  = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
00329     
00330     accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
00331     accel_bias[1] += (int32_t) accel_temp[1];
00332     accel_bias[2] += (int32_t) accel_temp[2];
00333     gyro_bias[0]  += (int32_t) gyro_temp[0];
00334     gyro_bias[1]  += (int32_t) gyro_temp[1];
00335     gyro_bias[2]  += (int32_t) gyro_temp[2];
00336             
00337 }
00338 
00339 pc.printf("packet = %d, filo = %d", packet_count,fifo_count);  
00340     accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
00341     accel_bias[1] /= (int32_t) packet_count;
00342     accel_bias[2] /= (int32_t) packet_count;
00343     gyro_bias[0]  /= (int32_t) packet_count;
00344     gyro_bias[1]  /= (int32_t) packet_count;
00345     gyro_bias[2]  /= (int32_t) packet_count;
00346     
00347   if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;}  // Remove gravity from the z-axis accelerometer bias calculation
00348   else {accel_bias[2] += (int32_t) accelsensitivity;}
00349  
00350 // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
00351   data[0] = (-gyro_bias[0]/4  >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
00352   data[1] = (-gyro_bias[0]/4)       & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
00353   data[2] = (-gyro_bias[1]/4  >> 8) & 0xFF;
00354   data[3] = (-gyro_bias[1]/4)       & 0xFF;
00355   data[4] = (-gyro_bias[2]/4  >> 8) & 0xFF;
00356   data[5] = (-gyro_bias[2]/4)       & 0xFF;
00357 
00358 // Push gyro biases to hardware registers
00359   writeByte(MPU6050_ADDRESS, XG_OFFS_USRH, data[0]); 
00360   writeByte(MPU6050_ADDRESS, XG_OFFS_USRL, data[1]);
00361   writeByte(MPU6050_ADDRESS, YG_OFFS_USRH, data[2]);
00362   writeByte(MPU6050_ADDRESS, YG_OFFS_USRL, data[3]);
00363   writeByte(MPU6050_ADDRESS, ZG_OFFS_USRH, data[4]);
00364   writeByte(MPU6050_ADDRESS, ZG_OFFS_USRL, data[5]);
00365 
00366   dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
00367   dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
00368   dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
00369 
00370 // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
00371 // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
00372 // non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
00373 // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
00374 // the accelerometer biases calculated above must be divided by 8.
00375 
00376   int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
00377   readBytes(MPU6050_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
00378   accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
00379   readBytes(MPU6050_ADDRESS, YA_OFFSET_H, 2, &data[0]);
00380   accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
00381   readBytes(MPU6050_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
00382   accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
00383   
00384   uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
00385   uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
00386   
00387   for(ii = 0; ii < 3; ii++) {
00388     if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
00389   }
00390 
00391   // Construct total accelerometer bias, including calculated average accelerometer bias from above
00392   accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
00393   accel_bias_reg[1] -= (accel_bias[1]/8);
00394   accel_bias_reg[2] -= (accel_bias[2]/8);
00395  
00396   data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
00397   data[1] = (accel_bias_reg[0])      & 0xFF;
00398   data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
00399   data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
00400   data[3] = (accel_bias_reg[1])      & 0xFF;
00401   data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
00402   data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
00403   data[5] = (accel_bias_reg[2])      & 0xFF;
00404   data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
00405 
00406   // Push accelerometer biases to hardware registers
00407 //  writeByte(MPU6050_ADDRESS, XA_OFFSET_H, data[0]);  
00408 //  writeByte(MPU6050_ADDRESS, XA_OFFSET_L_TC, data[1]);
00409 //  writeByte(MPU6050_ADDRESS, YA_OFFSET_H, data[2]);
00410 //  writeByte(MPU6050_ADDRESS, YA_OFFSET_L_TC, data[3]);  
00411 //  writeByte(MPU6050_ADDRESS, ZA_OFFSET_H, data[4]);
00412 //  writeByte(MPU6050_ADDRESS, ZA_OFFSET_L_TC, data[5]);
00413 
00414 // Output scaled accelerometer biases for manual subtraction in the main program
00415    dest2[0] = (float)accel_bias[0]/(float)accelsensitivity; 
00416    dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
