Not done - might need - for later

Dependencies:   FXOS8700CQ MPU6050IMU mbed

Committer:
joshwilkins2013
Date:
Tue Mar 31 22:31:41 2015 +0000
Revision:
0:7eb9e18d5839
Not done - might need - for later

Who changed what in which revision?

UserRevisionLine numberNew contents of line
joshwilkins2013 0:7eb9e18d5839 1 #include "mbed.h"
joshwilkins2013 0:7eb9e18d5839 2 #include "MPU6050.h"
joshwilkins2013 0:7eb9e18d5839 3 #include "FXOS8700CQ.h"
joshwilkins2013 0:7eb9e18d5839 4
joshwilkins2013 0:7eb9e18d5839 5 float sum = 0;
joshwilkins2013 0:7eb9e18d5839 6 uint32_t sumCount = 0;
joshwilkins2013 0:7eb9e18d5839 7
joshwilkins2013 0:7eb9e18d5839 8 MPU6050 mpu6050;
joshwilkins2013 0:7eb9e18d5839 9 FXOS8700CQ fxos(PTE25, PTE24, FXOS8700CQ_SLAVE_ADDR1); // SDA, SCL, (addr << 1)
joshwilkins2013 0:7eb9e18d5839 10
joshwilkins2013 0:7eb9e18d5839 11 Timer t;
joshwilkins2013 0:7eb9e18d5839 12
joshwilkins2013 0:7eb9e18d5839 13 InterruptIn fxos_int2(PTC13); // should just be the Data-Ready interrupt
joshwilkins2013 0:7eb9e18d5839 14 bool fxos_int2_triggered = false; // Interrupt status flags and data
joshwilkins2013 0:7eb9e18d5839 15
joshwilkins2013 0:7eb9e18d5839 16 SRAWDATA accel_data; // Storage for the data from the sensor
joshwilkins2013 0:7eb9e18d5839 17 SRAWDATA magn_data;
joshwilkins2013 0:7eb9e18d5839 18
joshwilkins2013 0:7eb9e18d5839 19 Serial pc(USBTX, USBRX); // tx, rx
joshwilkins2013 0:7eb9e18d5839 20
joshwilkins2013 0:7eb9e18d5839 21 void trigger_fxos_int2(void){
joshwilkins2013 0:7eb9e18d5839 22 fxos_int2_triggered = true;
joshwilkins2013 0:7eb9e18d5839 23 }
joshwilkins2013 0:7eb9e18d5839 24
joshwilkins2013 0:7eb9e18d5839 25 void print_reading(){
joshwilkins2013 0:7eb9e18d5839 26 pc.printf("A X:%5d,Y:%5d,Z:%5d M X:%5d,Y:%5d,Z:%5d\r\n",
joshwilkins2013 0:7eb9e18d5839 27 accel_data.x, accel_data.y, accel_data.z,
joshwilkins2013 0:7eb9e18d5839 28 magn_data.x, magn_data.y, magn_data.z);
joshwilkins2013 0:7eb9e18d5839 29 }
joshwilkins2013 0:7eb9e18d5839 30
joshwilkins2013 0:7eb9e18d5839 31 int main(){
joshwilkins2013 0:7eb9e18d5839 32 t.start();
joshwilkins2013 0:7eb9e18d5839 33 pc.baud(115200); // 200Hz x line of output data!
