Team_temp / VT1_domc

Dependencies:   mbed-dev

Fork of Adafruit9-DOf_AHRS_Regler_Discrete by RT-Labor IMS

Committer:
domanpie
Date:
Thu Oct 19 11:52:10 2017 +0000
Revision:
2:9fd59c70ad78
V1.0; domc

Who changed what in which revision?

UserRevisionLine numberNew contents of line
domanpie 2:9fd59c70ad78 1 //=============================================================================================
domanpie 2:9fd59c70ad78 2 // MadgwickAHRS.c
domanpie 2:9fd59c70ad78 3 //=============================================================================================
domanpie 2:9fd59c70ad78 4 //
domanpie 2:9fd59c70ad78 5 // Implementation of Madgwick's IMU and AHRS algorithms.
domanpie 2:9fd59c70ad78 6 // See: http://www.x-io.co.uk/open-source-imu-and-ahrs-algorithms/
domanpie 2:9fd59c70ad78 7 //
domanpie 2:9fd59c70ad78 8 // From the x-io website "Open-source resources available on this website are
domanpie 2:9fd59c70ad78 9 // provided under the GNU General Public Licence unless an alternative licence
domanpie 2:9fd59c70ad78 10 // is provided in source."
domanpie 2:9fd59c70ad78 11 //
domanpie 2:9fd59c70ad78 12 // Date Author Notes
domanpie 2:9fd59c70ad78 13 // 29/09/2011 SOH Madgwick Initial release
domanpie 2:9fd59c70ad78 14 // 02/10/2011 SOH Madgwick Optimised for reduced CPU load
domanpie 2:9fd59c70ad78 15 // 19/02/2012 SOH Madgwick Magnetometer measurement is normalised
domanpie 2:9fd59c70ad78 16 // 18/12/2016 Added better fast inverse square root
domanpie 2:9fd59c70ad78 17 //
domanpie 2:9fd59c70ad78 18 //=============================================================================================
domanpie 2:9fd59c70ad78 19
domanpie 2:9fd59c70ad78 20 //-------------------------------------------------------------------------------------------
domanpie 2:9fd59c70ad78 21 // Header files
domanpie 2:9fd59c70ad78 22
domanpie 2:9fd59c70ad78 23 #include "MadgwickAHRS.h"
domanpie 2:9fd59c70ad78 24 #include <math.h>
domanpie 2:9fd59c70ad78 25
domanpie 2:9fd59c70ad78 26 //-------------------------------------------------------------------------------------------
domanpie 2:9fd59c70ad78 27 // Definitions
domanpie 2:9fd59c70ad78 28
domanpie 2:9fd59c70ad78 29 #define sampleFreqDef 388.2f // sample frequency in Hz
domanpie 2:9fd59c70ad78 30 #define betaDef 0.2f // 2 * proportional gain 0.1 - 0.5 - 5; 8
domanpie 2:9fd59c70ad78 31
domanpie 2:9fd59c70ad78 32
domanpie 2:9fd59c70ad78 33 //============================================================================================
domanpie 2:9fd59c70ad78 34 // Functions
domanpie 2:9fd59c70ad78 35
domanpie 2:9fd59c70ad78 36 //-------------------------------------------------------------------------------------------
