Driver for the SX1280 RF Transceiver

Dependents:   SX1280PingPong RangignMaster RangingSlave MSNV2-Terminal_V1-6 ... more

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers sx1280.cpp Source File

sx1280.cpp

00001 /*
00002   ______                              _
00003  / _____)             _              | |
00004 ( (____  _____ ____ _| |_ _____  ____| |__
00005  \____ \| ___ |    (_   _) ___ |/ ___)  _ \
00006  _____) ) ____| | | || |_| ____( (___| | | |
00007 (______/|_____)_|_|_| \__)_____)\____)_| |_|
00008     (C)2016 Semtech
00009 
00010 Description: Driver for SX1280 devices
00011 
00012 License: Revised BSD License, see LICENSE.TXT file include in the project
00013 
00014 Maintainer: Miguel Luis, Gregory Cristian and Matthieu Verdy
00015 */
00016 #include "mbed.h"
00017 #include "sx1280.h"
00018 #include "sx1280-hal.h"
00019 
00020 /*!
00021  * \brief Radio registers definition
00022  *
00023  */
00024 typedef struct
00025 {
00026     uint16_t      Addr;                             //!< The address of the register
00027     uint8_t       Value;                            //!< The value of the register
00028 }RadioRegisters_t;
00029 
00030 /*!
00031  * \brief Radio hardware registers initialization definition
00032  */
00033 #define RADIO_INIT_REGISTERS_VALUE  { }
00034 
00035 /*!
00036  * \brief Radio hardware registers initialization
00037  */
00038 const RadioRegisters_t RadioRegsInit[] = RADIO_INIT_REGISTERS_VALUE;
00039 
00040 void SX1280::Init( void )
00041 {
00042     Reset( );
00043     IoIrqInit( dioIrq );
00044     Wakeup( );
00045     SetRegistersDefault( );
00046 }
00047 
00048 void SX1280::SetRegistersDefault( void )
00049 {
00050     for( int16_t i = 0; i < sizeof( RadioRegsInit ) / sizeof( RadioRegisters_t ); i++ )
00051     {
00052         WriteRegister( RadioRegsInit[i].Addr, RadioRegsInit[i].Value );
00053     }
00054 }
00055 
00056 uint16_t SX1280::GetFirmwareVersion( void )
00057 {
00058     return( ( ( ReadRegister( REG_LR_FIRMWARE_VERSION_MSB ) ) << 8 ) | ( ReadRegister( REG_LR_FIRMWARE_VERSION_MSB + 1 ) ) );
00059 }
00060 
00061 RadioStatus_t SX1280::GetStatus( void )
00062 {
00063     uint8_t stat = 0;
00064     RadioStatus_t status;
00065 
00066     ReadCommand( RADIO_GET_STATUS, ( uint8_t * )&stat, 1 );
00067     status.Value = stat;
00068     return( status );
00069 }
00070 
00071 RadioOperatingModes_t SX1280::GetOpMode( void )
00072 {
00073     return( OperatingMode );
00074 }
00075 
00076 void SX1280::SetSleep( SleepParams_t sleepConfig )
00077 {
00078     uint8_t sleep = ( sleepConfig.WakeUpRTC << 3 ) |
00079                     ( sleepConfig.InstructionRamRetention << 2 ) |
00080                     ( sleepConfig.DataBufferRetention << 1 ) |
00081                     ( sleepConfig.DataRamRetention );
00082 
00083     OperatingMode = MODE_SLEEP;
00084     WriteCommand( RADIO_SET_SLEEP, &sleep, 1 );
00085 }
00086 
00087 void SX1280::SetStandby( RadioStandbyModes_t standbyConfig )
00088 {
00089     WriteCommand( RADIO_SET_STANDBY, ( uint8_t* )&standbyConfig, 1 );
00090     if( standbyConfig == STDBY_RC )
00091     {
00092         OperatingMode = MODE_STDBY_RC;
00093     }
00094     else
00095     {
00096         OperatingMode = MODE_STDBY_XOSC;
00097     }
00098 }
00099 
00100 void SX1280::SetFs( void )
00101 {
00102     WriteCommand( RADIO_SET_FS, 0, 0 );
00103     OperatingMode = MODE_FS;
00104 }
00105 
00106 void SX1280::SetTx( TickTime_t timeout )
00107 {
00108     uint8_t buf[3];
00109     buf[0] = timeout.PeriodBase;
00110     buf[1] = ( uint8_t )( ( timeout.PeriodBaseCount >> 8 ) & 0x00FF );
00111     buf[2] = ( uint8_t )( timeout.PeriodBaseCount & 0x00FF );
00112 
00113     ClearIrqStatus( IRQ_RADIO_ALL );
