TurtleBot / Mbed 2 deprecated TurtleBot_V1

Dependencies:   Servo mbed-rtos mbed

Fork of Turtlecase by TurtleBot

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers main.cpp Source File

main.cpp

00001 //////////////////////////////////////////////////////////////////
00002 // project:   TurtleBot Project                                 //
00003 // code v.:   1.0                                               //  
00004 // board  :   NUCLEO-F303KB                                     //
00005 // date   :   20/2/2018                                         //
00006 // code by:   Coding on Earth by Humans                         //
00007 ////////////////////////////////////////////////////////////////// 
00008 
00009 ///////////////////////// init    ////////////////////////////////
00010 //////////////////////////////////////////////////////////////////
00011 #include "mbed.h"
00012 #include "rtos.h"
00013 
00014 Serial pc(USBTX, USBRX);
00015 
00016 Thread thread1;         //control servo left
00017 Thread thread2;         //control servo right
00018 Thread thread3;         //read data from IMU
00019 
00020 /////////////////////////   IMU   ////////////////////////////////
00021 //////////////////////////////////////////////////////////////////
00022 #include "MPU9250.h"
00023 
00024 float sum = 0;
00025 uint32_t sumCount = 0;
00026 char buffer[14];
00027 float origin = 0;
00028 
00029 MPU9250 mpu9250;
00030 Timer t;
00031 
00032 
00033 ///////////////////////// Servo   ////////////////////////////////
00034 //////////////////////////////////////////////////////////////////
00035 #include "Servo.h"
00036 Servo Servo1(D10);
00037 Servo Servo2(D6);
00038 Servo Servo3(D8);
00039 Servo Servo4(D9);
00040 /*
00041 int pos_up_start;
00042 int pos_up_end;
00043 int pos_down_start;
00044 int pos_down_end;*/
00045 
00046 int pos_down_start = 1400;
00047 int pos_down_end = 1600; 
00048 int pos_up_start = 1000; 
00049 int pos_up_end = 1600;
00050 
00051 ///////////////////////// prototype func   ///////////////////////
00052 //////////////////////////////////////////////////////////////////
00053 void myservoLeft();
00054 void myservoRight();
00055 void IMU();
00056 
00057 /////////////////////////    main     ////////////////////////////
00058 //////////////////////////////////////////////////////////////////
00059 int main()
00060 {
00061     thread1.start(myservoLeft);
00062     thread2.start(myservoRight);
00063     IMU();
00064 /*    while(1) 
00065     {
00066         printf("Hello World! Turtlebot is READY\n");
00067         printf("case 1-5\n");                 
00068         switch(pc.getc()) 
00069         {
00070             case '1':
00071                 pos_down_start = 1400;
00072                 pos_down_end = 1700; 
00073                 pos_up_start = 1000; 
00074                 pos_up_end = 1700; 
00075                 break;
00076             case '2':
00077                 pos_down_start = 1400;
00078                 pos_down_end = 1600; 
00079                 pos_up_start = 1000; 
00080                 pos_up_end = 1600;
00081                 break;
00082             case '3':
00083                 pos_down_start = 1400;
00084                 pos_down_end = 1650; 
00085                 pos_up_start = 1000; 
00086                 pos_up_end = 1500;
00087                 break;
00088             case '4':
00089                 pos_down_start = 1400;
00090                 pos_down_end = 1700; 
00091                 pos_up_start = 1000; 
00092                 pos_up_end = 1650;
00093                 break; 
00094             case '5':
00095                 pos_down_start = 1400;
00096                 pos_down_end = 1600; 
00097                 pos_up_start = 1000; 
00098                 pos_up_end = 1550;
00099                 break;  
00100         }
00101     printf("position down motor start = %d\n", pos_down_start);
00102     printf("position down motor end = %d\n", pos_down_end);
00103     printf("position up motor start = %d\n", pos_up_start);
00104     printf("position up motor end = %d\n", pos_up_end);
00105     thread1.start(myservoLeft);
00106     thread2.start(myservoRight);
00107     thread3.start(IMU);
00108     } */
00109 }
00110 
00111 
00112 ///////////////////////// myservoLeft     /////////////////////////
00113 //////////////////////////////////////////////////////////////////
00114 void myservoLeft()
00115 {
00116     for(int n = 0; n <= 5; n += 1)
00117     {
00118         Servo1.Enable(1000,20000);
00119         Servo2.Disable();
00120         
00121         for (int pos = pos_down_start; pos <= pos_down_end; pos += 5) 
00122         {
00123             Servo1.SetPosition(pos);
00124             wait(0.01);
00125         }
00126         
00127         Servo2.Enable(1000,20000);
00128         Servo1.Disable();
00129         
00130         for (int pos = pos_up_start; pos <= pos_up_end; pos += 5) 
00131         {
00132             Servo2.SetPosition(pos);
00133             wait(0.01);
00134         }
00135         
00136         Servo1.Enable(1000,20000);
00137         Servo2.Disable();
00138         
00139         for (int pos = pos_down_end; pos >= pos_down_start; pos -= 5) 
00140         {
00141             Servo1.SetPosition(pos); 
00142             wait(0.01);
00143         }
00144         
00145         Servo2.Enable(1000,20000);
00146         Servo1.Disable();
00147     
00148         for (int pos = pos_up_end; pos >= pos_up_start; pos -= 5) 
00149         {
00150             Servo2.SetPosition(pos); 
00151             wait(0.01);
00152         }
00153     }
00154 }
00155 