joshwilkins2013 0:7eb9e18d5839 34
joshwilkins2013 0:7eb9e18d5839 35 printf("\r\n\nFXOS8700Q Who Am I= %X\r\n", fxos.get_whoami());
joshwilkins2013 0:7eb9e18d5839 36
joshwilkins2013 0:7eb9e18d5839 37 fxos_int2.fall(&trigger_fxos_int2); // Iterrupt for active-low interrupt line from FXOS
joshwilkins2013 0:7eb9e18d5839 38 fxos.enable();
joshwilkins2013 0:7eb9e18d5839 39
joshwilkins2013 0:7eb9e18d5839 40 pc.printf("Started data collection. Accelerometer at max %dg.\r\n",
joshwilkins2013 0:7eb9e18d5839 41 fxos.get_accel_scale());
joshwilkins2013 0:7eb9e18d5839 42
joshwilkins2013 0:7eb9e18d5839 43 fxos.get_data(&accel_data, &magn_data); // clear interrupt from device
joshwilkins2013 0:7eb9e18d5839 44 fxos_int2_triggered = false; // un-trigger
joshwilkins2013 0:7eb9e18d5839 45
joshwilkins2013 0:7eb9e18d5839 46 //Set up I2C
joshwilkins2013 0:7eb9e18d5839 47 i2c.frequency(400000); // use fast (400 kHz) I2C
joshwilkins2013 0:7eb9e18d5839 48
joshwilkins2013 0:7eb9e18d5839 49 // Read the WHO_AM_I register, this is a good test of communication
joshwilkins2013 0:7eb9e18d5839 50 uint8_t whoami = mpu6050.readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050); // Read WHO_AM_I register for MPU-6050
joshwilkins2013 0:7eb9e18d5839 51 pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x68\n\r");
joshwilkins2013 0:7eb9e18d5839 52
joshwilkins2013 0:7eb9e18d5839 53 if (whoami == 0x68){ // WHO_AM_I should always be 0x68
joshwilkins2013 0:7eb9e18d5839 54 pc.printf("MPU6050 is online...");
joshwilkins2013 0:7eb9e18d5839 55 wait(1);
joshwilkins2013 0:7eb9e18d5839 56
joshwilkins2013 0:7eb9e18d5839 57 mpu6050.MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values
joshwilkins2013 0:7eb9e18d5839 58 pc.printf("x-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[0]); pc.printf("% of factory value \n\r");
joshwilkins2013 0:7eb9e18d5839 59 pc.printf("y-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[1]); pc.printf("% of factory value \n\r");
joshwilkins2013 0:7eb9e18d5839 60 pc.printf("z-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[2]); pc.printf("% of factory value \n\r");
joshwilkins2013 0:7eb9e18d5839 61 pc.printf("x-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[3]); pc.printf("% of factory value \n\r");
joshwilkins2013 0:7eb9e18d5839 62 pc.printf("y-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[4]); pc.printf("% of factory value \n\r");
joshwilkins2013 0:7eb9e18d5839 63 pc.printf("z-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[5]); pc.printf("% of factory value \n\r");
joshwilkins2013 0:7eb9e18d5839 64 wait(1);
joshwilkins2013 0:7eb9e18d5839 65
joshwilkins2013 0:7eb9e18d5839 66 if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f){
joshwilkins2013 0:7eb9e18d5839 67 mpu6050.resetMPU6050(); // Reset registers to default in preparation for device calibration
joshwilkins2013 0:7eb9e18d5839 68 mpu6050.calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
joshwilkins2013 0:7eb9e18d5839 69 mpu6050.initMPU6050(); pc.printf("MPU6050 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
joshwilkins2013 0:7eb9e18d5839 70 wait(2);
joshwilkins2013 0:7eb9e18d5839 71 }else pc.printf("Device did not the pass self-test!\n\r");
joshwilkins2013 0:7eb9e18d5839 72 }else{
joshwilkins2013 0:7eb9e18d5839 73 pc.printf("Could not connect to MPU6050: \n\r");
