Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of mbed-dev by
Diff: targets/TARGET_NUVOTON/TARGET_M2351/device/StdDriver/m2351_spi.c
- Revision:
- 187:0387e8f68319
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/targets/TARGET_NUVOTON/TARGET_M2351/device/StdDriver/m2351_spi.c Thu Sep 06 13:40:20 2018 +0100
@@ -0,0 +1,1599 @@
+/**************************************************************************//**
+ * @file spi.c
+ * @version V3.00
+ * @brief M2351 series SPI driver source file
+ *
+ * @copyright (C) 2016 Nuvoton Technology Corp. All rights reserved.
+*****************************************************************************/
+#include "NuMicro.h"
+
+/** @addtogroup Standard_Driver Standard Driver
+ @{
+*/
+
+/** @addtogroup SPI_Driver SPI Driver
+ @{
+*/
+
+
+/** @addtogroup SPI_EXPORTED_FUNCTIONS SPI Exported Functions
+ @{
+*/
+
+static uint32_t SPII2S_GetSourceClockFreq(SPI_T *i2s);
+
+/**
+ * @brief This function make SPI module be ready to transfer.
+ * @param[in] spi The pointer of the specified SPI module.
+ * @param[in] u32MasterSlave Decides the SPI module is operating in master mode or in slave mode. (SPI_SLAVE, SPI_MASTER)
+ * @param[in] u32SPIMode Decides the transfer timing. (SPI_MODE_0, SPI_MODE_1, SPI_MODE_2, SPI_MODE_3)
+ * @param[in] u32DataWidth Decides the data width of a SPI transaction.
+ * @param[in] u32BusClock The expected frequency of SPI bus clock in Hz.
+ * @return Actual frequency of SPI peripheral clock.
+ * @details By default, the SPI transfer sequence is MSB first, the slave selection signal is active low and the automatic
+ * slave selection function is disabled.
+ * In Slave mode, the u32BusClock shall be NULL and the SPI clock divider setting will be 0.
+ * The actual clock rate may be different from the target SPI clock rate.
+ * For example, if the SPI source clock rate is 12 MHz and the target SPI bus clock rate is 7 MHz, the
+ * actual SPI clock rate will be 6MHz.
+ * @note If u32BusClock = 0, DIVIDER setting will be set to the maximum value.
+ * @note If u32BusClock >= system clock frequency for Secure, SPI peripheral clock source will be set to APB clock and DIVIDER will be set to 0.
+ * @note If u32BusClock >= system clock frequency for Non-Secure, this function does not do anything to avoid the situation that the frequency of
+ * SPI bus clock cannot be faster than the system clock rate. User should set up carefully.
+ * @note If u32BusClock >= SPI peripheral clock source, DIVIDER will be set to 0.
+ * @note In slave mode for Secure, the SPI peripheral clock rate will equal to APB clock rate.
+ * @note In slave mode for Non-Secure, the SPI peripheral clock rate will equal to the clock rate set in secure mode.
+ */
+uint32_t SPI_Open(SPI_T *spi,
+ uint32_t u32MasterSlave,
+ uint32_t u32SPIMode,
+ uint32_t u32DataWidth,
+ uint32_t u32BusClock)
+{
+ uint32_t u32ClkSrc = 0UL, u32Div, u32HCLKFreq, u32PCLK0Freq, u32PCLK1Freq, u32RetValue = 0UL;
+
+ /* Disable I2S mode */
+ spi->I2SCTL &= ~SPI_I2SCTL_I2SEN_Msk;
+
+ if(u32DataWidth == 32UL)
+ {
+ u32DataWidth = 0UL;
+ }
+
+ /* Get system clock frequency */
+ u32HCLKFreq = CLK_GetHCLKFreq();
+ /* Get APB0 clock frequency */
+ u32PCLK0Freq = CLK_GetPCLK0Freq();
+ /* Get APB1 clock frequency */
+ u32PCLK1Freq = CLK_GetPCLK1Freq();
+
+ if(u32MasterSlave == SPI_MASTER)
+ {
+ /* Default setting: slave selection signal is active low; disable automatic slave selection function. */
+ spi->SSCTL = SPI_SS_ACTIVE_LOW;
+
+ /* Default setting: MSB first, disable unit transfer interrupt, SP_CYCLE = 0. */
+ spi->CTL = u32MasterSlave | (u32DataWidth << SPI_CTL_DWIDTH_Pos) | (u32SPIMode) | SPI_CTL_SPIEN_Msk;
+
+ if(u32BusClock >= u32HCLKFreq)
+ {
+ if(!(__PC() & (1UL << 28UL)))
+ {
+ /* Select PCLK as the clock source of SPI */
+ if((spi == SPI0) || (spi == SPI0_NS))
+ {
+ CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI0SEL_Msk)) | CLK_CLKSEL2_SPI0SEL_PCLK1;
+ }
+ else if((spi == SPI1) || (spi == SPI1_NS))
+ {
+ CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI1SEL_Msk)) | CLK_CLKSEL2_SPI1SEL_PCLK0;
+ }
+ else if((spi == SPI2) || (spi == SPI2_NS))
+ {
+ CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI2SEL_Msk)) | CLK_CLKSEL2_SPI2SEL_PCLK1;
+ }
+ else
+ {
+ CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI3SEL_Msk)) | CLK_CLKSEL2_SPI3SEL_PCLK0;
+ }
+ }
+ }
+
+ /* Check clock source of SPI */
+ if((spi == SPI0) || (spi == SPI0_NS))
+ {
+ if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_HXT)
+ {
+ u32ClkSrc = __HXT; /* Clock source is HXT */
+ }
+ else if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_PLL)
+ {
+ u32ClkSrc = CLK_GetPLLClockFreq(); /* Clock source is PLL */
+ }
+ else if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_PCLK1)
+ {
+ u32ClkSrc = CLK_GetPCLK1Freq(); /* Clock source is PCLK1 */
+ }
+ else
+ {
+ u32ClkSrc = __HIRC; /* Clock source is HIRC */
+ }
+ }
+ else if((spi == SPI1) || (spi == SPI1_NS))
+ {
+ if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_HXT)
+ {
+ u32ClkSrc = __HXT; /* Clock source is HXT */
+ }
+ else if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_PLL)
+ {
+ u32ClkSrc = CLK_GetPLLClockFreq(); /* Clock source is PLL */
+ }
+ else if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_PCLK0)
+ {
+ u32ClkSrc = CLK_GetPCLK0Freq(); /* Clock source is PCLK0 */
+ }
+ else
+ {
+ u32ClkSrc = __HIRC; /* Clock source is HIRC */
+ }
+ }
+ else if((spi == SPI2) || (spi == SPI2_NS))
+ {
+ if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_HXT)
+ {
+ u32ClkSrc = __HXT; /* Clock source is HXT */
+ }
+ else if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_PLL)
+ {
+ u32ClkSrc = CLK_GetPLLClockFreq(); /* Clock source is PLL */
+ }
+ else if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_PCLK1)
+ {
+ u32ClkSrc = CLK_GetPCLK1Freq(); /* Clock source is PCLK1 */
+ }
+ else
+ {
+ u32ClkSrc = __HIRC; /* Clock source is HIRC */
+ }
+ }
+ else
+ {
+ if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_HXT)
+ {
+ u32ClkSrc = __HXT; /* Clock source is HXT */
+ }
+ else if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_PLL)
+ {
+ u32ClkSrc = CLK_GetPLLClockFreq(); /* Clock source is PLL */
+ }
+ else if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_PCLK0)
+ {
+ u32ClkSrc = CLK_GetPCLK0Freq(); /* Clock source is PCLK0 */
+ }
+ else
+ {
+ u32ClkSrc = __HIRC; /* Clock source is HIRC */
+ }
+ }
+
+ if(u32BusClock >= u32HCLKFreq)
+ {
+ /* Set DIVIDER = 0 */
+ spi->CLKDIV = 0UL;
+ /* Return master peripheral clock rate */
+ u32RetValue = u32ClkSrc;
+ }
+ else if(u32BusClock >= u32ClkSrc)
+ {
+ /* Set DIVIDER = 0 */
+ spi->CLKDIV = 0UL;
+ /* Return master peripheral clock rate */
+ u32RetValue = u32ClkSrc;
+ }
+ else if(u32BusClock == 0UL)
+ {
+ /* Set DIVIDER to the maximum value 0x1FF. f_spi = f_spi_clk_src / (DIVIDER + 1) */
+ spi->CLKDIV |= SPI_CLKDIV_DIVIDER_Msk;
+ /* Return master peripheral clock rate */
+ u32RetValue = (u32ClkSrc / (0x1FFUL + 1UL));
+ }
+ else
+ {
+ u32Div = (((u32ClkSrc * 10UL) / u32BusClock + 5UL) / 10UL) - 1UL; /* Round to the nearest integer */