00114 
00115     // If the radio is doing ranging operations, then apply the specific calls
00116     // prior to SetTx
00117     if( GetPacketType( true ) == PACKET_TYPE_RANGING )
00118     {
00119         SetRangingRole( RADIO_RANGING_ROLE_MASTER );
00120     }
00121     WriteCommand( RADIO_SET_TX, buf, 3 );
00122     OperatingMode = MODE_TX;
00123 }
00124 
00125 void SX1280::SetRx( TickTime_t timeout )
00126 {
00127     uint8_t buf[3];
00128     buf[0] = timeout.PeriodBase;
00129     buf[1] = ( uint8_t )( ( timeout.PeriodBaseCount >> 8 ) & 0x00FF );
00130     buf[2] = ( uint8_t )( timeout.PeriodBaseCount & 0x00FF );
00131 
00132     ClearIrqStatus( IRQ_RADIO_ALL );
00133 
00134     // If the radio is doing ranging operations, then apply the specific calls
00135     // prior to SetRx
00136     if( GetPacketType( true ) == PACKET_TYPE_RANGING )
00137     {
00138         SetRangingRole( RADIO_RANGING_ROLE_SLAVE );
00139     }
00140     WriteCommand( RADIO_SET_RX, buf, 3 );
00141     OperatingMode = MODE_RX;
00142 }
00143 
00144 void SX1280::SetRxDutyCycle( RadioTickSizes_t periodBase, uint16_t periodBaseCountRx, uint16_t periodBaseCountSleep )
00145 {
00146     uint8_t buf[5];
00147 
00148     buf[0] = periodBase;
00149     buf[1] = ( uint8_t )( ( periodBaseCountRx >> 8 ) & 0x00FF );
00150     buf[2] = ( uint8_t )( periodBaseCountRx & 0x00FF );
00151     buf[3] = ( uint8_t )( ( periodBaseCountSleep >> 8 ) & 0x00FF );
00152     buf[4] = ( uint8_t )( periodBaseCountSleep & 0x00FF );
00153     WriteCommand( RADIO_SET_RXDUTYCYCLE, buf, 5 );
00154     OperatingMode = MODE_RX;
00155 }
00156 
00157 void SX1280::SetCad( void )
00158 {
00159     WriteCommand( RADIO_SET_CAD, 0, 0 );
00160     OperatingMode = MODE_CAD;
00161 }
00162 
00163 void SX1280::SetTxContinuousWave( void )
00164 {
00165     WriteCommand( RADIO_SET_TXCONTINUOUSWAVE, 0, 0 );
00166 }
00167 
00168 void SX1280::SetTxContinuousPreamble( void )
00169 {
00170     WriteCommand( RADIO_SET_TXCONTINUOUSPREAMBLE, 0, 0 );
00171 }
00172 
00173 void SX1280::SetPacketType( RadioPacketTypes_t packetType )
00174 {
00175     // Save packet type internally to avoid questioning the radio
00176     this->PacketType = packetType;
00177 
00178     WriteCommand( RADIO_SET_PACKETTYPE, ( uint8_t* )&packetType, 1 );
00179 }
00180 
00181 RadioPacketTypes_t SX1280::GetPacketType( bool returnLocalCopy )
00182 {
00183     RadioPacketTypes_t packetType = PACKET_TYPE_NONE;
00184     if( returnLocalCopy == false )
00185     {
00186         ReadCommand( RADIO_GET_PACKETTYPE, ( uint8_t* )&packetType, 1 );
00187         if( this->PacketType != packetType )
00188         {
00189             this->PacketType = packetType;
00190         }
00191     }
00192     else
00193     {
00194         packetType = this->PacketType;
00195     }
00196     return packetType;
00197 }
00198 
00199 void SX1280::SetRfFrequency( uint32_t rfFrequency )
00200 {
00201     uint8_t buf[3];
00202     uint32_t freq = 0;
00203 
00204     freq = ( uint32_t )( ( double )rfFrequency / ( double )FREQ_STEP );
00205     buf[0] = ( uint8_t )( ( freq >> 16 ) & 0xFF );
00206     buf[1] = ( uint8_t )( ( freq >> 8 ) & 0xFF );
00207     buf[2] = ( uint8_t )( freq & 0xFF );
00208     WriteCommand( RADIO_SET_RFFREQUENCY, buf, 3 );
00209 }
00210 
00211 void SX1280::SetTxParams( int8_t power, RadioRampTimes_t rampTime )
00212 {
00213     uint8_t buf[2];
00214 
00215     // The power value to send on SPI/UART is in the range [0..31] and the
00216     // physical output power is in the range [-18..13]dBm
00217     buf[0] = power + 18;
00218     buf[1] = ( uint8_t )rampTime;
00219     WriteCommand( RADIO_SET_TXPARAMS, buf, 2 );
00220 }
00221 
00222 void SX1280::SetCadParams( RadioLoRaCadSymbols_t cadSymbolNum )