domanpie 2:9fd59c70ad78 37 // AHRS algorithm update
domanpie 2:9fd59c70ad78 38
domanpie 2:9fd59c70ad78 39 Madgwick::Madgwick() {
domanpie 2:9fd59c70ad78 40 beta = betaDef;
domanpie 2:9fd59c70ad78 41 q0 = 1.0f;
domanpie 2:9fd59c70ad78 42 q1 = 0.0f;
domanpie 2:9fd59c70ad78 43 q2 = 0.0f;
domanpie 2:9fd59c70ad78 44 q3 = 0.0f;
domanpie 2:9fd59c70ad78 45 invSampleFreq = 1.0f / sampleFreqDef;
domanpie 2:9fd59c70ad78 46 anglesComputed = 0;
domanpie 2:9fd59c70ad78 47 }
domanpie 2:9fd59c70ad78 48
domanpie 2:9fd59c70ad78 49 void Madgwick::update(float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz) {
domanpie 2:9fd59c70ad78 50 float recipNorm;
domanpie 2:9fd59c70ad78 51 float s0, s1, s2, s3;
domanpie 2:9fd59c70ad78 52 float qDot1, qDot2, qDot3, qDot4;
domanpie 2:9fd59c70ad78 53 float hx, hy;
domanpie 2:9fd59c70ad78 54 float _2q0mx, _2q0my, _2q0mz, _2q1mx, _2bx, _2bz, _4bx, _4bz, _2q0, _2q1, _2q2, _2q3, _2q0q2, _2q2q3, q0q0, q0q1, q0q2, q0q3, q1q1, q1q2, q1q3, q2q2, q2q3, q3q3;
domanpie 2:9fd59c70ad78 55
domanpie 2:9fd59c70ad78 56 // Use IMU algorithm if magnetometer measurement invalid (avoids NaN in magnetometer normalisation)
domanpie 2:9fd59c70ad78 57 if((mx == 0.0f) && (my == 0.0f) && (mz == 0.0f)) {
domanpie 2:9fd59c70ad78 58 updateIMU(gx, gy, gz, ax, ay, az);
domanpie 2:9fd59c70ad78 59 return;
domanpie 2:9fd59c70ad78 60 }
domanpie 2:9fd59c70ad78 61
domanpie 2:9fd59c70ad78 62 // Convert gyroscope degrees/sec to radians/sec
domanpie 2:9fd59c70ad78 63 gx *= 0.0174533f;
domanpie 2:9fd59c70ad78 64 gy *= 0.0174533f;
domanpie 2:9fd59c70ad78 65 gz *= 0.0174533f;
domanpie 2:9fd59c70ad78 66
domanpie 2:9fd59c70ad78 67 // Rate of change of quaternion from gyroscope
domanpie 2:9fd59c70ad78 68 qDot1 = 0.5f * (-q1 * gx - q2 * gy - q3 * gz);
domanpie 2:9fd59c70ad78 69 qDot2 = 0.5f * (q0 * gx + q2 * gz - q3 * gy);
domanpie 2:9fd59c70ad78 70 qDot3 = 0.5f * (q0 * gy - q1 * gz + q3 * gx);
domanpie 2:9fd59c70ad78 71 qDot4 = 0.5f * (q0 * gz + q1 * gy - q2 * gx);
domanpie 2:9fd59c70ad78 72
domanpie 2:9fd59c70ad78 73 // Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
domanpie 2:9fd59c70ad78 74 if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
domanpie 2:9fd59c70ad78 75
domanpie 2:9fd59c70ad78 76 // Normalise accelerometer measurement
domanpie 2:9fd59c70ad78 77 recipNorm = invSqrt(ax * ax + ay * ay + az * az);
domanpie 2:9fd59c70ad78 78 ax *= recipNorm;
domanpie 2:9fd59c70ad78 79 ay *= recipNorm;
domanpie 2:9fd59c70ad78 80 az *= recipNorm;
domanpie 2:9fd59c70ad78 81
domanpie 2:9fd59c70ad78 82 // Normalise magnetometer measurement
domanpie 2:9fd59c70ad78 83 recipNorm = invSqrt(mx * mx + my * my + mz * mz);
domanpie 2:9fd59c70ad78 84 mx *= recipNorm;
domanpie 2:9fd59c70ad78 85 my *= recipNorm;