+ if(u32Div > 0x1FFUL)
+ {
+ u32Div = 0x1FFUL;
+ spi->CLKDIV |= SPI_CLKDIV_DIVIDER_Msk;
+ /* Return master peripheral clock rate */
+ u32RetValue = (u32ClkSrc / (0x1FFUL + 1UL));
+ }
+ else
+ {
+ spi->CLKDIV = (spi->CLKDIV & (~SPI_CLKDIV_DIVIDER_Msk)) | (u32Div << SPI_CLKDIV_DIVIDER_Pos);
+ /* Return master peripheral clock rate */
+ u32RetValue = (u32ClkSrc / (u32Div + 1UL));
+ }
+ }
+ }
+ else /* For slave mode, force the SPI peripheral clock rate to equal APB clock rate. */
+ {
+ /* Default setting: slave selection signal is low level active. */
+ spi->SSCTL = SPI_SS_ACTIVE_LOW;
+
+ /* Default setting: MSB first, disable unit transfer interrupt, SP_CYCLE = 0. */
+ spi->CTL = u32MasterSlave | (u32DataWidth << SPI_CTL_DWIDTH_Pos) | (u32SPIMode) | SPI_CTL_SPIEN_Msk;
+
+ /* Set DIVIDER = 0 */
+ spi->CLKDIV = 0UL;
+
+ if(!(__PC() & (1UL << 28UL)))
+ {
+ /* Select PCLK as the clock source of SPI */
+ if((spi == SPI0) || (spi == SPI0_NS))
+ {
+ CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI0SEL_Msk)) | CLK_CLKSEL2_SPI0SEL_PCLK1;
+ /* Return slave peripheral clock rate */
+ u32RetValue = u32PCLK1Freq;
+ }
+ else if((spi == SPI1) || (spi == SPI1_NS))
+ {
+ CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI1SEL_Msk)) | CLK_CLKSEL2_SPI1SEL_PCLK0;
+ /* Return slave peripheral clock rate */
+ u32RetValue = u32PCLK0Freq;
+ }
+ else if((spi == SPI2) || (spi == SPI2_NS))
+ {
+ CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI2SEL_Msk)) | CLK_CLKSEL2_SPI2SEL_PCLK1;
+ /* Return slave peripheral clock rate */
+ u32RetValue = u32PCLK1Freq;
+ }
+ else
+ {
+ CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI3SEL_Msk)) | CLK_CLKSEL2_SPI3SEL_PCLK0;
+ /* Return slave peripheral clock rate */
+ u32RetValue = u32PCLK0Freq;
+ }
+ }
+ else
+ {
+ /* Check clock source of SPI */
+ if((spi == SPI0) || (spi == SPI0_NS))
+ {
+ if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_HXT)
+ {
+ u32RetValue = __HXT; /* Clock source is HXT */
+ }
+ else if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_PLL)
+ {
+ u32RetValue = CLK_GetPLLClockFreq(); /* Clock source is PLL */
+ }
+ else if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_PCLK1)
+ {
+ u32RetValue = u32PCLK1Freq; /* Clock source is PCLK1 */
+ }
+ else
+ {
+ u32RetValue = __HIRC; /* Clock source is HIRC */
+ }
+ }
+ else if((spi == SPI1) || (spi == SPI1_NS))
+ {
+ if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_HXT)
+ {
+ u32RetValue = __HXT; /* Clock source is HXT */
+ }
+ else if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_PLL)
+ {
+ u32RetValue = CLK_GetPLLClockFreq(); /* Clock source is PLL */
+ }
+ else if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_PCLK0)
+ {
+ u32RetValue = u32PCLK0Freq; /* Clock source is PCLK0 */
+ }
+ else
+ {
+ u32RetValue = __HIRC; /* Clock source is HIRC */
+ }
+ }
+ else if((spi == SPI2) || (spi == SPI2_NS))
+ {
+ if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_HXT)
+ {
+ u32RetValue = __HXT; /* Clock source is HXT */
+ }
+ else if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_PLL)
+ {
+ u32RetValue = CLK_GetPLLClockFreq(); /* Clock source is PLL */
+ }
+ else if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_PCLK1)
+ {
+ u32RetValue = u32PCLK1Freq; /* Clock source is PCLK1 */
+ }
+ else
+ {
+ u32RetValue = __HIRC; /* Clock source is HIRC */
+ }
+ }
+ else
+ {
+ if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_HXT)
+ {
+ u32RetValue = __HXT; /* Clock source is HXT */
+ }
+ else if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_PLL)
+ {
+ u32RetValue = CLK_GetPLLClockFreq(); /* Clock source is PLL */
+ }
+ else if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_PCLK0)
+ {
+ u32RetValue = u32PCLK0Freq; /* Clock source is PCLK0 */
+ }
+ else
+ {
+ u32RetValue = __HIRC; /* Clock source is HIRC */
+ }
+ }
+ }
+ }
+
+ return u32RetValue;
+}
+
+/**
+ * @brief Disable SPI controller.
+ * @param[in] spi The pointer of the specified SPI module.
+ * @return None
+ * @details Clear SPIEN bit of SPI_CTL register to disable SPI transfer control.
+ */
+void SPI_Close(SPI_T *spi)
+{
+ spi->CTL &= ~SPI_CTL_SPIEN_Msk;
+}
+
+/**
+ * @brief Clear RX FIFO buffer.
+ * @param[in] spi The pointer of the specified SPI module.
+ * @return None
+ * @details This function will clear SPI RX FIFO buffer. The RXEMPTY (SPI_STATUS[8]) will be set to 1.
+ */
+void SPI_ClearRxFIFO(SPI_T *spi)
+{
+ spi->FIFOCTL |= SPI_FIFOCTL_RXFBCLR_Msk;
+}
+
+/**
+ * @brief Clear TX FIFO buffer.
+ * @param[in] spi The pointer of the specified SPI module.
+ * @return None
+ * @details This function will clear SPI TX FIFO buffer. The TXEMPTY (SPI_STATUS[16]) will be set to 1.
+ * @note The TX shift register will not be cleared.
+ */
+void SPI_ClearTxFIFO(SPI_T *spi)
+{
+ spi->FIFOCTL |= SPI_FIFOCTL_TXFBCLR_Msk;
+}
+
+/**
+ * @brief Disable the automatic slave selection function.
+ * @param[in] spi The pointer of the specified SPI module.
+ * @return None
+ * @details This function will disable the automatic slave selection function and set slave selection signal to inactive state.
+ */
+void SPI_DisableAutoSS(SPI_T *spi)
+{
+ spi->SSCTL &= ~(SPI_SSCTL_AUTOSS_Msk | SPI_SSCTL_SS_Msk);
+}
+
+/**
+ * @brief Enable the automatic slave selection function.
+ * @param[in] spi The pointer of the specified SPI module.
+ * @param[in] u32SSPinMask Specifies slave selection pins. (SPI_SS)
+ * @param[in] u32ActiveLevel Specifies the active level of slave selection signal. (SPI_SS_ACTIVE_HIGH, SPI_SS_ACTIVE_LOW)
+ * @return None
+ * @details This function will enable the automatic slave selection function. Only available in Master mode.
+ * The slave selection pin and the active level will be set in this function.
+ */
+void SPI_EnableAutoSS(SPI_T *spi, uint32_t u32SSPinMask, uint32_t u32ActiveLevel)
+{
+ spi->SSCTL = (spi->SSCTL & (~(SPI_SSCTL_AUTOSS_Msk | SPI_SSCTL_SSACTPOL_Msk | SPI_SSCTL_SS_Msk))) | (u32SSPinMask | u32ActiveLevel | SPI_SSCTL_AUTOSS_Msk);
+}
+
+/**
+ * @brief Set the SPI bus clock.
+ * @param[in] spi The pointer of the specified SPI module.
+ * @param[in] u32BusClock The expected frequency of SPI bus clock in Hz.
+ * @return Actual frequency of SPI bus clock.
+ * @details This function is only available in Master mode. The actual clock rate may be different from the target SPI bus clock rate.
+ * For example, if the SPI source clock rate is 12 MHz and the target SPI bus clock rate is 7 MHz, the actual SPI bus clock
+ * rate will be 6 MHz.
+ * @note If u32BusClock = 0, DIVIDER setting will be set to the maximum value.
+ * @note If u32BusClock >= system clock frequency for Secure, SPI peripheral clock source will be set to APB clock and DIVIDER will be set to 0.
+ * @note If u32BusClock >= system clock frequency for Non-Secure, this function does not do anything to avoid the situation that the frequency of
+ * SPI bus clock cannot be faster than the system clock rate. User should set up carefully.
+ * @note If u32BusClock >= SPI peripheral clock source, DIVIDER will be set to 0.