00223 {
00224     WriteCommand( RADIO_SET_CADPARAMS, ( uint8_t* )&cadSymbolNum, 1 );
00225     OperatingMode = MODE_CAD;
00226 }
00227 
00228 void SX1280::SetBufferBaseAddresses( uint8_t txBaseAddress, uint8_t rxBaseAddress )
00229 {
00230     uint8_t buf[2];
00231 
00232     buf[0] = txBaseAddress;
00233     buf[1] = rxBaseAddress;
00234     WriteCommand( RADIO_SET_BUFFERBASEADDRESS, buf, 2 );
00235 }
00236 
00237 void SX1280::SetModulationParams( ModulationParams_t *modParams )
00238 {
00239     uint8_t buf[3];
00240 
00241     // Check if required configuration corresponds to the stored packet type
00242     // If not, silently update radio packet type
00243     if( this->PacketType != modParams->PacketType )
00244     {
00245         this->SetPacketType( modParams->PacketType );
00246     }
00247 
00248     switch( modParams->PacketType )
00249     {
00250         case PACKET_TYPE_GFSK:
00251             buf[0] = modParams->Params.Gfsk.BitrateBandwidth;
00252             buf[1] = modParams->Params.Gfsk.ModulationIndex;
00253             buf[2] = modParams->Params.Gfsk.ModulationShaping;
00254             break;
00255         case PACKET_TYPE_LORA:
00256         case PACKET_TYPE_RANGING:
00257             buf[0] = modParams->Params.LoRa.SpreadingFactor;
00258             buf[1] = modParams->Params.LoRa.Bandwidth;
00259             buf[2] = modParams->Params.LoRa.CodingRate;
00260             this->LoRaBandwidth = modParams->Params.LoRa.Bandwidth;
00261             break;
00262         case PACKET_TYPE_FLRC:
00263             buf[0] = modParams->Params.Flrc.BitrateBandwidth;
00264             buf[1] = modParams->Params.Flrc.CodingRate;
00265             buf[2] = modParams->Params.Flrc.ModulationShaping;
00266             break;
00267         case PACKET_TYPE_BLE:
00268             buf[0] = modParams->Params.Ble.BitrateBandwidth;
00269             buf[1] = modParams->Params.Ble.ModulationIndex;
00270             buf[2] = modParams->Params.Ble.ModulationShaping;
00271             break;
00272         case PACKET_TYPE_NONE:
00273             buf[0] = NULL;
00274             buf[1] = NULL;
00275             buf[2] = NULL;
00276             break;
00277     }
00278     WriteCommand( RADIO_SET_MODULATIONPARAMS, buf, 3 );
00279 }
00280 
00281 void SX1280::SetPacketParams( PacketParams_t *packetParams )
00282 {
00283     uint8_t buf[7];
00284     // Check if required configuration corresponds to the stored packet type
00285     // If not, silently update radio packet type
00286     if( this->PacketType != packetParams->PacketType )
00287     {
00288         this->SetPacketType( packetParams->PacketType );
00289     }
00290 
00291     switch( packetParams->PacketType )
00292     {
00293         case PACKET_TYPE_GFSK:
00294             buf[0] = packetParams->Params.Gfsk.PreambleLength;
00295             buf[1] = packetParams->Params.Gfsk.SyncWordLength;
00296             buf[2] = packetParams->Params.Gfsk.SyncWordMatch;
00297             buf[3] = packetParams->Params.Gfsk.HeaderType;
00298             buf[4] = packetParams->Params.Gfsk.PayloadLength;
00299             buf[5] = packetParams->Params.Gfsk.CrcLength;
00300             buf[6] = packetParams->Params.Gfsk.Whitening;
00301             break;
00302         case PACKET_TYPE_LORA:
00303         case PACKET_TYPE_RANGING:
00304             buf[0] = packetParams->Params.LoRa.PreambleLength;
00305             buf[1] = packetParams->Params.LoRa.HeaderType;
00306             buf[2] = packetParams->Params.LoRa.PayloadLength;
00307             buf[3] = packetParams->Params.LoRa.Crc;
00308             buf[4] = packetParams->Params.LoRa.InvertIQ;
00309             buf[5] = NULL;
00310             buf[6] = NULL;