domanpie 2:9fd59c70ad78 86 mz *= recipNorm;
domanpie 2:9fd59c70ad78 87
domanpie 2:9fd59c70ad78 88 // Auxiliary variables to avoid repeated arithmetic
domanpie 2:9fd59c70ad78 89 _2q0mx = 2.0f * q0 * mx;
domanpie 2:9fd59c70ad78 90 _2q0my = 2.0f * q0 * my;
domanpie 2:9fd59c70ad78 91 _2q0mz = 2.0f * q0 * mz;
domanpie 2:9fd59c70ad78 92 _2q1mx = 2.0f * q1 * mx;
domanpie 2:9fd59c70ad78 93 _2q0 = 2.0f * q0;
domanpie 2:9fd59c70ad78 94 _2q1 = 2.0f * q1;
domanpie 2:9fd59c70ad78 95 _2q2 = 2.0f * q2;
domanpie 2:9fd59c70ad78 96 _2q3 = 2.0f * q3;
domanpie 2:9fd59c70ad78 97 _2q0q2 = 2.0f * q0 * q2;
domanpie 2:9fd59c70ad78 98 _2q2q3 = 2.0f * q2 * q3;
domanpie 2:9fd59c70ad78 99 q0q0 = q0 * q0;
domanpie 2:9fd59c70ad78 100 q0q1 = q0 * q1;
domanpie 2:9fd59c70ad78 101 q0q2 = q0 * q2;
domanpie 2:9fd59c70ad78 102 q0q3 = q0 * q3;
domanpie 2:9fd59c70ad78 103 q1q1 = q1 * q1;
domanpie 2:9fd59c70ad78 104 q1q2 = q1 * q2;
domanpie 2:9fd59c70ad78 105 q1q3 = q1 * q3;
domanpie 2:9fd59c70ad78 106 q2q2 = q2 * q2;
domanpie 2:9fd59c70ad78 107 q2q3 = q2 * q3;
domanpie 2:9fd59c70ad78 108 q3q3 = q3 * q3;
domanpie 2:9fd59c70ad78 109
domanpie 2:9fd59c70ad78 110 // Reference direction of Earth's magnetic field
domanpie 2:9fd59c70ad78 111 hx = mx * q0q0 - _2q0my * q3 + _2q0mz * q2 + mx * q1q1 + _2q1 * my * q2 + _2q1 * mz * q3 - mx * q2q2 - mx * q3q3;
domanpie 2:9fd59c70ad78 112 hy = _2q0mx * q3 + my * q0q0 - _2q0mz * q1 + _2q1mx * q2 - my * q1q1 + my * q2q2 + _2q2 * mz * q3 - my * q3q3;
domanpie 2:9fd59c70ad78 113 _2bx = sqrtf(hx * hx + hy * hy);
domanpie 2:9fd59c70ad78 114 _2bz = -_2q0mx * q2 + _2q0my * q1 + mz * q0q0 + _2q1mx * q3 - mz * q1q1 + _2q2 * my * q3 - mz * q2q2 + mz * q3q3;
domanpie 2:9fd59c70ad78 115 _4bx = 2.0f * _2bx;
domanpie 2:9fd59c70ad78 116 _4bz = 2.0f * _2bz;
domanpie 2:9fd59c70ad78 117
domanpie 2:9fd59c70ad78 118 // Gradient decent algorithm corrective step
domanpie 2:9fd59c70ad78 119 s0 = -_2q2 * (2.0f * q1q3 - _2q0q2 - ax) + _2q1 * (2.0f * q0q1 + _2q2q3 - ay) - _2bz * q2 * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (-_2bx * q3 + _2bz * q1) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + _2bx * q2 * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
domanpie 2:9fd59c70ad78 120 s1 = _2q3 * (2.0f * q1q3 - _2q0q2 - ax) + _2q0 * (2.0f * q0q1 + _2q2q3 - ay) - 4.0f * q1 * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) + _2bz * q3 * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (_2bx * q2 + _2bz * q0) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + (_2bx * q3 - _4bz * q1) * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