+ */
+uint32_t SPI_SetBusClock(SPI_T *spi, uint32_t u32BusClock)
+{
+ uint32_t u32ClkSrc, u32HCLKFreq;
+ uint32_t u32Div, u32RetValue;
+
+ /* Get system clock frequency */
+ u32HCLKFreq = CLK_GetHCLKFreq();
+
+ if(u32BusClock >= u32HCLKFreq)
+ {
+ if(!(__PC() & (1UL << 28UL)))
+ {
+ /* Select PCLK as the clock source of SPI */
+ if((spi == SPI0) || (spi == SPI0_NS))
+ {
+ CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI0SEL_Msk)) | CLK_CLKSEL2_SPI0SEL_PCLK1;
+ }
+ else if((spi == SPI1) || (spi == SPI1_NS))
+ {
+ CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI1SEL_Msk)) | CLK_CLKSEL2_SPI1SEL_PCLK0;
+ }
+ else if((spi == SPI2) || (spi == SPI2_NS))
+ {
+ CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI2SEL_Msk)) | CLK_CLKSEL2_SPI2SEL_PCLK1;
+ }
+ else
+ {
+ CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI3SEL_Msk)) | CLK_CLKSEL2_SPI3SEL_PCLK0;
+ }
+ }
+ }
+
+ /* Check clock source of SPI */
+ if((spi == SPI0) || (spi == SPI0_NS))
+ {
+ if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_HXT)
+ {
+ u32ClkSrc = __HXT; /* Clock source is HXT */
+ }
+ else if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_PLL)
+ {
+ u32ClkSrc = CLK_GetPLLClockFreq(); /* Clock source is PLL */
+ }
+ else if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_PCLK1)
+ {
+ u32ClkSrc = CLK_GetPCLK1Freq(); /* Clock source is PCLK1 */
+ }
+ else
+ {
+ u32ClkSrc = __HIRC; /* Clock source is HIRC */
+ }
+ }
+ else if((spi == SPI1) || (spi == SPI1_NS))
+ {
+ if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_HXT)
+ {
+ u32ClkSrc = __HXT; /* Clock source is HXT */
+ }
+ else if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_PLL)
+ {
+ u32ClkSrc = CLK_GetPLLClockFreq(); /* Clock source is PLL */
+ }
+ else if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_PCLK0)
+ {
+ u32ClkSrc = CLK_GetPCLK0Freq(); /* Clock source is PCLK0 */
+ }
+ else
+ {
+ u32ClkSrc = __HIRC; /* Clock source is HIRC */
+ }
+ }
+ else if((spi == SPI2) || (spi == SPI2_NS))
+ {
+ if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_HXT)
+ {
+ u32ClkSrc = __HXT; /* Clock source is HXT */
+ }
+ else if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_PLL)
+ {
+ u32ClkSrc = CLK_GetPLLClockFreq(); /* Clock source is PLL */
+ }
+ else if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_PCLK1)
+ {
+ u32ClkSrc = CLK_GetPCLK1Freq(); /* Clock source is PCLK1 */
+ }
+ else
+ {
+ u32ClkSrc = __HIRC; /* Clock source is HIRC */
+ }
+ }
+ else
+ {
+ if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_HXT)
+ {
+ u32ClkSrc = __HXT; /* Clock source is HXT */
+ }
+ else if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_PLL)
+ {
+ u32ClkSrc = CLK_GetPLLClockFreq(); /* Clock source is PLL */
+ }
+ else if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_PCLK0)
+ {
+ u32ClkSrc = CLK_GetPCLK0Freq(); /* Clock source is PCLK0 */
+ }
+ else
+ {
+ u32ClkSrc = __HIRC; /* Clock source is HIRC */
+ }
+ }
+
+ if(u32BusClock >= u32HCLKFreq)
+ {
+ /* Set DIVIDER = 0 */
+ spi->CLKDIV = 0UL;
+ /* Return master peripheral clock rate */
+ u32RetValue = u32ClkSrc;
+ }
+ else if(u32BusClock >= u32ClkSrc)
+ {
+ /* Set DIVIDER = 0 */
+ spi->CLKDIV = 0UL;
+ /* Return master peripheral clock rate */
+ u32RetValue = u32ClkSrc;
+ }
+ else if(u32BusClock == 0UL)
+ {
+ /* Set DIVIDER to the maximum value 0x1FF. f_spi = f_spi_clk_src / (DIVIDER + 1) */
+ spi->CLKDIV |= SPI_CLKDIV_DIVIDER_Msk;
+ /* Return master peripheral clock rate */
+ u32RetValue = (u32ClkSrc / (0x1FFUL + 1UL));
+ }
+ else
+ {
+ u32Div = (((u32ClkSrc * 10UL) / u32BusClock + 5UL) / 10UL) - 1UL; /* Round to the nearest integer */
+ if(u32Div > 0x1FFUL)
+ {
+ u32Div = 0x1FFUL;
+ spi->CLKDIV |= SPI_CLKDIV_DIVIDER_Msk;
+ /* Return master peripheral clock rate */
+ u32RetValue = (u32ClkSrc / (0x1FFUL + 1UL));
+ }
+ else
+ {
+ spi->CLKDIV = (spi->CLKDIV & (~SPI_CLKDIV_DIVIDER_Msk)) | (u32Div << SPI_CLKDIV_DIVIDER_Pos);
+ /* Return master peripheral clock rate */
+ u32RetValue = (u32ClkSrc / (u32Div + 1UL));
+ }
+ }
+
+ return u32RetValue;
+}
+
+/**
+ * @brief Configure FIFO threshold setting.
+ * @param[in] spi The pointer of the specified SPI module.
+ * @param[in] u32TxThreshold Decides the TX FIFO threshold. It could be 0 ~ 7.
+ * @param[in] u32RxThreshold Decides the RX FIFO threshold. It could be 0 ~ 7.
+ * @return None
+ * @details Set TX FIFO threshold and RX FIFO threshold configurations.
+ */
+void SPI_SetFIFO(SPI_T *spi, uint32_t u32TxThreshold, uint32_t u32RxThreshold)
+{
+ spi->FIFOCTL = (spi->FIFOCTL & ~(SPI_FIFOCTL_TXTH_Msk | SPI_FIFOCTL_RXTH_Msk)) |
+ (u32TxThreshold << SPI_FIFOCTL_TXTH_Pos) |
+ (u32RxThreshold << SPI_FIFOCTL_RXTH_Pos);
+}
+
+/**
+ * @brief Get the actual frequency of SPI bus clock. Only available in Master mode.
+ * @param[in] spi The pointer of the specified SPI module.
+ * @return Actual SPI bus clock frequency in Hz.
+ * @details This function will calculate the actual SPI bus clock rate according to the SPIxSEL and DIVIDER settings. Only available in Master mode.
+ */
+uint32_t SPI_GetBusClock(SPI_T *spi)
+{
+ uint32_t u32Div;
+ uint32_t u32ClkSrc;
+
+ /* Get DIVIDER setting */
+ u32Div = (spi->CLKDIV & SPI_CLKDIV_DIVIDER_Msk) >> SPI_CLKDIV_DIVIDER_Pos;
+
+ /* Check clock source of SPI */
+ if((spi == SPI0) || (spi == SPI0_NS))
+ {
+ if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_HXT)
+ {
+ u32ClkSrc = __HXT; /* Clock source is HXT */
+ }
+ else if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_PLL)
+ {
+ u32ClkSrc = CLK_GetPLLClockFreq(); /* Clock source is PLL */
+ }
+ else if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_PCLK1)
+ {
+ u32ClkSrc = CLK_GetPCLK1Freq(); /* Clock source is PCLK1 */
+ }
+ else
+ {
+ u32ClkSrc = __HIRC; /* Clock source is HIRC */
+ }
+ }
+ else if((spi == SPI1) || (spi == SPI1_NS))
+ {
+ if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_HXT)
+ {
+ u32ClkSrc = __HXT; /* Clock source is HXT */
+ }
+ else if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_PLL)
+ {
+ u32ClkSrc = CLK_GetPLLClockFreq(); /* Clock source is PLL */
+ }
+ else if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_PCLK0)
+ {
+ u32ClkSrc = CLK_GetPCLK0Freq(); /* Clock source is PCLK0 */
+ }
+ else
+ {
+ u32ClkSrc = __HIRC; /* Clock source is HIRC */
+ }
+ }
+ else if((spi == SPI2) || (spi == SPI2_NS))
+ {
+ if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_HXT)
+ {
+ u32ClkSrc = __HXT; /* Clock source is HXT */
+ }
+ else if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_PLL)
+ {
+ u32ClkSrc = CLK_GetPLLClockFreq(); /* Clock source is PLL */
+ }
+ else if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_PCLK1)
+ {
+ u32ClkSrc = CLK_GetPCLK1Freq(); /* Clock source is PCLK1 */
+ }
+ else
+ {
+ u32ClkSrc = __HIRC; /* Clock source is HIRC */
+ }
+ }
+ else
+ {
+ if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_HXT)
+ {
+ u32ClkSrc = __HXT; /* Clock source is HXT */
+ }
+ else if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_PLL)
+ {
+ u32ClkSrc = CLK_GetPLLClockFreq(); /* Clock source is PLL */
+ }
+ else if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_PCLK0)
+ {
+ u32ClkSrc = CLK_GetPCLK0Freq(); /* Clock source is PCLK0 */
+ }
+ else
+ {
+ u32ClkSrc = __HIRC; /* Clock source is HIRC */
+ }
+ }
+
+ /* Return SPI bus clock rate */
+ return (u32ClkSrc / (u32Div + 1UL));
+}
+
+/**
+ * @brief Enable interrupt function.