joshwilkins2013 0:7eb9e18d5839 74 pc.printf("%#x \n", whoami);
joshwilkins2013 0:7eb9e18d5839 75 while(1) ; // Loop forever if communication doesn't happen
joshwilkins2013 0:7eb9e18d5839 76 }
joshwilkins2013 0:7eb9e18d5839 77
joshwilkins2013 0:7eb9e18d5839 78 while(1){
joshwilkins2013 0:7eb9e18d5839 79 // If data ready bit set, all data registers have new data
joshwilkins2013 0:7eb9e18d5839 80 if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) { // check if data ready interrupt
joshwilkins2013 0:7eb9e18d5839 81 mpu6050.readAccelData(accelCount); // Read the x/y/z adc values
joshwilkins2013 0:7eb9e18d5839 82 mpu6050.getAres();
joshwilkins2013 0:7eb9e18d5839 83
joshwilkins2013 0:7eb9e18d5839 84 // Now we'll calculate the accleration value into actual g's
joshwilkins2013 0:7eb9e18d5839 85 ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set
joshwilkins2013 0:7eb9e18d5839 86 ay = (float)accelCount[1]*aRes - accelBias[1];
joshwilkins2013 0:7eb9e18d5839 87 az = (float)accelCount[2]*aRes - accelBias[2];
joshwilkins2013 0:7eb9e18d5839 88
joshwilkins2013 0:7eb9e18d5839 89 mpu6050.readGyroData(gyroCount); // Read the x/y/z adc values
joshwilkins2013 0:7eb9e18d5839 90 mpu6050.getGres();
joshwilkins2013 0:7eb9e18d5839 91
joshwilkins2013 0:7eb9e18d5839 92 // Calculate the gyro value into actual degrees per second
joshwilkins2013 0:7eb9e18d5839 93 gx = (float)gyroCount[0]*gRes; // - gyroBias[0]; // get actual gyro value, this depends on scale being set
joshwilkins2013 0:7eb9e18d5839 94 gy = (float)gyroCount[1]*gRes; // - gyroBias[1];
joshwilkins2013 0:7eb9e18d5839 95 gz = (float)gyroCount[2]*gRes; // - gyroBias[2];
joshwilkins2013 0:7eb9e18d5839 96
joshwilkins2013 0:7eb9e18d5839 97 tempCount = mpu6050.readTempData(); // Read the x/y/z adc values
joshwilkins2013 0:7eb9e18d5839 98 temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade
joshwilkins2013 0:7eb9e18d5839 99 }
joshwilkins2013 0:7eb9e18d5839 100
joshwilkins2013 0:7eb9e18d5839 101 if(fxos_int2_triggered){
joshwilkins2013 0:7eb9e18d5839 102 fxos_int2_triggered = false; // un-trigger
joshwilkins2013 0:7eb9e18d5839 103 fxos.get_data(&accel_data, &magn_data);
joshwilkins2013 0:7eb9e18d5839 104 }
joshwilkins2013 0:7eb9e18d5839 105
joshwilkins2013 0:7eb9e18d5839 106 Now = t.read_us();
joshwilkins2013 0:7eb9e18d5839 107 deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
joshwilkins2013 0:7eb9e18d5839 108 lastUpdate = Now;
joshwilkins2013 0:7eb9e18d5839 109
joshwilkins2013 0:7eb9e18d5839 110 sum += deltat;
joshwilkins2013 0:7eb9e18d5839 111 sumCount++;
joshwilkins2013 0:7eb9e18d5839 112
joshwilkins2013 0:7eb9e18d5839 113 if(lastUpdate - firstUpdate > 10000000.0f) {
joshwilkins2013 0:7eb9e18d5839 114 beta = 0.04; // decrease filter gain after stabilized
joshwilkins2013 0:7eb9e18d5839 115 zeta = 0.015; // increasey bias drift gain after stabilized
joshwilkins2013 0:7eb9e18d5839 116 }
joshwilkins2013 0:7eb9e18d5839 117
joshwilkins2013 0:7eb9e18d5839 118 // Pass gyro rate as rad/s
joshwilkins2013 0:7eb9e18d5839 119 mpu6050.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f);
joshwilkins2013 0:7eb9e18d5839 120
joshwilkins2013 0:7eb9e18d5839 121 // Serial print and/or display at 0.5 s rate independent of data rates
joshwilkins2013 0:7eb9e18d5839 122 delt_t = t.read_ms() - count;