domanpie 2:9fd59c70ad78 121 s2 = -_2q0 * (2.0f * q1q3 - _2q0q2 - ax) + _2q3 * (2.0f * q0q1 + _2q2q3 - ay) - 4.0f * q2 * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) + (-_4bx * q2 - _2bz * q0) * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (_2bx * q1 + _2bz * q3) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + (_2bx * q0 - _4bz * q2) * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
domanpie 2:9fd59c70ad78 122 s3 = _2q1 * (2.0f * q1q3 - _2q0q2 - ax) + _2q2 * (2.0f * q0q1 + _2q2q3 - ay) + (-_4bx * q3 + _2bz * q1) * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (-_2bx * q0 + _2bz * q2) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + _2bx * q1 * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
domanpie 2:9fd59c70ad78 123 recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3); // normalise step magnitude
domanpie 2:9fd59c70ad78 124 s0 *= recipNorm;
domanpie 2:9fd59c70ad78 125 s1 *= recipNorm;
domanpie 2:9fd59c70ad78 126 s2 *= recipNorm;
domanpie 2:9fd59c70ad78 127 s3 *= recipNorm;
domanpie 2:9fd59c70ad78 128
domanpie 2:9fd59c70ad78 129 // Apply feedback step
domanpie 2:9fd59c70ad78 130 qDot1 -= beta * s0;
domanpie 2:9fd59c70ad78 131 qDot2 -= beta * s1;
domanpie 2:9fd59c70ad78 132 qDot3 -= beta * s2;
domanpie 2:9fd59c70ad78 133 qDot4 -= beta * s3;
domanpie 2:9fd59c70ad78 134 }
domanpie 2:9fd59c70ad78 135
domanpie 2:9fd59c70ad78 136 // Integrate rate of change of quaternion to yield quaternion
domanpie 2:9fd59c70ad78 137 q0 += qDot1 * invSampleFreq;
domanpie 2:9fd59c70ad78 138 q1 += qDot2 * invSampleFreq;
domanpie 2:9fd59c70ad78 139 q2 += qDot3 * invSampleFreq;
domanpie 2:9fd59c70ad78 140 q3 += qDot4 * invSampleFreq;
domanpie 2:9fd59c70ad78 141
domanpie 2:9fd59c70ad78 142 // Normalise quaternion
domanpie 2:9fd59c70ad78 143 recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
domanpie 2:9fd59c70ad78 144 q0 *= recipNorm;
domanpie 2:9fd59c70ad78 145 q1 *= recipNorm;
domanpie 2:9fd59c70ad78 146 q2 *= recipNorm;
domanpie 2:9fd59c70ad78 147 q3 *= recipNorm;
domanpie 2:9fd59c70ad78 148 anglesComputed = 0;
domanpie 2:9fd59c70ad78 149 }
domanpie 2:9fd59c70ad78 150
domanpie 2:9fd59c70ad78 151 //-------------------------------------------------------------------------------------------
domanpie 2:9fd59c70ad78 152 // IMU algorithm update
domanpie 2:9fd59c70ad78 153
domanpie 2:9fd59c70ad78 154 void Madgwick::updateIMU(float gx, float gy, float gz, float ax, float ay, float az) {
domanpie 2:9fd59c70ad78 155 float recipNorm;
domanpie 2:9fd59c70ad78 156 float s0, s1, s2, s3;
domanpie 2:9fd59c70ad78 157 float qDot1, qDot2, qDot3, qDot4;
domanpie 2:9fd59c70ad78 158 float _2q0, _2q1, _2q2, _2q3, _4q0, _4q1, _4q2 ,_8q1, _8q2, q0q0, q1q1, q2q2, q3q3;
domanpie 2:9fd59c70ad78 159
domanpie 2:9fd59c70ad78 160 // Convert gyroscope degrees/sec to radians/sec