+ * @param[in] spi The pointer of the specified SPI module.
+ * @param[in] u32Mask The combination of all related interrupt enable bits.
+ * Each bit corresponds to a interrupt enable bit.
+ * This parameter decides which interrupts will be enabled. It is combination of:
+ * - \ref SPI_UNIT_INT_MASK
+ * - \ref SPI_SSACT_INT_MASK
+ * - \ref SPI_SSINACT_INT_MASK
+ * - \ref SPI_SLVUR_INT_MASK
+ * - \ref SPI_SLVBE_INT_MASK
+ * - \ref SPI_TXUF_INT_MASK
+ * - \ref SPI_FIFO_TXTH_INT_MASK
+ * - \ref SPI_FIFO_RXTH_INT_MASK
+ * - \ref SPI_FIFO_RXOV_INT_MASK
+ * - \ref SPI_FIFO_RXTO_INT_MASK
+ *
+ * @return None
+ * @details Enable SPI related interrupts specified by u32Mask parameter.
+ */
+void SPI_EnableInt(SPI_T *spi, uint32_t u32Mask)
+{
+ /* Enable unit transfer interrupt flag */
+ if((u32Mask & SPI_UNIT_INT_MASK) == SPI_UNIT_INT_MASK)
+ {
+ spi->CTL |= SPI_CTL_UNITIEN_Msk;
+ }
+
+ /* Enable slave selection signal active interrupt flag */
+ if((u32Mask & SPI_SSACT_INT_MASK) == SPI_SSACT_INT_MASK)
+ {
+ spi->SSCTL |= SPI_SSCTL_SSACTIEN_Msk;
+ }
+
+ /* Enable slave selection signal inactive interrupt flag */
+ if((u32Mask & SPI_SSINACT_INT_MASK) == SPI_SSINACT_INT_MASK)
+ {
+ spi->SSCTL |= SPI_SSCTL_SSINAIEN_Msk;
+ }
+
+ /* Enable slave TX under run interrupt flag */
+ if((u32Mask & SPI_SLVUR_INT_MASK) == SPI_SLVUR_INT_MASK)
+ {
+ spi->SSCTL |= SPI_SSCTL_SLVURIEN_Msk;
+ }
+
+ /* Enable slave bit count error interrupt flag */
+ if((u32Mask & SPI_SLVBE_INT_MASK) == SPI_SLVBE_INT_MASK)
+ {
+ spi->SSCTL |= SPI_SSCTL_SLVBEIEN_Msk;
+ }
+
+ /* Enable slave TX underflow interrupt flag */
+ if((u32Mask & SPI_TXUF_INT_MASK) == SPI_TXUF_INT_MASK)
+ {
+ spi->FIFOCTL |= SPI_FIFOCTL_TXUFIEN_Msk;
+ }
+
+ /* Enable TX threshold interrupt flag */
+ if((u32Mask & SPI_FIFO_TXTH_INT_MASK) == SPI_FIFO_TXTH_INT_MASK)
+ {
+ spi->FIFOCTL |= SPI_FIFOCTL_TXTHIEN_Msk;
+ }
+
+ /* Enable RX threshold interrupt flag */
+ if((u32Mask & SPI_FIFO_RXTH_INT_MASK) == SPI_FIFO_RXTH_INT_MASK)
+ {
+ spi->FIFOCTL |= SPI_FIFOCTL_RXTHIEN_Msk;
+ }
+
+ /* Enable RX overrun interrupt flag */
+ if((u32Mask & SPI_FIFO_RXOV_INT_MASK) == SPI_FIFO_RXOV_INT_MASK)
+ {
+ spi->FIFOCTL |= SPI_FIFOCTL_RXOVIEN_Msk;
+ }
+
+ /* Enable RX time-out interrupt flag */
+ if((u32Mask & SPI_FIFO_RXTO_INT_MASK) == SPI_FIFO_RXTO_INT_MASK)
+ {
+ spi->FIFOCTL |= SPI_FIFOCTL_RXTOIEN_Msk;
+ }
+}
+
+/**
+ * @brief Disable interrupt function.
+ * @param[in] spi The pointer of the specified SPI module.
+ * @param[in] u32Mask The combination of all related interrupt enable bits.
+ * Each bit corresponds to a interrupt bit.
+ * This parameter decides which interrupts will be disabled. It is combination of:
+ * - \ref SPI_UNIT_INT_MASK
+ * - \ref SPI_SSACT_INT_MASK
+ * - \ref SPI_SSINACT_INT_MASK
+ * - \ref SPI_SLVUR_INT_MASK
+ * - \ref SPI_SLVBE_INT_MASK
+ * - \ref SPI_TXUF_INT_MASK
+ * - \ref SPI_FIFO_TXTH_INT_MASK
+ * - \ref SPI_FIFO_RXTH_INT_MASK
+ * - \ref SPI_FIFO_RXOV_INT_MASK
+ * - \ref SPI_FIFO_RXTO_INT_MASK
+ *
+ * @return None
+ * @details Disable SPI related interrupts specified by u32Mask parameter.
+ */
+void SPI_DisableInt(SPI_T *spi, uint32_t u32Mask)
+{
+ /* Disable unit transfer interrupt flag */
+ if((u32Mask & SPI_UNIT_INT_MASK) == SPI_UNIT_INT_MASK)
+ {
+ spi->CTL &= ~SPI_CTL_UNITIEN_Msk;
+ }
+
+ /* Disable slave selection signal active interrupt flag */
+ if((u32Mask & SPI_SSACT_INT_MASK) == SPI_SSACT_INT_MASK)
+ {
+ spi->SSCTL &= ~SPI_SSCTL_SSACTIEN_Msk;
+ }
+
+ /* Disable slave selection signal inactive interrupt flag */
+ if((u32Mask & SPI_SSINACT_INT_MASK) == SPI_SSINACT_INT_MASK)
+ {
+ spi->SSCTL &= ~SPI_SSCTL_SSINAIEN_Msk;
+ }
+
+ /* Disable slave TX under run interrupt flag */
+ if((u32Mask & SPI_SLVUR_INT_MASK) == SPI_SLVUR_INT_MASK)
+ {
+ spi->SSCTL &= ~SPI_SSCTL_SLVURIEN_Msk;
+ }
+
+ /* Disable slave bit count error interrupt flag */
+ if((u32Mask & SPI_SLVBE_INT_MASK) == SPI_SLVBE_INT_MASK)
+ {
+ spi->SSCTL &= ~SPI_SSCTL_SLVBEIEN_Msk;
+ }
+
+ /* Disable slave TX underflow interrupt flag */
+ if((u32Mask & SPI_TXUF_INT_MASK) == SPI_TXUF_INT_MASK)
+ {
+ spi->FIFOCTL &= ~SPI_FIFOCTL_TXUFIEN_Msk;
+ }
+
+ /* Disable TX threshold interrupt flag */
+ if((u32Mask & SPI_FIFO_TXTH_INT_MASK) == SPI_FIFO_TXTH_INT_MASK)
+ {
+ spi->FIFOCTL &= ~SPI_FIFOCTL_TXTHIEN_Msk;
+ }
+
+ /* Disable RX threshold interrupt flag */
+ if((u32Mask & SPI_FIFO_RXTH_INT_MASK) == SPI_FIFO_RXTH_INT_MASK)
+ {
+ spi->FIFOCTL &= ~SPI_FIFOCTL_RXTHIEN_Msk;
+ }
+
+ /* Disable RX overrun interrupt flag */
+ if((u32Mask & SPI_FIFO_RXOV_INT_MASK) == SPI_FIFO_RXOV_INT_MASK)
+ {
+ spi->FIFOCTL &= ~SPI_FIFOCTL_RXOVIEN_Msk;
+ }
+
+ /* Disable RX time-out interrupt flag */
+ if((u32Mask & SPI_FIFO_RXTO_INT_MASK) == SPI_FIFO_RXTO_INT_MASK)
+ {
+ spi->FIFOCTL &= ~SPI_FIFOCTL_RXTOIEN_Msk;
+ }
+}
+
+/**
+ * @brief Get interrupt flag.