00311             break;
00312         case PACKET_TYPE_FLRC:
00313             buf[0] = packetParams->Params.Flrc.PreambleLength;
00314             buf[1] = packetParams->Params.Flrc.SyncWordLength;
00315             buf[2] = packetParams->Params.Flrc.SyncWordMatch;
00316             buf[3] = packetParams->Params.Flrc.HeaderType;
00317             buf[4] = packetParams->Params.Flrc.PayloadLength;
00318             buf[5] = packetParams->Params.Flrc.CrcLength;
00319             buf[6] = packetParams->Params.Flrc.Whitening;
00320             break;
00321         case PACKET_TYPE_BLE:
00322             buf[0] = packetParams->Params.Ble.ConnectionState;
00323             buf[1] = packetParams->Params.Ble.CrcLength;
00324             buf[2] = packetParams->Params.Ble.BleTestPayload;
00325             buf[3] = packetParams->Params.Ble.Whitening;
00326             buf[4] = NULL;
00327             buf[5] = NULL;
00328             buf[6] = NULL;
00329             break;
00330         case PACKET_TYPE_NONE:
00331             buf[0] = NULL;
00332             buf[1] = NULL;
00333             buf[2] = NULL;
00334             buf[3] = NULL;
00335             buf[4] = NULL;
00336             buf[5] = NULL;
00337             buf[6] = NULL;
00338             break;
00339     }
00340     WriteCommand( RADIO_SET_PACKETPARAMS, buf, 7 );
00341 }
00342 
00343 void SX1280::ForcePreambleLength( RadioPreambleLengths_t preambleLength )
00344 {
00345     this->WriteRegister( REG_LR_PREAMBLELENGTH, ( this->ReadRegister( REG_LR_PREAMBLELENGTH ) & MASK_FORCE_PREAMBLELENGTH ) | preambleLength );
00346 }
00347 
00348 void SX1280::GetRxBufferStatus( uint8_t *rxPayloadLength, uint8_t *rxStartBufferPointer )
00349 {
00350     uint8_t status[2];
00351 
00352     ReadCommand( RADIO_GET_RXBUFFERSTATUS, status, 2 );
00353 
00354     // In case of LORA fixed header, the rxPayloadLength is obtained by reading
00355     // the register REG_LR_PAYLOADLENGTH
00356     if( ( this -> GetPacketType( true ) == PACKET_TYPE_LORA ) && ( ReadRegister( REG_LR_PACKETPARAMS ) >> 7 == 1 ) )
00357     {
00358         *rxPayloadLength = ReadRegister( REG_LR_PAYLOADLENGTH );
00359     }
00360     else if( this -> GetPacketType( true ) == PACKET_TYPE_BLE )
00361     {
00362         // In the case of BLE, the size returned in status[0] do not include the 2-byte length PDU header
00363         // so it is added there
00364         *rxPayloadLength = status[0] + 2;
00365     }
00366     else
00367     {
00368         *rxPayloadLength = status[0];
00369     }
00370 
00371     *rxStartBufferPointer = status[1];
00372 }
00373 
00374 void SX1280::GetPacketStatus( PacketStatus_t *packetStatus )
00375 {
00376     uint8_t status[5];
00377 
00378     ReadCommand( RADIO_GET_PACKETSTATUS, status, 5 );
00379 
00380     packetStatus->packetType = this -> GetPacketType( true );
00381     switch( packetStatus->packetType )
00382     {
00383         case PACKET_TYPE_GFSK:
00384             packetStatus->Gfsk.RssiSync = -( status[1] / 2 );
00385 
00386             packetStatus->Gfsk.ErrorStatus.SyncError = ( status[2] >> 6 ) & 0x01;
00387             packetStatus->Gfsk.ErrorStatus.LengthError = ( status[2] >> 5 ) & 0x01;
00388             packetStatus->Gfsk.ErrorStatus.CrcError = ( status[2] >> 4 ) & 0x01;
00389             packetStatus->Gfsk.ErrorStatus.AbortError = ( status[2] >> 3 ) & 0x01;
00390             packetStatus->Gfsk.ErrorStatus.HeaderReceived = ( status[2] >> 2 ) & 0x01;
00391             packetStatus->Gfsk.ErrorStatus.PacketReceived = ( status[2] >> 1 ) & 0x01;
00392             packetStatus->Gfsk.ErrorStatus.PacketControlerBusy = status[2] & 0x01;
00393 
00394             packetStatus->Gfsk.TxRxStatus.RxNoAck = ( status[3] >> 5 ) & 0x01;