00417    dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
00418 printf("set acc : x= %f\t,y= %f\tz= %f\r\n;",accelBias[0],accelBias[1],accelBias[2]);
00419     
00420 }
00421 
00422 
00423 // Accelerometer and gyroscope self test; check calibration wrt factory settings
00424 void MPU6050SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
00425 {
00426    uint8_t rawData[4] = {0, 0, 0, 0};
00427    uint8_t selfTest[6];
00428    float factoryTrim[6];
00429    
00430    // Configure the accelerometer for self-test
00431    writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0xF0); // Enable self test on all three axes and set accelerometer range to +/- 8 g
00432    writeByte(MPU6050_ADDRESS, GYRO_CONFIG,  0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
00433    wait(0.25);  // Delay a while to let the device execute the self-test
00434    rawData[0] = readByte(MPU6050_ADDRESS, SELF_TEST_X); // X-axis self-test results
00435    rawData[1] = readByte(MPU6050_ADDRESS, SELF_TEST_Y); // Y-axis self-test results
00436    rawData[2] = readByte(MPU6050_ADDRESS, SELF_TEST_Z); // Z-axis self-test results
00437    rawData[3] = readByte(MPU6050_ADDRESS, SELF_TEST_A); // Mixed-axis self-test results
00438    // Extract the acceleration test results first
00439    selfTest[0] = (rawData[0] >> 3) | (rawData[3] & 0x30) >> 4 ; // XA_TEST result is a five-bit unsigned integer
00440    selfTest[1] = (rawData[1] >> 3) | (rawData[3] & 0x0C) >> 4 ; // YA_TEST result is a five-bit unsigned integer
00441    selfTest[2] = (rawData[2] >> 3) | (rawData[3] & 0x03) >> 4 ; // ZA_TEST result is a five-bit unsigned integer
00442    // Extract the gyration test results first
00443    selfTest[3] = rawData[0]  & 0x1F ; // XG_TEST result is a five-bit unsigned integer
00444    selfTest[4] = rawData[1]  & 0x1F ; // YG_TEST result is a five-bit unsigned integer
00445    selfTest[5] = rawData[2]  & 0x1F ; // ZG_TEST result is a five-bit unsigned integer   
00446    // Process results to allow final comparison with factory set values
00447    factoryTrim[0] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[0] - 1.0f)/30.0f))); // FT[Xa] factory trim calculation
00448    factoryTrim[1] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[1] - 1.0f)/30.0f))); // FT[Ya] factory trim calculation
00449    factoryTrim[2] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[2] - 1.0f)/30.0f))); // FT[Za] factory trim calculation
00450    factoryTrim[3] =  ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[3] - 1.0f) ));             // FT[Xg] factory trim calculation
00451    factoryTrim[4] =  (-25.0f*131.0f)*(pow( 1.046f , (selfTest[4] - 1.0f) ));             // FT[Yg] factory trim calculation
00452    factoryTrim[5] =  ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[5] - 1.0f) ));             // FT[Zg] factory trim calculation
00453    
00454  //  Output self-test results and factory trim calculation if desired
00455  //  Serial.println(selfTest[0]); Serial.println(selfTest[1]); Serial.println(selfTest[2]);
00456  //  Serial.println(selfTest[3]); Serial.println(selfTest[4]); Serial.println(selfTest[5]);
00457  //  Serial.println(factoryTrim[0]); Serial.println(factoryTrim[1]); Serial.println(factoryTrim[2]);
00458  //  Serial.println(factoryTrim[3]); Serial.println(factoryTrim[4]); Serial.println(factoryTrim[5]);
00459 
00460  // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
00461  // To get to percent, must multiply by 100 and subtract result from 100
00462    for (int i = 0; i < 6; i++) {
00463      destination[i] = 100.0f + 100.0f*(selfTest[i] - factoryTrim[i])/factoryTrim[i]; // Report percent differences
00464    }
00465    
00466 }
00467 
00468 
00469 // Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
00470 // (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
00471 // which fuses acceleration and rotation rate to produce a quaternion-based estimate of relative
00472 // device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
00473 // The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
00474 // but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
00475         void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz)
00476         {
00477             float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3];         // short name local variable for readability
00478             float norm;                                               // vector norm
00479             float f1, f2, f3;                                         // objective funcyion elements