+ * @param[in] spi The pointer of the specified SPI module.
+ * @param[in] u32Mask The combination of all related interrupt sources.
+ * Each bit corresponds to a interrupt source.
+ * This parameter decides which interrupt flags will be read. It is combination of:
+ * - \ref SPI_UNIT_INT_MASK
+ * - \ref SPI_SSACT_INT_MASK
+ * - \ref SPI_SSINACT_INT_MASK
+ * - \ref SPI_SLVUR_INT_MASK
+ * - \ref SPI_SLVBE_INT_MASK
+ * - \ref SPI_TXUF_INT_MASK
+ * - \ref SPI_FIFO_TXTH_INT_MASK
+ * - \ref SPI_FIFO_RXTH_INT_MASK
+ * - \ref SPI_FIFO_RXOV_INT_MASK
+ * - \ref SPI_FIFO_RXTO_INT_MASK
+ *
+ * @return Interrupt flags of selected sources.
+ * @details Get SPI related interrupt flags specified by u32Mask parameter.
+ */
+uint32_t SPI_GetIntFlag(SPI_T *spi, uint32_t u32Mask)
+{
+ uint32_t u32IntStatus;
+ uint32_t u32IntFlag = 0UL;
+
+ u32IntStatus = spi->STATUS;
+
+ /* Check unit transfer interrupt flag */
+ if((u32Mask & SPI_UNIT_INT_MASK) && (u32IntStatus & SPI_STATUS_UNITIF_Msk))
+ {
+ u32IntFlag |= SPI_UNIT_INT_MASK;
+ }
+
+ /* Check slave selection signal active interrupt flag */
+ if((u32Mask & SPI_SSACT_INT_MASK) && (u32IntStatus & SPI_STATUS_SSACTIF_Msk))
+ {
+ u32IntFlag |= SPI_SSACT_INT_MASK;
+ }
+
+ /* Check slave selection signal inactive interrupt flag */
+ if((u32Mask & SPI_SSINACT_INT_MASK) && (u32IntStatus & SPI_STATUS_SSINAIF_Msk))
+ {
+ u32IntFlag |= SPI_SSINACT_INT_MASK;
+ }
+
+ /* Check slave TX under run interrupt flag */
+ if((u32Mask & SPI_SLVUR_INT_MASK) && (u32IntStatus & SPI_STATUS_SLVURIF_Msk))
+ {
+ u32IntFlag |= SPI_SLVUR_INT_MASK;
+ }
+
+ /* Check slave bit count error interrupt flag */
+ if((u32Mask & SPI_SLVBE_INT_MASK) && (u32IntStatus & SPI_STATUS_SLVBEIF_Msk))
+ {
+ u32IntFlag |= SPI_SLVBE_INT_MASK;
+ }
+
+ /* Check slave TX underflow interrupt flag */
+ if((u32Mask & SPI_TXUF_INT_MASK) && (u32IntStatus & SPI_STATUS_TXUFIF_Msk))
+ {
+ u32IntFlag |= SPI_TXUF_INT_MASK;
+ }
+
+ /* Check TX threshold interrupt flag */
+ if((u32Mask & SPI_FIFO_TXTH_INT_MASK) && (u32IntStatus & SPI_STATUS_TXTHIF_Msk))
+ {
+ u32IntFlag |= SPI_FIFO_TXTH_INT_MASK;
+ }
+
+ /* Check RX threshold interrupt flag */
+ if((u32Mask & SPI_FIFO_RXTH_INT_MASK) && (u32IntStatus & SPI_STATUS_RXTHIF_Msk))
+ {
+ u32IntFlag |= SPI_FIFO_RXTH_INT_MASK;
+ }
+
+ /* Check RX overrun interrupt flag */
+ if((u32Mask & SPI_FIFO_RXOV_INT_MASK) && (u32IntStatus & SPI_STATUS_RXOVIF_Msk))
+ {
+ u32IntFlag |= SPI_FIFO_RXOV_INT_MASK;
+ }
+
+ /* Check RX time-out interrupt flag */
+ if((u32Mask & SPI_FIFO_RXTO_INT_MASK) && (u32IntStatus & SPI_STATUS_RXTOIF_Msk))
+ {
+ u32IntFlag |= SPI_FIFO_RXTO_INT_MASK;
+ }
+
+ return u32IntFlag;
+}
+
+/**
+ * @brief Clear interrupt flag.
+ * @param[in] spi The pointer of the specified SPI module.
+ * @param[in] u32Mask The combination of all related interrupt sources.
+ * Each bit corresponds to a interrupt source.
+ * This parameter decides which interrupt flags will be cleared. It could be the combination of:
+ * - \ref SPI_UNIT_INT_MASK
+ * - \ref SPI_SSACT_INT_MASK
+ * - \ref SPI_SSINACT_INT_MASK
+ * - \ref SPI_SLVUR_INT_MASK
+ * - \ref SPI_SLVBE_INT_MASK
+ * - \ref SPI_TXUF_INT_MASK
+ * - \ref SPI_FIFO_RXOV_INT_MASK
+ * - \ref SPI_FIFO_RXTO_INT_MASK
+ *
+ * @return None
+ * @details Clear SPI related interrupt flags specified by u32Mask parameter.
+ */
+void SPI_ClearIntFlag(SPI_T *spi, uint32_t u32Mask)
+{
+ if(u32Mask & SPI_UNIT_INT_MASK)
+ {
+ spi->STATUS = SPI_STATUS_UNITIF_Msk; /* Clear unit transfer interrupt flag */
+ }
+
+ if(u32Mask & SPI_SSACT_INT_MASK)
+ {
+ spi->STATUS = SPI_STATUS_SSACTIF_Msk; /* Clear slave selection signal active interrupt flag */
+ }
+
+ if(u32Mask & SPI_SSINACT_INT_MASK)
+ {
+ spi->STATUS = SPI_STATUS_SSINAIF_Msk; /* Clear slave selection signal inactive interrupt flag */
+ }
+
+ if(u32Mask & SPI_SLVUR_INT_MASK)
+ {
+ spi->STATUS = SPI_STATUS_SLVURIF_Msk; /* Clear slave TX under run interrupt flag */
+ }
+
+ if(u32Mask & SPI_SLVBE_INT_MASK)
+ {
+ spi->STATUS = SPI_STATUS_SLVBEIF_Msk; /* Clear slave bit count error interrupt flag */
+ }
+
+ if(u32Mask & SPI_TXUF_INT_MASK)
+ {
+ spi->STATUS = SPI_STATUS_TXUFIF_Msk; /* Clear slave TX underflow interrupt flag */
+ }
+
+ if(u32Mask & SPI_FIFO_RXOV_INT_MASK)
+ {
+ spi->STATUS = SPI_STATUS_RXOVIF_Msk; /* Clear RX overrun interrupt flag */
+ }
+
+ if(u32Mask & SPI_FIFO_RXTO_INT_MASK)
+ {
+ spi->STATUS = SPI_STATUS_RXTOIF_Msk; /* Clear RX time-out interrupt flag */
+ }
+}
+
+/**
+ * @brief Get SPI status.
+ * @param[in] spi The pointer of the specified SPI module.
+ * @param[in] u32Mask The combination of all related sources.
+ * Each bit corresponds to a source.
+ * This parameter decides which flags will be read. It is combination of:
+ * - \ref SPI_BUSY_MASK
+ * - \ref SPI_RX_EMPTY_MASK
+ * - \ref SPI_RX_FULL_MASK
+ * - \ref SPI_TX_EMPTY_MASK
+ * - \ref SPI_TX_FULL_MASK
+ * - \ref SPI_TXRX_RESET_MASK
+ * - \ref SPI_SPIEN_STS_MASK
+ * - \ref SPI_SSLINE_STS_MASK
+ *
+ * @return Flags of selected sources.
+ * @details Get SPI related status specified by u32Mask parameter.