domanpie 2:9fd59c70ad78 161 gx *= 0.0174533f;
domanpie 2:9fd59c70ad78 162 gy *= 0.0174533f;
domanpie 2:9fd59c70ad78 163 gz *= 0.0174533f;
domanpie 2:9fd59c70ad78 164
domanpie 2:9fd59c70ad78 165 // Rate of change of quaternion from gyroscope
domanpie 2:9fd59c70ad78 166 qDot1 = 0.5f * (-q1 * gx - q2 * gy - q3 * gz);
domanpie 2:9fd59c70ad78 167 qDot2 = 0.5f * (q0 * gx + q2 * gz - q3 * gy);
domanpie 2:9fd59c70ad78 168 qDot3 = 0.5f * (q0 * gy - q1 * gz + q3 * gx);
domanpie 2:9fd59c70ad78 169 qDot4 = 0.5f * (q0 * gz + q1 * gy - q2 * gx);
domanpie 2:9fd59c70ad78 170
domanpie 2:9fd59c70ad78 171 // Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
domanpie 2:9fd59c70ad78 172 if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
domanpie 2:9fd59c70ad78 173
domanpie 2:9fd59c70ad78 174 // Normalise accelerometer measurement
domanpie 2:9fd59c70ad78 175 recipNorm = invSqrt(ax * ax + ay * ay + az * az);
domanpie 2:9fd59c70ad78 176 ax *= recipNorm;
domanpie 2:9fd59c70ad78 177 ay *= recipNorm;
domanpie 2:9fd59c70ad78 178 az *= recipNorm;
domanpie 2:9fd59c70ad78 179
domanpie 2:9fd59c70ad78 180 // Auxiliary variables to avoid repeated arithmetic
domanpie 2:9fd59c70ad78 181 _2q0 = 2.0f * q0;
domanpie 2:9fd59c70ad78 182 _2q1 = 2.0f * q1;
domanpie 2:9fd59c70ad78 183 _2q2 = 2.0f * q2;
domanpie 2:9fd59c70ad78 184 _2q3 = 2.0f * q3;
domanpie 2:9fd59c70ad78 185 _4q0 = 4.0f * q0;
domanpie 2:9fd59c70ad78 186 _4q1 = 4.0f * q1;
domanpie 2:9fd59c70ad78 187 _4q2 = 4.0f * q2;
domanpie 2:9fd59c70ad78 188 _8q1 = 8.0f * q1;
domanpie 2:9fd59c70ad78 189 _8q2 = 8.0f * q2;
domanpie 2:9fd59c70ad78 190 q0q0 = q0 * q0;
domanpie 2:9fd59c70ad78 191 q1q1 = q1 * q1;
domanpie 2:9fd59c70ad78 192 q2q2 = q2 * q2;
domanpie 2:9fd59c70ad78 193 q3q3 = q3 * q3;
domanpie 2:9fd59c70ad78 194
domanpie 2:9fd59c70ad78 195 // Gradient decent algorithm corrective step
domanpie 2:9fd59c70ad78 196 s0 = _4q0 * q2q2 + _2q2 * ax + _4q0 * q1q1 - _2q1 * ay;
domanpie 2:9fd59c70ad78 197 s1 = _4q1 * q3q3 - _2q3 * ax + 4.0f * q0q0 * q1 - _2q0 * ay - _4q1 + _8q1 * q1q1 + _8q1 * q2q2 + _4q1 * az;
domanpie 2:9fd59c70ad78 198 s2 = 4.0f * q0q0 * q2 + _2q0 * ax + _4q2 * q3q3 - _2q3 * ay - _4q2 + _8q2 * q1q1 + _8q2 * q2q2 + _4q2 * az;
domanpie 2:9fd59c70ad78 199 s3 = 4.0f * q1q1 * q3 - _2q1 * ax + 4.0f * q2q2 * q3 - _2q2 * ay;
domanpie 2:9fd59c70ad78 200 recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3); // normalise step magnitude
domanpie 2:9fd59c70ad78 201 s0 *= recipNorm;
domanpie 2:9fd59c70ad78 202 s1 *= recipNorm;
domanpie 2:9fd59c70ad78 203 s2 *= recipNorm;
domanpie 2:9fd59c70ad78 204 s3 *= recipNorm;
domanpie 2:9fd59c70ad78 205
domanpie 2:9fd59c70ad78 206 // Apply feedback step
domanpie 2:9fd59c70ad78 207 qDot1 -= beta * s0;