00156 ///////////////////////// myservoRight     ///////////////////////
00157 //////////////////////////////////////////////////////////////////
00158 void myservoRight() 
00159 {       
00160     for(int n = 0; n <= 5; n += 1)
00161     {
00162         Servo3.Enable(1000,20000);
00163         Servo4.Disable();
00164     
00165         for (int pos = pos_down_start; pos <= pos_down_end; pos += 5) 
00166         {
00167             Servo3.SetPosition(pos);
00168             wait(0.01);
00169         }
00170         
00171         Servo4.Enable(1000,20000);
00172         Servo3.Disable();
00173         
00174         for (int pos = pos_up_start; pos <= pos_up_end; pos += 5) 
00175         {
00176             Servo4.SetPosition(pos);
00177             wait(0.01);
00178         }
00179     
00180         Servo3.Enable(1000,20000);
00181         Servo4.Disable();
00182     
00183         for (int pos = pos_down_end; pos >= pos_down_start; pos -= 5) 
00184         {
00185             Servo3.SetPosition(pos); 
00186             wait(0.01);
00187         }
00188         
00189         Servo4.Enable(1000,20000);
00190         Servo3.Disable();
00191     
00192         for (int pos = pos_up_end; pos >= pos_up_start; pos -= 5) 
00193         {
00194             Servo4.SetPosition(pos); 
00195             wait(0.01);
00196         }
00197     }
00198 }
00199 
00200 /////////////////////////      IMU         ///////////////////////
00201 //////////////////////////////////////////////////////////////////
00202 void IMU()
00203 {
00204     //Set up I2C
00205     i2c.frequency(400000);  // use fast (400 kHz) I2C  
00206   
00207     //pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock);   
00208     t.start();        
00209       
00210     // Read the WHO_AM_I register, this is a good test of communication
00211     uint8_t whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250);  // Read WHO_AM_I register for MPU-9250
00212     //pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x68\n\r");
00213   
00214     if (whoami == 0x73 ) // WHO_AM_I should always be 0x68
00215     {  
00216         //pc.printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami);
00217         //pc.printf("MPU9250 is online...\n\r");
00218         sprintf(buffer, "0x%x", whoami);  
00219         wait(1);
00220     
00221         mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration
00222         mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values
00223         //pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]);  
00224         //pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]);  
00225         //pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]);  
00226         //pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]);  
00227         //pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]);  
00228         //pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]);  
00229         mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers  
00230         //pc.printf("x gyro bias = %f\n\r", gyroBias[0]);
00231         //pc.printf("y gyro bias = %f\n\r", gyroBias[1]);
00232         //pc.printf("z gyro bias = %f\n\r", gyroBias[2]);
00233         //pc.printf("x accel bias = %f\n\r", accelBias[0]);
00234         //pc.printf("y accel bias = %f\n\r", accelBias[1]);
00235         //pc.printf("z accel bias = %f\n\r", accelBias[2]);
00236         wait(2);
00237         mpu9250.initMPU9250(); 
00238         //pc.printf("MPU9250 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
00239         mpu9250.initAK8963(magCalibration);
00240         //pc.printf("AK8963 initialized for active data mode....\n\r"); // Initialize device for active mode read of magnetometer
00241         //pc.printf("Accelerometer full-scale range = %f  g\n\r", 2.0f*(float)(1<<Ascale));
00242         //pc.printf("Gyroscope full-scale range = %f  deg/s\n\r", 250.0f*(float)(1<<Gscale));
00243         
00244         if(Mscale == 0) pc.printf("Magnetometer resolution = 14  bits\n\r");
00245         if(Mscale == 1) pc.printf("Magnetometer resolution = 16  bits\n\r");
00246         if(Mmode == 2) pc.printf("Magnetometer ODR = 8 Hz\n\r");
00247         if(Mmode == 6) pc.printf("Magnetometer ODR = 100 Hz\n\r");
00248         wait(1);
00249     }
00250     else
00251     {
00252         pc.printf("Could not connect to MPU9250: \n\r");
00253         pc.printf("%#x \n",  whoami);
00254  
00255         sprintf(buffer, "WHO_AM_I 0x%x", whoami); 
00256  
00257         while(1) ; // Loop forever if communication doesn't happen
00258         }
00259 
00260             mpu9250.getAres(); // Get accelerometer sensitivity
00261             mpu9250.getGres(); // Get gyro sensitivity
00262             mpu9250.getMres(); // Get magnetometer sensitivity
00263             //pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes);
00264             //pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes);
00265             //pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes);
00266             magbias[0] = +470.;  // User environmental x-axis correction in milliGauss, should be automatically calculated
00267             magbias[1] = +120.;  // User environmental x-axis correction in milliGauss
00268             magbias[2] = +125.;  // User environmental x-axis correction in milliGauss
00269 
00270             while(1) 
00271             {
00272                 // If intPin goes high, all data registers have new data
00273                 if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) {  // On interrupt, check if data ready interrupt
00274 