00480             float J_11or24, J_12or23, J_13or22, J_14or21, J_32, J_33; // objective function Jacobian elements
00481             float qDot1, qDot2, qDot3, qDot4;
00482             float hatDot1, hatDot2, hatDot3, hatDot4;
00483             float gerrx, gerry, gerrz, gbiasx, gbiasy, gbiasz;  // gyro bias error
00484 
00485             // Auxiliary variables to avoid repeated arithmetic
00486             float _halfq1 = 0.5f * q1;
00487             float _halfq2 = 0.5f * q2;
00488             float _halfq3 = 0.5f * q3;
00489             float _halfq4 = 0.5f * q4;
00490             float _2q1 = 2.0f * q1;
00491             float _2q2 = 2.0f * q2;
00492             float _2q3 = 2.0f * q3;
00493             float _2q4 = 2.0f * q4;
00494 //            float _2q1q3 = 2.0f * q1 * q3;
00495 //            float _2q3q4 = 2.0f * q3 * q4;
00496 
00497             // Normalise accelerometer measurement
00498             norm = sqrt(ax * ax + ay * ay + az * az);
00499             if (norm == 0.0f) return; // handle NaN
00500             norm = 1.0f/norm;
00501             ax *= norm;
00502             ay *= norm;
00503             az *= norm;
00504             
00505             // Compute the objective function and Jacobian
00506             f1 = _2q2 * q4 - _2q1 * q3 - ax;
00507             f2 = _2q1 * q2 + _2q3 * q4 - ay;
00508             f3 = 1.0f - _2q2 * q2 - _2q3 * q3 - az;
00509             J_11or24 = _2q3;
00510             J_12or23 = _2q4;
00511             J_13or22 = _2q1;
00512             J_14or21 = _2q2;
00513             J_32 = 2.0f * J_14or21;
00514             J_33 = 2.0f * J_11or24;
00515           
00516             // Compute the gradient (matrix multiplication)
00517             hatDot1 = J_14or21 * f2 - J_11or24 * f1;
00518             hatDot2 = J_12or23 * f1 + J_13or22 * f2 - J_32 * f3;
00519             hatDot3 = J_12or23 * f2 - J_33 *f3 - J_13or22 * f1;
00520             hatDot4 = J_14or21 * f1 + J_11or24 * f2;
00521             
00522             // Normalize the gradient
00523             norm = sqrt(hatDot1 * hatDot1 + hatDot2 * hatDot2 + hatDot3 * hatDot3 + hatDot4 * hatDot4);
00524             hatDot1 /= norm;
00525             hatDot2 /= norm;
00526             hatDot3 /= norm;
00527             hatDot4 /= norm;
00528             
00529             // Compute estimated gyroscope biases
00530             gerrx = _2q1 * hatDot2 - _2q2 * hatDot1 - _2q3 * hatDot4 + _2q4 * hatDot3;
00531             gerry = _2q1 * hatDot3 + _2q2 * hatDot4 - _2q3 * hatDot1 - _2q4 * hatDot2;
00532             gerrz = _2q1 * hatDot4 - _2q2 * hatDot3 + _2q3 * hatDot2 - _2q4 * hatDot1;
00533             
00534             // Compute and remove gyroscope biases
00535             gbiasx += gerrx * deltat * zeta;
00536             gbiasy += gerry * deltat * zeta;
00537             gbiasz += gerrz * deltat * zeta;
00538  //           gx -= gbiasx;
00539  //           gy -= gbiasy;
00540  //           gz -= gbiasz;
00541             
00542             // Compute the quaternion derivative
00543             qDot1 = -_halfq2 * gx - _halfq3 * gy - _halfq4 * gz;
00544             qDot2 =  _halfq1 * gx + _halfq3 * gz - _halfq4 * gy;
00545             qDot3 =  _halfq1 * gy - _halfq2 * gz + _halfq4 * gx;
00546             qDot4 =  _halfq1 * gz + _halfq2 * gy - _halfq3 * gx;
00547 
00548             // Compute then integrate estimated quaternion derivative
00549             q1 += (qDot1 -(beta * hatDot1)) * deltat;
00550             q2 += (qDot2 -(beta * hatDot2)) * deltat;
00551             q3 += (qDot3 -(beta * hatDot3)) * deltat;
00552             q4 += (qDot4 -(beta * hatDot4)) * deltat;
00553 
00554             // Normalize the quaternion
00555             norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);    // normalise quaternion
00556             norm = 1.0f/norm;
00557             q[0] = q1 * norm;
00558             q[1] = q2 * norm;
00559             q[2] = q3 * norm;
00560             q[3] = q4 * norm;
00561             
00562         }
00563     
00564     void calibrate_manual_MPU6050(float * dest1, float * dest2){
00565         //giroscopio
00566     dest1[0] = 0;//(float) gyro_bias[0]/(float) gyrosensitivity;
00567     dest1[1] =0;// ((float) gyro_bias[1]/(float) gyrosensitivity;
00568     dest1[2] = 0;//(float) gyro_bias[2]/(float) gyrosensitivity;
00569   
00570         //acceletomtro
00571     dest2[0] = 0;//(float)accel_bias[0]/(float)accelsensitivity; 
00572     dest2[1] = 0;//float)accel_bias[1]/(float)accelsensitivity;
00573     dest2[2] = 0;//(float)accel_bias[2]/(float)accelsensitivity;
00574     
00575     
00576     }
00577         
00578   
00579   };
00580 #endif