domanpie 2:9fd59c70ad78 208 qDot2 -= beta * s1;
domanpie 2:9fd59c70ad78 209 qDot3 -= beta * s2;
domanpie 2:9fd59c70ad78 210 qDot4 -= beta * s3;
domanpie 2:9fd59c70ad78 211 }
domanpie 2:9fd59c70ad78 212
domanpie 2:9fd59c70ad78 213 // Integrate rate of change of quaternion to yield quaternion
domanpie 2:9fd59c70ad78 214 q0 += qDot1 * invSampleFreq;
domanpie 2:9fd59c70ad78 215 q1 += qDot2 * invSampleFreq;
domanpie 2:9fd59c70ad78 216 q2 += qDot3 * invSampleFreq;
domanpie 2:9fd59c70ad78 217 q3 += qDot4 * invSampleFreq;
domanpie 2:9fd59c70ad78 218
domanpie 2:9fd59c70ad78 219 // Normalise quaternion
domanpie 2:9fd59c70ad78 220 recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
domanpie 2:9fd59c70ad78 221 q0 *= recipNorm;
domanpie 2:9fd59c70ad78 222 q1 *= recipNorm;
domanpie 2:9fd59c70ad78 223 q2 *= recipNorm;
domanpie 2:9fd59c70ad78 224 q3 *= recipNorm;
domanpie 2:9fd59c70ad78 225 anglesComputed = 0;
domanpie 2:9fd59c70ad78 226 }
domanpie 2:9fd59c70ad78 227
domanpie 2:9fd59c70ad78 228 //-------------------------------------------------------------------------------------------
domanpie 2:9fd59c70ad78 229 // Fast inverse square-root
domanpie 2:9fd59c70ad78 230 // See: http://en.wikipedia.org/wiki/Fast_inverse_square_root
domanpie 2:9fd59c70ad78 231
domanpie 2:9fd59c70ad78 232 /*float Madgwick::invSqrt(float x) {
domanpie 2:9fd59c70ad78 233 float halfx = 0.5f * x;
domanpie 2:9fd59c70ad78 234 float y = x;
domanpie 2:9fd59c70ad78 235 long i = *(long*)&y;
domanpie 2:9fd59c70ad78 236 i = 0x5f3759df - (i>>1);
domanpie 2:9fd59c70ad78 237 y = *(float*)&i;
domanpie 2:9fd59c70ad78 238 y = y * (1.5f - (halfx * y * y));
domanpie 2:9fd59c70ad78 239 y = y * (1.5f - (halfx * y * y));
domanpie 2:9fd59c70ad78 240 return y;
domanpie 2:9fd59c70ad78 241 } */
domanpie 2:9fd59c70ad78 242
domanpie 2:9fd59c70ad78 243 float Madgwick::invSqrt(float x){
domanpie 2:9fd59c70ad78 244 unsigned int i = 0x5F1F1412 - (*(unsigned int*)&x >> 1);
domanpie 2:9fd59c70ad78 245 float tmp = *(float*)&i;
domanpie 2:9fd59c70ad78 246 return tmp * (1.69000231f - 0.714158168f * x * tmp * tmp);
domanpie 2:9fd59c70ad78 247 }
domanpie 2:9fd59c70ad78 248
domanpie 2:9fd59c70ad78 249 //-------------------------------------------------------------------------------------------
domanpie 2:9fd59c70ad78 250
domanpie 2:9fd59c70ad78 251 void Madgwick::computeAngles()
domanpie 2:9fd59c70ad78 252 {
domanpie 2:9fd59c70ad78 253 roll = atan2f(q0*q1 + q2*q3, 0.5f - q1*q1 - q2*q2);
domanpie 2:9fd59c70ad78 254 pitch = asinf(-2.0f * (q1*q3 - q0*q2));
domanpie 2:9fd59c70ad78 255 yaw = atan2f(q1*q2 + q0*q3, 0.5f - q2*q2 - q3*q3);
domanpie 2:9fd59c70ad78 256 anglesComputed = 1;
domanpie 2:9fd59c70ad78 257 }