00395             packetStatus->Gfsk.TxRxStatus.PacketSent = status[3] & 0x01;
00396 
00397             packetStatus->Gfsk.SyncAddrStatus = status[4] & 0x07;
00398             break;
00399 
00400         case PACKET_TYPE_LORA:
00401         case PACKET_TYPE_RANGING:
00402             packetStatus->LoRa.RssiPkt = -( status[0] / 2 );
00403             ( status[1] < 128 ) ? ( packetStatus->LoRa.SnrPkt = status[1] / 4 ) : ( packetStatus->LoRa.SnrPkt = ( ( status[1] - 256 ) /4 ) );
00404             break;
00405 
00406         case PACKET_TYPE_FLRC:
00407             packetStatus->Flrc.RssiSync = -( status[1] / 2 );
00408 
00409             packetStatus->Flrc.ErrorStatus.SyncError = ( status[2] >> 6 ) & 0x01;
00410             packetStatus->Flrc.ErrorStatus.LengthError = ( status[2] >> 5 ) & 0x01;
00411             packetStatus->Flrc.ErrorStatus.CrcError = ( status[2] >> 4 ) & 0x01;
00412             packetStatus->Flrc.ErrorStatus.AbortError = ( status[2] >> 3 ) & 0x01;
00413             packetStatus->Flrc.ErrorStatus.HeaderReceived = ( status[2] >> 2 ) & 0x01;
00414             packetStatus->Flrc.ErrorStatus.PacketReceived = ( status[2] >> 1 ) & 0x01;
00415             packetStatus->Flrc.ErrorStatus.PacketControlerBusy = status[2] & 0x01;
00416 
00417             packetStatus->Flrc.TxRxStatus.RxPid = ( status[3] >> 6 ) & 0x03;
00418             packetStatus->Flrc.TxRxStatus.RxNoAck = ( status[3] >> 5 ) & 0x01;
00419             packetStatus->Flrc.TxRxStatus.RxPidErr = ( status[3] >> 4 ) & 0x01;
00420             packetStatus->Flrc.TxRxStatus.PacketSent = status[3] & 0x01;
00421 
00422             packetStatus->Flrc.SyncAddrStatus = status[4] & 0x07;
00423             break;
00424 
00425         case PACKET_TYPE_BLE:
00426             packetStatus->Ble.RssiSync =  -( status[1] / 2 );
00427 
00428             packetStatus->Ble.ErrorStatus.SyncError = ( status[2] >> 6 ) & 0x01;
00429             packetStatus->Ble.ErrorStatus.LengthError = ( status[2] >> 5 ) & 0x01;
00430             packetStatus->Ble.ErrorStatus.CrcError = ( status[2] >> 4 ) & 0x01;
00431             packetStatus->Ble.ErrorStatus.AbortError = ( status[2] >> 3 ) & 0x01;
00432             packetStatus->Ble.ErrorStatus.HeaderReceived = ( status[2] >> 2 ) & 0x01;
00433             packetStatus->Ble.ErrorStatus.PacketReceived = ( status[2] >> 1 ) & 0x01;
00434             packetStatus->Ble.ErrorStatus.PacketControlerBusy = status[2] & 0x01;
00435 
00436             packetStatus->Ble.TxRxStatus.PacketSent = status[3] & 0x01;
00437 
00438             packetStatus->Ble.SyncAddrStatus = status[4] & 0x07;
00439             break;
00440 
00441         case PACKET_TYPE_NONE:
00442             // In that specific case, we set everything in the packetStatus to zeros
00443             // and reset the packet type accordingly
00444             memset( packetStatus, 0, sizeof( PacketStatus_t ) );
00445             packetStatus->packetType = PACKET_TYPE_NONE;
00446             break;
00447     }
00448 }
00449 
00450 int8_t SX1280::GetRssiInst( void )
00451 {
00452     uint8_t raw = 0;
00453 
00454     ReadCommand( RADIO_GET_RSSIINST, &raw, 1 );
00455 
00456     return ( int8_t ) ( -raw / 2 );
00457 }
00458 
00459 void SX1280::SetDioIrqParams( uint16_t irqMask, uint16_t dio1Mask, uint16_t dio2Mask, uint16_t dio3Mask )
00460 {
00461     uint8_t buf[8];
00462 
00463     buf[0] = ( uint8_t )( ( irqMask >> 8 ) & 0x00FF );
00464     buf[1] = ( uint8_t )( irqMask & 0x00FF );
00465     buf[2] = ( uint8_t )( ( dio1Mask >> 8 ) & 0x00FF );
00466     buf[3] = ( uint8_t )( dio1Mask & 0x00FF );
00467     buf[4] = ( uint8_t )( ( dio2Mask >> 8 ) & 0x00FF );
00468     buf[5] = ( uint8_t )( dio2Mask & 0x00FF );