+ */
+uint32_t SPI_GetStatus(SPI_T *spi, uint32_t u32Mask)
+{
+ uint32_t u32TmpStatus;
+ uint32_t u32Flag = 0UL;
+
+ u32TmpStatus = spi->STATUS;
+
+ /* Check busy status */
+ if((u32Mask & SPI_BUSY_MASK) && (u32TmpStatus & SPI_STATUS_BUSY_Msk))
+ {
+ u32Flag |= SPI_BUSY_MASK;
+ }
+
+ /* Check RX empty flag */
+ if((u32Mask & SPI_RX_EMPTY_MASK) && (u32TmpStatus & SPI_STATUS_RXEMPTY_Msk))
+ {
+ u32Flag |= SPI_RX_EMPTY_MASK;
+ }
+
+ /* Check RX full flag */
+ if((u32Mask & SPI_RX_FULL_MASK) && (u32TmpStatus & SPI_STATUS_RXFULL_Msk))
+ {
+ u32Flag |= SPI_RX_FULL_MASK;
+ }
+
+ /* Check TX empty flag */
+ if((u32Mask & SPI_TX_EMPTY_MASK) && (u32TmpStatus & SPI_STATUS_TXEMPTY_Msk))
+ {
+ u32Flag |= SPI_TX_EMPTY_MASK;
+ }
+
+ /* Check TX full flag */
+ if((u32Mask & SPI_TX_FULL_MASK) && (u32TmpStatus & SPI_STATUS_TXFULL_Msk))
+ {
+ u32Flag |= SPI_TX_FULL_MASK;
+ }
+
+ /* Check TX/RX reset flag */
+ if((u32Mask & SPI_TXRX_RESET_MASK) && (u32TmpStatus & SPI_STATUS_TXRXRST_Msk))
+ {
+ u32Flag |= SPI_TXRX_RESET_MASK;
+ }
+
+ /* Check SPIEN flag */
+ if((u32Mask & SPI_SPIEN_STS_MASK) && (u32TmpStatus & SPI_STATUS_SPIENSTS_Msk))
+ {
+ u32Flag |= SPI_SPIEN_STS_MASK;
+ }
+
+ /* Check SPIx_SS line status */
+ if((u32Mask & SPI_SSLINE_STS_MASK) && (u32TmpStatus & SPI_STATUS_SSLINE_Msk))
+ {
+ u32Flag |= SPI_SSLINE_STS_MASK;
+ }
+
+ return u32Flag;
+}
+
+
+/**
+ * @brief This function is used to get I2S source clock frequency.
+ * @param[in] i2s The pointer of the specified I2S module.
+ * @return I2S source clock frequency (Hz).
+ * @details Return the source clock frequency according to the setting of SPI0SEL (CLK_CLKSEL2[5:4]) or SPI1SEL (CLK_CLKSEL2[7:6]) or SPI2SEL (CLK_CLKSEL2[11:10]) or SPI3SEL (CLK_CLKSEL2[13:12]).
+ */
+static uint32_t SPII2S_GetSourceClockFreq(SPI_T *i2s)
+{
+ uint32_t u32Freq;
+
+ if((i2s == SPI0) || (i2s == SPI0_NS))
+ {
+ if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_HXT)
+ {
+ u32Freq = __HXT; /* Clock source is HXT */
+ }
+ else if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_PLL)
+ {
+ u32Freq = CLK_GetPLLClockFreq(); /* Clock source is PLL */
+ }
+ else if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_PCLK1)
+ {
+ u32Freq = CLK_GetPCLK1Freq(); /* Clock source is PCLK1 */
+ }
+ else
+ {
+ u32Freq = __HIRC; /* Clock source is HIRC */
+ }
+ }
+ else if((i2s == SPI1) || (i2s == SPI1_NS))
+ {
+ if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_HXT)
+ {
+ u32Freq = __HXT; /* Clock source is HXT */
+ }
+ else if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_PLL)
+ {
+ u32Freq = CLK_GetPLLClockFreq(); /* Clock source is PLL */
+ }
+ else if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_PCLK0)
+ {
+ u32Freq = CLK_GetPCLK0Freq(); /* Clock source is PCLK0 */
+ }
+ else
+ {
+ u32Freq = __HIRC; /* Clock source is HIRC */
+ }
+ }
+ else if((i2s == SPI2) || (i2s == SPI2_NS))
+ {
+ if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_HXT)
+ {
+ u32Freq = __HXT; /* Clock source is HXT */
+ }
+ else if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_PLL)
+ {
+ u32Freq = CLK_GetPLLClockFreq(); /* Clock source is PLL */
+ }
+ else if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_PCLK1)
+ {
+ u32Freq = CLK_GetPCLK1Freq(); /* Clock source is PCLK1 */
+ }
+ else
+ {
+ u32Freq = __HIRC; /* Clock source is HIRC */
+ }
+ }
+ else
+ {
+ if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_HXT)
+ {
+ u32Freq = __HXT; /* Clock source is HXT */
+ }
+ else if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_PLL)
+ {
+ u32Freq = CLK_GetPLLClockFreq(); /* Clock source is PLL */
+ }
+ else if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_PCLK0)
+ {
+ u32Freq = CLK_GetPCLK0Freq(); /* Clock source is PCLK0 */
+ }
+ else
+ {
+ u32Freq = __HIRC; /* Clock source is HIRC */
+ }
+ }
+
+ return u32Freq;
+}
+
+/**
+ * @brief This function configures some parameters of I2S interface for general purpose use.
+ * @param[in] i2s The pointer of the specified I2S module.
+ * @param[in] u32MasterSlave I2S operation mode. Valid values are listed below.
+ * - \ref SPII2S_MODE_MASTER
+ * - \ref SPII2S_MODE_SLAVE
+ * @param[in] u32SampleRate Sample rate
+ * @param[in] u32WordWidth Data length. Valid values are listed below.
+ * - \ref SPII2S_DATABIT_8
+ * - \ref SPII2S_DATABIT_16
+ * - \ref SPII2S_DATABIT_24
+ * - \ref SPII2S_DATABIT_32
+ * @param[in] u32Channels Audio format. Valid values are listed below.
+ * - \ref SPII2S_MONO
+ * - \ref SPII2S_STEREO
+ * @param[in] u32DataFormat Data format. Valid values are listed below.
+ * - \ref SPII2S_FORMAT_I2S
+ * - \ref SPII2S_FORMAT_MSB
+ * - \ref SPII2S_FORMAT_PCMA
+ * - \ref SPII2S_FORMAT_PCMB
+ * @return Real sample rate of master mode or peripheral clock rate of slave mode.
+ * @details This function will reset SPI/I2S controller and configure I2S controller according to the input parameters.
+ * Set TX FIFO threshold to 2 and RX FIFO threshold to 1. Both the TX and RX functions will be enabled.
+ * The actual sample rate may be different from the target sample rate. The real sample rate will be returned for reference.
+ * @note In slave mode for Secure, the SPI peripheral clock rate will equal to APB clock rate.
+ * @note In slave mode for Non-Secure, the SPI peripheral clock rate will equal to the clock rate set in secure mode.