joshwilkins2013 0:7eb9e18d5839 123
joshwilkins2013 0:7eb9e18d5839 124 pc.printf("ax = %f", 1000*ax);
joshwilkins2013 0:7eb9e18d5839 125 pc.printf(" ay = %f", 1000*ay);
joshwilkins2013 0:7eb9e18d5839 126 pc.printf(" az = %f mg\n\r", 1000*az);
joshwilkins2013 0:7eb9e18d5839 127
joshwilkins2013 0:7eb9e18d5839 128 pc.printf("gx = %f", gx);
joshwilkins2013 0:7eb9e18d5839 129 pc.printf(" gy = %f", gy);
joshwilkins2013 0:7eb9e18d5839 130 pc.printf(" gz = %f deg/s\n\r", gz);
joshwilkins2013 0:7eb9e18d5839 131
joshwilkins2013 0:7eb9e18d5839 132 pc.printf(" temperature = %f C\n\r", temperature);
joshwilkins2013 0:7eb9e18d5839 133
joshwilkins2013 0:7eb9e18d5839 134 pc.printf("q0 = %f\n\r", q[0]);
joshwilkins2013 0:7eb9e18d5839 135 pc.printf("q1 = %f\n\r", q[1]);
joshwilkins2013 0:7eb9e18d5839 136 pc.printf("q2 = %f\n\r", q[2]);
joshwilkins2013 0:7eb9e18d5839 137 pc.printf("q3 = %f\n\r", q[3]);
joshwilkins2013 0:7eb9e18d5839 138
joshwilkins2013 0:7eb9e18d5839 139
joshwilkins2013 0:7eb9e18d5839 140
joshwilkins2013 0:7eb9e18d5839 141 // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
joshwilkins2013 0:7eb9e18d5839 142 // In this coordinate system, the positive z-axis is down toward Earth.
joshwilkins2013 0:7eb9e18d5839 143 // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
joshwilkins2013 0:7eb9e18d5839 144 // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
joshwilkins2013 0:7eb9e18d5839 145 // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
joshwilkins2013 0:7eb9e18d5839 146 // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
joshwilkins2013 0:7eb9e18d5839 147 // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
joshwilkins2013 0:7eb9e18d5839 148 // applied in the correct order which for this configuration is yaw, pitch, and then roll.
joshwilkins2013 0:7eb9e18d5839 149 // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
joshwilkins2013 0:7eb9e18d5839 150 yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
joshwilkins2013 0:7eb9e18d5839 151 pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
joshwilkins2013 0:7eb9e18d5839 152 roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
joshwilkins2013 0:7eb9e18d5839 153 pitch *= 180.0f / PI;
joshwilkins2013 0:7eb9e18d5839 154 yaw *= 180.0f / PI;
joshwilkins2013 0:7eb9e18d5839 155 roll *= 180.0f / PI;
joshwilkins2013 0:7eb9e18d5839 156
joshwilkins2013 0:7eb9e18d5839 157 // pc.printf("Yaw, Pitch, Roll: \n\r");
joshwilkins2013 0:7eb9e18d5839 158 // pc.printf("%f", yaw);
joshwilkins2013 0:7eb9e18d5839 159 // pc.printf(", ");
joshwilkins2013 0:7eb9e18d5839 160 // pc.printf("%f", pitch);
joshwilkins2013 0:7eb9e18d5839 161 // pc.printf(", ");
joshwilkins2013 0:7eb9e18d5839 162 // pc.printf("%f\n\r", roll);
joshwilkins2013 0:7eb9e18d5839 163 // pc.printf("average rate = "); pc.printf("%f", (sumCount/sum)); pc.printf(" Hz\n\r");
joshwilkins2013 0:7eb9e18d5839 164
joshwilkins2013 0:7eb9e18d5839 165 pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
joshwilkins2013 0:7eb9e18d5839 166 pc.printf("average rate = %f\n\r", (float) sumCount/sum);
joshwilkins2013 0:7eb9e18d5839 167
joshwilkins2013 0:7eb9e18d5839 168 count = t.read_ms();
joshwilkins2013 0:7eb9e18d5839 169 sum = 0;
joshwilkins2013 0:7eb9e18d5839 170 sumCount = 0;
joshwilkins2013 0:7eb9e18d5839 171 }
joshwilkins2013 0:7eb9e18d5839 172 }