00469     buf[6] = ( uint8_t )( ( dio3Mask >> 8 ) & 0x00FF );
00470     buf[7] = ( uint8_t )( dio3Mask & 0x00FF );
00471     WriteCommand( RADIO_SET_DIOIRQPARAMS, buf, 8 );
00472 }
00473 
00474 uint16_t SX1280::GetIrqStatus( void )
00475 {
00476     uint8_t irqStatus[2];
00477     ReadCommand( RADIO_GET_IRQSTATUS, irqStatus, 2 );
00478     return ( irqStatus[0] << 8 ) | irqStatus[1];
00479 }
00480 
00481 void SX1280::ClearIrqStatus( uint16_t irqMask )
00482 {
00483     uint8_t buf[2];
00484 
00485     buf[0] = ( uint8_t )( ( ( uint16_t )irqMask >> 8 ) & 0x00FF );
00486     buf[1] = ( uint8_t )( ( uint16_t )irqMask & 0x00FF );
00487     WriteCommand( RADIO_CLR_IRQSTATUS, buf, 2 );
00488 }
00489 
00490 void SX1280::Calibrate( CalibrationParams_t calibParam )
00491 {
00492     uint8_t cal = ( calibParam.ADCBulkPEnable << 5 ) |
00493                   ( calibParam.ADCBulkNEnable << 4 ) |
00494                   ( calibParam.ADCPulseEnable << 3 ) |
00495                   ( calibParam.PLLEnable << 2 ) |
00496                   ( calibParam.RC13MEnable << 1 ) |
00497                   ( calibParam.RC64KEnable );
00498     WriteCommand( RADIO_CALIBRATE, &cal, 1 );
00499 }
00500 
00501 void SX1280::SetRegulatorMode( RadioRegulatorModes_t mode )
00502 {
00503     WriteCommand( RADIO_SET_REGULATORMODE, ( uint8_t* )&mode, 1 );
00504 }
00505 
00506 void SX1280::SetSaveContext( void )
00507 {
00508     WriteCommand( RADIO_SET_SAVECONTEXT, 0, 0 );
00509 }
00510 
00511 void SX1280::SetAutoTx( uint16_t time )
00512 {
00513     uint16_t compensatedTime = time - ( uint16_t )AUTO_TX_OFFSET;
00514     uint8_t buf[2];
00515 
00516     buf[0] = ( uint8_t )( ( compensatedTime >> 8 ) & 0x00FF );
00517     buf[1] = ( uint8_t )( compensatedTime & 0x00FF );
00518     WriteCommand( RADIO_SET_AUTOTX, buf, 2 );
00519 }
00520 
00521 void SX1280::StopAutoTx( void )
00522 {
00523     uint8_t buf[2] = {0x00, 0x00};
00524     WriteCommand( RADIO_SET_AUTOTX, buf, 2 );
00525 }
00526 
00527 void SX1280::SetAutoFs( bool enableAutoFs )
00528 {
00529     WriteCommand( RADIO_SET_AUTOFS, ( uint8_t * )&enableAutoFs, 1 );
00530 }
00531 
00532 void SX1280::SetLongPreamble( bool enable )
00533 {
00534     WriteCommand( RADIO_SET_LONGPREAMBLE, ( uint8_t * )&enable, 1 );
00535 }
00536 
00537 void SX1280::SetPayload( uint8_t *buffer, uint8_t size, uint8_t offset )
00538 {
00539     WriteBuffer( offset, buffer, size );
00540 }
00541 
00542 uint8_t SX1280::GetPayload( uint8_t *buffer, uint8_t *size , uint8_t maxSize )
00543 {
00544     uint8_t offset;
00545 
00546     GetRxBufferStatus( size, &offset );
00547     if( *size > maxSize )
00548     {
00549         return 1;
00550     }
00551     ReadBuffer( offset, buffer, *size );
00552     return 0;
00553 }
00554 
00555 void SX1280::SendPayload( uint8_t *payload, uint8_t size, TickTime_t timeout, uint8_t offset )
00556 {
00557     SetPayload( payload, size, offset );
00558     SetTx( timeout );
00559 }
00560 
00561 uint8_t SX1280::SetSyncWord( uint8_t syncWordIdx, uint8_t *syncWord )
00562 {
00563     uint16_t addr;
00564     uint8_t syncwordSize = 0;
00565 
00566     switch( GetPacketType( true ) )
00567     {
00568         case PACKET_TYPE_GFSK:
00569             syncwordSize = 5;
00570             switch( syncWordIdx )
00571             {
00572                 case 1:
00573                     addr = REG_LR_SYNCWORDBASEADDRESS1;
00574                     break;
00575                 case 2:
00576                     addr = REG_LR_SYNCWORDBASEADDRESS2;
00577                     break;
00578                 case 3:
00579                     addr = REG_LR_SYNCWORDBASEADDRESS3;
00580                     break;
00581                 default:
00582                     return 1;