+ */
+uint32_t SPII2S_Open(SPI_T *i2s, uint32_t u32MasterSlave, uint32_t u32SampleRate, uint32_t u32WordWidth, uint32_t u32Channels, uint32_t u32DataFormat)
+{
+ uint32_t u32Divider;
+ uint32_t u32BitRate, u32SrcClk, u32RetValue;
+ uint32_t u32PCLK0Freq, u32PCLK1Freq;
+
+ if(!(__PC() & (1UL << 28UL)))
+ {
+ /* Reset SPI/I2S */
+ if((i2s == SPI0) || (i2s == SPI0_NS))
+ {
+ SYS->IPRST1 |= SYS_IPRST1_SPI0RST_Msk;
+ SYS->IPRST1 &= ~SYS_IPRST1_SPI0RST_Msk;
+ }
+ else if((i2s == SPI1) || (i2s == SPI1_NS))
+ {
+ SYS->IPRST1 |= SYS_IPRST1_SPI1RST_Msk;
+ SYS->IPRST1 &= ~SYS_IPRST1_SPI1RST_Msk;
+ }
+ else if((i2s == SPI2) || (i2s == SPI2_NS))
+ {
+ SYS->IPRST1 |= SYS_IPRST1_SPI2RST_Msk;
+ SYS->IPRST1 &= ~SYS_IPRST1_SPI2RST_Msk;
+ }
+ else
+ {
+ SYS->IPRST2 |= SYS_IPRST2_SPI3RST_Msk;
+ SYS->IPRST2 &= ~SYS_IPRST2_SPI3RST_Msk;
+ }
+ }
+
+ /* Configure I2S controller */
+ i2s->I2SCTL = u32MasterSlave | u32WordWidth | u32Channels | u32DataFormat;
+ /* Set TX FIFO threshold to 2 and RX FIFO threshold to 1 */
+ i2s->FIFOCTL = SPII2S_FIFO_TX_LEVEL_WORD_2 | SPII2S_FIFO_RX_LEVEL_WORD_2;
+
+ if(u32MasterSlave == SPI_MASTER)
+ {
+ /* Get the source clock rate */
+ u32SrcClk = SPII2S_GetSourceClockFreq(i2s);
+
+ /* Calculate the bit clock rate */
+ u32BitRate = u32SampleRate * ((u32WordWidth >> SPI_I2SCTL_WDWIDTH_Pos) + 1UL) * 16UL;
+ u32Divider = (((((u32SrcClk * 10UL) / u32BitRate) >> 1UL) + 5UL) / 10UL) - 1UL; /* Round to the nearest integer */
+ /* Set BCLKDIV setting */
+ i2s->I2SCLK = (i2s->I2SCLK & ~SPI_I2SCLK_BCLKDIV_Msk) | (u32Divider << SPI_I2SCLK_BCLKDIV_Pos);
+
+ /* Calculate bit clock rate */
+ u32BitRate = u32SrcClk / ((u32Divider + 1UL) * 2UL);
+ /* Calculate real sample rate */
+ u32SampleRate = u32BitRate / (((u32WordWidth >> SPI_I2SCTL_WDWIDTH_Pos) + 1UL) * 16UL);
+
+ /* Enable TX function, RX function and I2S mode. */
+ i2s->I2SCTL |= (SPI_I2SCTL_RXEN_Msk | SPI_I2SCTL_TXEN_Msk | SPI_I2SCTL_I2SEN_Msk);
+
+ /* Return the real sample rate */
+ u32RetValue = u32SampleRate;
+ }
+ else
+ {
+ /* Set BCLKDIV = 0 */
+ i2s->I2SCLK &= ~SPI_I2SCLK_BCLKDIV_Msk;
+ /* Get APB0 clock frequency */
+ u32PCLK0Freq = CLK_GetPCLK0Freq();
+ /* Get APB1 clock frequency */
+ u32PCLK1Freq = CLK_GetPCLK1Freq();
+
+ if((i2s == SPI0) || (i2s == SPI0_NS))
+ {
+ if(!(__PC() & (1UL << 28UL)))
+ {
+ /* Set the peripheral clock rate to equal APB clock rate */
+ CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI0SEL_Msk)) | CLK_CLKSEL2_SPI0SEL_PCLK1;
+ /* Return slave peripheral clock rate */
+ u32RetValue = u32PCLK1Freq;
+ }
+ else
+ {
+ /* Check clock source of I2S */
+ if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_HXT)
+ {
+ u32RetValue = __HXT; /* Clock source is HXT */
+ }
+ else if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_PLL)
+ {
+ u32RetValue = CLK_GetPLLClockFreq(); /* Clock source is PLL */
+ }
+ else if((CLK_GetModuleClockSource(SPI0_MODULE) << CLK_CLKSEL2_SPI0SEL_Pos) == CLK_CLKSEL2_SPI0SEL_PCLK1)
+ {
+ u32RetValue = CLK_GetPCLK1Freq(); /* Clock source is PCLK1 */
+ }
+ else
+ {
+ u32RetValue = __HIRC; /* Clock source is HIRC */
+ }
+ }
+ /* Enable TX function, RX function and I2S mode. */
+ i2s->I2SCTL |= (SPI_I2SCTL_RXEN_Msk | SPI_I2SCTL_TXEN_Msk | SPI_I2SCTL_I2SEN_Msk);
+ }
+ else if((i2s == SPI1) || (i2s == SPI1_NS))
+ {
+ if(!(__PC() & (1UL << 28UL)))
+ {
+ /* Set the peripheral clock rate to equal APB clock rate */
+ CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI1SEL_Msk)) | CLK_CLKSEL2_SPI1SEL_PCLK0;
+ /* Return slave peripheral clock rate */
+ u32RetValue = u32PCLK0Freq;
+ }
+ else
+ {
+ /* Check clock source of I2S */
+ if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_HXT)
+ {
+ u32RetValue = __HXT; /* Clock source is HXT */
+ }
+ else if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_PLL)
+ {
+ u32RetValue = CLK_GetPLLClockFreq(); /* Clock source is PLL */
+ }
+ else if((CLK_GetModuleClockSource(SPI1_MODULE) << CLK_CLKSEL2_SPI1SEL_Pos) == CLK_CLKSEL2_SPI1SEL_PCLK0)
+ {
+ u32RetValue = CLK_GetPCLK0Freq(); /* Clock source is PCLK0 */
+ }
+ else
+ {
+ u32RetValue = __HIRC; /* Clock source is HIRC */
+ }
+ }
+ /* Enable TX function, RX function and I2S mode. */
+ i2s->I2SCTL |= (SPI_I2SCTL_RXEN_Msk | SPI_I2SCTL_TXEN_Msk | SPI_I2SCTL_I2SEN_Msk);
+ }
+ else if((i2s == SPI2) || (i2s == SPI2_NS))
+ {
+ if(!(__PC() & (1UL << 28UL)))
+ {
+ /* Set the peripheral clock rate to equal APB clock rate */
+ CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI2SEL_Msk)) | CLK_CLKSEL2_SPI2SEL_PCLK1;
+ /* Return slave peripheral clock rate */
+ u32RetValue = u32PCLK1Freq;
+ }
+ else
+ {
+ /* Check clock source of I2S */
+ if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_HXT)
+ {
+ u32RetValue = __HXT; /* Clock source is HXT */
+ }
+ else if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_PLL)
+ {
+ u32RetValue = CLK_GetPLLClockFreq(); /* Clock source is PLL */
+ }
+ else if((CLK_GetModuleClockSource(SPI2_MODULE) << CLK_CLKSEL2_SPI2SEL_Pos) == CLK_CLKSEL2_SPI2SEL_PCLK1)
+ {
+ u32RetValue = CLK_GetPCLK1Freq(); /* Clock source is PCLK1 */
+ }
+ else
+ {
+ u32RetValue = __HIRC; /* Clock source is HIRC */
+ }
+ }
+ /* Enable TX function, RX function and I2S mode. */
+ i2s->I2SCTL |= (SPI_I2SCTL_RXEN_Msk | SPI_I2SCTL_TXEN_Msk | SPI_I2SCTL_I2SEN_Msk);
+ }
+ else
+ {
+ if(!(__PC() & (1UL << 28UL)))
+ {
+ /* Set the peripheral clock rate to equal APB clock rate */
+ CLK->CLKSEL2 = (CLK->CLKSEL2 & (~CLK_CLKSEL2_SPI3SEL_Msk)) | CLK_CLKSEL2_SPI3SEL_PCLK0;
+ /* Return slave peripheral clock rate */
+ u32RetValue = u32PCLK0Freq;
+ }
+ else
+ {
+ /* Check clock source of I2S */
+ if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_HXT)
+ {
+ u32RetValue = __HXT; /* Clock source is HXT */
+ }
+ else if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_PLL)
+ {
+ u32RetValue = CLK_GetPLLClockFreq(); /* Clock source is PLL */
+ }
+ else if((CLK_GetModuleClockSource(SPI3_MODULE) << CLK_CLKSEL2_SPI3SEL_Pos) == CLK_CLKSEL2_SPI3SEL_PCLK0)
+ {
+ u32RetValue = CLK_GetPCLK0Freq(); /* Clock source is PCLK0 */
+ }
+ else
+ {
+ u32RetValue = __HIRC; /* Clock source is HIRC */
+ }
+ }
+ /* Enable TX function, RX function and I2S mode. */
+ i2s->I2SCTL |= (SPI_I2SCTL_RXEN_Msk | SPI_I2SCTL_TXEN_Msk | SPI_I2SCTL_I2SEN_Msk);
+ }
+ }
+
+ return u32RetValue;
+}
+
+/**
+ * @brief Disable I2S function.
+ * @param[in] i2s The pointer of the specified I2S module.
+ * @return None
+ * @details Disable I2S function.
+ */
+void SPII2S_Close(SPI_T *i2s)
+{
+ i2s->I2SCTL &= ~SPI_I2SCTL_I2SEN_Msk;
+}
+
+/**
+ * @brief Enable interrupt function.
+ * @param[in] i2s The pointer of the specified I2S module.
+ * @param[in] u32Mask The combination of all related interrupt enable bits.
+ * Each bit corresponds to a interrupt source. Valid values are listed below.
+ * - \ref SPII2S_FIFO_TXTH_INT_MASK
+ * - \ref SPII2S_FIFO_RXTH_INT_MASK
+ * - \ref SPII2S_FIFO_RXOV_INT_MASK
+ * - \ref SPII2S_FIFO_RXTO_INT_MASK
+ * - \ref SPII2S_TXUF_INT_MASK
+ * - \ref SPII2S_RIGHT_ZC_INT_MASK
+ * - \ref SPII2S_LEFT_ZC_INT_MASK
+ * @return None
+ * @details This function enables the interrupt according to the u32Mask parameter.