00275                 mpu9250.readAccelData(accelCount);  // Read the x/y/z adc values   
00276                 // Now we'll calculate the accleration value into actual g's
00277                 ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
00278                 ay = (float)accelCount[1]*aRes - accelBias[1];   
00279                 az = (float)accelCount[2]*aRes - accelBias[2];  
00280    
00281                 mpu9250.readGyroData(gyroCount);  // Read the x/y/z adc values
00282                 // Calculate the gyro value into actual degrees per second
00283                 gx = (float)gyroCount[0]*gRes - gyroBias[0];  // get actual gyro value, this depends on scale being set
00284                 gy = (float)gyroCount[1]*gRes - gyroBias[1];  
00285                 gz = (float)gyroCount[2]*gRes - gyroBias[2];   
00286   
00287                 mpu9250.readMagData(magCount);  // Read the x/y/z adc values   
00288                 // Calculate the magnetometer values in milliGauss
00289                 // Include factory calibration per data sheet and user environmental corrections
00290                 mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0];  // get actual magnetometer value, this depends on scale being set
00291                 my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1];  
00292                 mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2];   
00293             }
00294    
00295             Now = t.read_us();
00296             deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
00297             lastUpdate = Now;
00298     
00299             sum += deltat;
00300             sumCount++;
00301     
00302             //if(lastUpdate - firstUpdate > 10000000.0f) 
00303             //{
00304                 //beta = 0.04;  // decrease filter gain after stabilized
00305                 //zeta = 0.015; // increasey bias drift gain after stabilized
00306             //}
00307     
00308             //Pass gyro rate as rad/s
00309             //mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f,  my,  mx, mz);
00310             mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz);
00311 
00312             //Serial print and/or display at 0.5 s rate independent of data rates
00313             delt_t = t.read_ms() - count;
00314     
00315             if (delt_t > 50) 
00316             { // update LCD once per half-second independent of read rate
00317 
00318                 //pc.printf("ax = %f", 1000*ax); 
00319                 //pc.printf(" ay = %f", 1000*ay); 
00320                 //pc.printf(" az = %f  mg\n\r", 1000*az); 
00321 
00322                 //pc.printf("gx = %f", gx); 
00323                 //pc.printf(" gy = %f", gy); 
00324                 //pc.printf(" gz = %f  deg/s\n\r", gz); 
00325     
00326                 //pc.printf("gx = %f", mx); 
00327                 //pc.printf(" gy = %f", my); 
00328                 //pc.printf(" gz = %f  mG\n\r", mz); 
00329     
00330                 //tempCount = mpu9250.readTempData();  // Read the adc values
00331                 //temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade
00332                 //pc.printf(" temperature = %f  C\n\r", temperature); 
00333     
00334                 //pc.printf("q0 = %f\n\r", q[0]);
00335                 //pc.printf("q1 = %f\n\r", q[1]);
00336                 //pc.printf("q2 = %f\n\r", q[2]);
00337                 //pc.printf("q3 = %f\n\r", q[3]);      
00338     
00339  
00340                 // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
00341                 // In this coordinate system, the positive z-axis is down toward Earth. 
00342                 // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
00343                 // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
00344                 // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
00345                 // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
00346                 // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
00347                 // applied in the correct order which for this configuration is yaw, pitch, and then roll.
00348                 // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
00349                 yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);   
00350                 pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
00351                 roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
00352                 pitch *= 180.0f / PI;
00353                 yaw   *= 180.0f / PI; 
00354                 yaw   -= 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04
00355                 roll  *= 180.0f / PI;
00356 
00357                 pc.printf("%f   %f  %f  %f \n\r",roll, pitch, yaw, origin);
00358                 //pc.printf("average rate = %f\n\r", (float) sumCount/sum);
00359                 //sprintf(buffer, "YPR: %f %f %f", yaw, pitch, roll);
00360                 //lcd.printString(buffer, 0, 4);
00361                 //sprintf(buffer, "rate = %f", (float) sumCount/sum);
00362                 //lcd.printString(buffer, 0, 5);
00363     
00364                 myled= !myled;
00365                 count = t.read_ms(); 
00366 
00367                 if(count > 1<<21) 
00368                 {
00369                     t.start(); // start the timer over again if ~30 minutes has passed
00370                     count = 0;
00371                     deltat= 0;
00372                     lastUpdate = t.read_us();
00373                 }
00374                 sum = 0;
00375                 sumCount = 0; 
00376             }
00377         }
00378 }