+ */
+void SPII2S_EnableInt(SPI_T *i2s, uint32_t u32Mask)
+{
+ /* Enable TX threshold interrupt flag */
+ if((u32Mask & SPII2S_FIFO_TXTH_INT_MASK) == SPII2S_FIFO_TXTH_INT_MASK)
+ {
+ i2s->FIFOCTL |= SPI_FIFOCTL_TXTHIEN_Msk;
+ }
+
+ /* Enable RX threshold interrupt flag */
+ if((u32Mask & SPII2S_FIFO_RXTH_INT_MASK) == SPII2S_FIFO_RXTH_INT_MASK)
+ {
+ i2s->FIFOCTL |= SPI_FIFOCTL_RXTHIEN_Msk;
+ }
+
+ /* Enable RX overrun interrupt flag */
+ if((u32Mask & SPII2S_FIFO_RXOV_INT_MASK) == SPII2S_FIFO_RXOV_INT_MASK)
+ {
+ i2s->FIFOCTL |= SPI_FIFOCTL_RXOVIEN_Msk;
+ }
+
+ /* Enable RX time-out interrupt flag */
+ if((u32Mask & SPII2S_FIFO_RXTO_INT_MASK) == SPII2S_FIFO_RXTO_INT_MASK)
+ {
+ i2s->FIFOCTL |= SPI_FIFOCTL_RXTOIEN_Msk;
+ }
+
+ /* Enable TX underflow interrupt flag */
+ if((u32Mask & SPII2S_TXUF_INT_MASK) == SPII2S_TXUF_INT_MASK)
+ {
+ i2s->FIFOCTL |= SPI_FIFOCTL_TXUFIEN_Msk;
+ }
+
+ /* Enable right channel zero cross interrupt flag */
+ if((u32Mask & SPII2S_RIGHT_ZC_INT_MASK) == SPII2S_RIGHT_ZC_INT_MASK)
+ {
+ i2s->I2SCTL |= SPI_I2SCTL_RZCIEN_Msk;
+ }
+
+ /* Enable left channel zero cross interrupt flag */
+ if((u32Mask & SPII2S_LEFT_ZC_INT_MASK) == SPII2S_LEFT_ZC_INT_MASK)
+ {
+ i2s->I2SCTL |= SPI_I2SCTL_LZCIEN_Msk;
+ }
+}
+
+/**
+ * @brief Disable interrupt function.
+ * @param[in] i2s The pointer of the specified I2S module.
+ * @param[in] u32Mask The combination of all related interrupt enable bits.
+ * Each bit corresponds to a interrupt source. Valid values are listed below.
+ * - \ref SPII2S_FIFO_TXTH_INT_MASK
+ * - \ref SPII2S_FIFO_RXTH_INT_MASK
+ * - \ref SPII2S_FIFO_RXOV_INT_MASK
+ * - \ref SPII2S_FIFO_RXTO_INT_MASK
+ * - \ref SPII2S_TXUF_INT_MASK
+ * - \ref SPII2S_RIGHT_ZC_INT_MASK
+ * - \ref SPII2S_LEFT_ZC_INT_MASK
+ * @return None
+ * @details This function disables the interrupt according to the u32Mask parameter.
+ */
+void SPII2S_DisableInt(SPI_T *i2s, uint32_t u32Mask)
+{
+ /* Disable TX threshold interrupt flag */
+ if((u32Mask & SPII2S_FIFO_TXTH_INT_MASK) == SPII2S_FIFO_TXTH_INT_MASK)
+ {
+ i2s->FIFOCTL &= ~SPI_FIFOCTL_TXTHIEN_Msk;
+ }
+
+ /* Disable RX threshold interrupt flag */
+ if((u32Mask & SPII2S_FIFO_RXTH_INT_MASK) == SPII2S_FIFO_RXTH_INT_MASK)
+ {
+ i2s->FIFOCTL &= ~SPI_FIFOCTL_RXTHIEN_Msk;
+ }
+
+ /* Disable RX overrun interrupt flag */
+ if((u32Mask & SPII2S_FIFO_RXOV_INT_MASK) == SPII2S_FIFO_RXOV_INT_MASK)
+ {
+ i2s->FIFOCTL &= ~SPI_FIFOCTL_RXOVIEN_Msk;
+ }
+
+ /* Disable RX time-out interrupt flag */
+ if((u32Mask & SPII2S_FIFO_RXTO_INT_MASK) == SPII2S_FIFO_RXTO_INT_MASK)
+ {
+ i2s->FIFOCTL &= ~SPI_FIFOCTL_RXTOIEN_Msk;
+ }
+
+ /* Disable TX underflow interrupt flag */
+ if((u32Mask & SPII2S_TXUF_INT_MASK) == SPII2S_TXUF_INT_MASK)
+ {
+ i2s->FIFOCTL &= ~SPI_FIFOCTL_TXUFIEN_Msk;
+ }
+
+ /* Disable right channel zero cross interrupt flag */
+ if((u32Mask & SPII2S_RIGHT_ZC_INT_MASK) == SPII2S_RIGHT_ZC_INT_MASK)
+ {
+ i2s->I2SCTL &= ~SPI_I2SCTL_RZCIEN_Msk;
+ }
+
+ /* Disable left channel zero cross interrupt flag */
+ if((u32Mask & SPII2S_LEFT_ZC_INT_MASK) == SPII2S_LEFT_ZC_INT_MASK)
+ {
+ i2s->I2SCTL &= ~SPI_I2SCTL_LZCIEN_Msk;
+ }
+}
+
+/**
+ * @brief Enable master clock (MCLK).
+ * @param[in] i2s The pointer of the specified I2S module.
+ * @param[in] u32BusClock The target MCLK clock rate.
+ * @return Actual MCLK clock rate
+ * @details Set the master clock rate according to u32BusClock parameter and enable master clock output.
+ * The actual master clock rate may be different from the target master clock rate. The real master clock rate will be returned for reference.
+ */
+uint32_t SPII2S_EnableMCLK(SPI_T *i2s, uint32_t u32BusClock)
+{
+ uint32_t u32Divider;
+ uint32_t u32SrcClk, u32RetValue;
+
+ u32SrcClk = SPII2S_GetSourceClockFreq(i2s);
+ if(u32BusClock == u32SrcClk)
+ {
+ u32Divider = 0UL;
+ }
+ else
+ {
+ u32Divider = (u32SrcClk / u32BusClock) >> 1UL;
+ /* MCLKDIV is a 7-bit width configuration. The maximum value is 0x7F. */
+ if(u32Divider > 0x7FUL)
+ {
+ u32Divider = 0x7FUL;
+ }
+ }
+
+ /* Write u32Divider to MCLKDIV (SPI_I2SCLK[6:0]) */
+ i2s->I2SCLK = (i2s->I2SCLK & ~SPI_I2SCLK_MCLKDIV_Msk) | (u32Divider << SPI_I2SCLK_MCLKDIV_Pos);
+
+ /* Enable MCLK output */
+ i2s->I2SCTL |= SPI_I2SCTL_MCLKEN_Msk;
+
+ if(u32Divider == 0UL)
+ {
+ u32RetValue = u32SrcClk; /* If MCLKDIV=0, master clock rate is equal to the source clock rate. */
+ }
+ else
+ {
+ u32RetValue = ((u32SrcClk >> 1UL) / u32Divider); /* If MCLKDIV>0, master clock rate = source clock rate / (MCLKDIV * 2) */
+ }
+
+ return u32RetValue;
+}
+
+/**
+ * @brief Disable master clock (MCLK).
+ * @param[in] i2s The pointer of the specified I2S module.
+ * @return None
+ * @details Clear MCLKEN bit of SPI_I2SCTL register to disable master clock output.
+ */
+void SPII2S_DisableMCLK(SPI_T *i2s)
+{
+ i2s->I2SCTL &= ~SPI_I2SCTL_MCLKEN_Msk;
+}
+
+/**
+ * @brief Configure FIFO threshold setting.
+ * @param[in] i2s The pointer of the specified I2S module.
+ * @param[in] u32TxThreshold Decides the TX FIFO threshold. It could be 0 ~ 7.
+ * @param[in] u32RxThreshold Decides the RX FIFO threshold. It could be 0 ~ 7.
+ * @return None
+ * @details Set TX FIFO threshold and RX FIFO threshold configurations.
+ */
+void SPII2S_SetFIFO(SPI_T *i2s, uint32_t u32TxThreshold, uint32_t u32RxThreshold)
+{
+ i2s->FIFOCTL = (i2s->FIFOCTL & ~(SPI_FIFOCTL_TXTH_Msk | SPI_FIFOCTL_RXTH_Msk)) |
+ (u32TxThreshold << SPI_FIFOCTL_TXTH_Pos) |
+ (u32RxThreshold << SPI_FIFOCTL_RXTH_Pos);
+}
+
+/*@}*/ /* end of group SPI_EXPORTED_FUNCTIONS */
+
+/*@}*/ /* end of group SPI_Driver */
+
+/*@}*/ /* end of group Standard_Driver */
+
+/*** (C) COPYRIGHT 2016 Nuvoton Technology Corp. ***/