00583             }
00584             break;
00585         case PACKET_TYPE_FLRC:
00586             // For FLRC packet type, the SyncWord is one byte shorter and
00587             // the base address is shifted by one byte
00588             syncwordSize = 4;
00589             switch( syncWordIdx )
00590             {
00591                 case 1:
00592                     addr = REG_LR_SYNCWORDBASEADDRESS1 + 1;
00593                     break;
00594                 case 2:
00595                     addr = REG_LR_SYNCWORDBASEADDRESS2 + 1;
00596                     break;
00597                 case 3:
00598                     addr = REG_LR_SYNCWORDBASEADDRESS3 + 1;
00599                     break;
00600                 default:
00601                     return 1;
00602             }
00603             break;
00604         case PACKET_TYPE_BLE:
00605             // For Ble packet type, only the first SyncWord is used and its
00606             // address is shifted by one byte
00607             syncwordSize = 4;
00608             switch( syncWordIdx )
00609             {
00610                 case 1:
00611                     addr = REG_LR_SYNCWORDBASEADDRESS1 + 1;
00612                     break;
00613                 default:
00614                     return 1;
00615             }
00616             break;
00617         default:
00618             return 1;
00619     }
00620     WriteRegister( addr, syncWord, syncwordSize );
00621     return 0;
00622 }
00623 
00624 void SX1280::SetSyncWordErrorTolerance( uint8_t ErrorBits )
00625 {
00626     ErrorBits = ( ReadRegister( REG_LR_SYNCWORDTOLERANCE ) & 0xF0 ) | ( ErrorBits & 0x0F );
00627     WriteRegister( REG_LR_SYNCWORDTOLERANCE, ErrorBits );
00628 }
00629 
00630 uint8_t SX1280::SetCrcSeed( uint8_t *seed )
00631 {
00632     uint8_t updated = 0;
00633     switch( GetPacketType( true ) )
00634     {
00635         case PACKET_TYPE_GFSK:
00636         case PACKET_TYPE_FLRC:
00637             WriteRegister( REG_LR_CRCSEEDBASEADDR, seed, 2 );
00638             updated = 1;
00639             break;
00640         case PACKET_TYPE_BLE:
00641             this->WriteRegister(0x9c7, seed[2] );
00642             this->WriteRegister(0x9c8, seed[1] );
00643             this->WriteRegister(0x9c9, seed[0] );
00644             updated = 1;
00645             break;
00646         default:
00647             break;
00648     }
00649     return updated;
00650 }
00651 
00652 void SX1280::SetBleAccessAddress( uint32_t accessAddress )
00653 {
00654     this->WriteRegister( REG_LR_BLE_ACCESS_ADDRESS, ( accessAddress >> 24 ) & 0x000000FF );
00655     this->WriteRegister( REG_LR_BLE_ACCESS_ADDRESS + 1, ( accessAddress >> 16 ) & 0x000000FF );
00656     this->WriteRegister( REG_LR_BLE_ACCESS_ADDRESS + 2, ( accessAddress >> 8 ) & 0x000000FF );
00657     this->WriteRegister( REG_LR_BLE_ACCESS_ADDRESS + 3, accessAddress & 0x000000FF );
00658 }
00659 
00660 void SX1280::SetBleAdvertizerAccessAddress( void )
00661 {
00662     this->SetBleAccessAddress( BLE_ADVERTIZER_ACCESS_ADDRESS );
00663 }
00664 
00665 void SX1280::SetCrcPolynomial( uint16_t polynomial )
00666 {
00667     uint8_t val[2];
00668 
00669     val[0] = ( uint8_t )( polynomial >> 8 ) & 0xFF;
00670     val[1] = ( uint8_t )( polynomial  & 0xFF );
00671 
00672     switch( GetPacketType( true ) )
00673     {
00674         case PACKET_TYPE_GFSK:
00675         case PACKET_TYPE_FLRC:
00676             WriteRegister( REG_LR_CRCPOLYBASEADDR, val, 2 );
00677             break;
00678         default:
00679             break;
00680     }
00681 }
00682 
00683 void SX1280::SetWhiteningSeed( uint8_t seed )
00684 {
00685     switch( GetPacketType( true ) )
00686     {
00687         case PACKET_TYPE_GFSK:
00688         case PACKET_TYPE_FLRC:
00689         case PACKET_TYPE_BLE:
00690             WriteRegister( REG_LR_WHITSEEDBASEADDR, seed );
00691             break;
00692         default:
00693             break;
00694     }
00695 }
00696 
00697 void SX1280::EnableManualGain( void )
00698 {
00699     this->WriteRegister( REG_ENABLE_MANUAL_GAIN_CONTROL, this->ReadRegister( REG_ENABLE_MANUAL_GAIN_CONTROL ) | MASK_MANUAL_GAIN_CONTROL );
00700     this->WriteRegister( REG_DEMOD_DETECTION, this->ReadRegister( REG_DEMOD_DETECTION ) & MASK_DEMOD_DETECTION );
00701 }
00702 
00703 void SX1280::DisableManualGain( void )
00704 {
00705     this->WriteRegister( REG_ENABLE_MANUAL_GAIN_CONTROL, this->ReadRegister( REG_ENABLE_MANUAL_GAIN_CONTROL ) & (~MASK_MANUAL_GAIN_CONTROL) );
00706     this->WriteRegister( REG_DEMOD_DETECTION, this->ReadRegister( REG_DEMOD_DETECTION ) | (~MASK_DEMOD_DETECTION) );
00707 }
00708 
00709 void SX1280::SetManualGainValue( uint8_t gain )
00710 {
00711     this->WriteRegister( REG_MANUAL_GAIN_VALUE, ( this->ReadRegister( REG_MANUAL_GAIN_VALUE ) & MASK_MANUAL_GAIN_VALUE ) | gain );
00712 }
00713 
00714 void SX1280::SetLNAGainSetting( const RadioLnaSettings_t lnaSetting )
00715 {
00716     switch(lnaSetting)
00717     {
00718         case LNA_HIGH_SENSITIVITY_MODE:
00719         {
00720             this->WriteRegister( REG_LNA_REGIME, this->ReadRegister( REG_LNA_REGIME ) | MASK_LNA_REGIME );
00721             break;
00722         }
00723         case LNA_LOW_POWER_MODE:
00724         {
00725             this->WriteRegister( REG_LNA_REGIME, this->ReadRegister( REG_LNA_REGIME ) & ~MASK_LNA_REGIME );
00726             break;
00727         }
00728     }
00729 }
00730 
00731 void SX1280::SetRangingIdLength( RadioRangingIdCheckLengths_t length )
00732 {
00733     switch( GetPacketType( true ) )
00734     {
00735         case PACKET_TYPE_RANGING:
00736             WriteRegister( REG_LR_RANGINGIDCHECKLENGTH, ( ( ( ( uint8_t )length ) & 0x03 ) << 6 ) | ( ReadRegister( REG_LR_RANGINGIDCHECKLENGTH ) & 0x3F ) );
00737             break;
00738         default:
00739             break;
00740     }
00741 }
00742 
00743 void SX1280::SetDeviceRangingAddress( uint32_t address )
00744 {
00745     uint8_t addrArray[] = { address >> 24, address >> 16, address >> 8, address };
00746 
00747     switch( GetPacketType( true ) )
00748     {
00749         case PACKET_TYPE_RANGING:
00750             WriteRegister( REG_LR_DEVICERANGINGADDR, addrArray, 4 );
00751             break;
00752         default:
00753             break;
00754     }
00755 }
00756 
00757 void SX1280::SetRangingRequestAddress( uint32_t address )
00758 {
00759     uint8_t addrArray[] = { address >> 24, address >> 16, address >> 8, address };
00760 
00761     switch( GetPacketType( true ) )
00762     {
00763         case PACKET_TYPE_RANGING:
00764             WriteRegister( REG_LR_REQUESTRANGINGADDR, addrArray, 4 );
00765             break;
00766         default:
00767             break;
00768     }
00769 }
00770 
00771 double SX1280::GetRangingResult( RadioRangingResultTypes_t resultType )
00772 {
00773     uint32_t valLsb = 0;
00774     double val = 0.0;
00775 
00776     switch( GetPacketType( true ) )
00777     {
00778         case PACKET_TYPE_RANGING:
00779             this->SetStandby( STDBY_XOSC );
00780             this->WriteRegister( 0x97F, this->ReadRegister( 0x97F ) | ( 1 << 1 ) ); // enable LORA modem clock
00781             WriteRegister( REG_LR_RANGINGRESULTCONFIG, ( ReadRegister( REG_LR_RANGINGRESULTCONFIG ) & MASK_RANGINGMUXSEL ) | ( ( ( ( uint8_t )resultType ) & 0x03 ) << 4 ) );
00782             valLsb = ( ( ReadRegister( REG_LR_RANGINGRESULTBASEADDR ) << 16 ) | ( ReadRegister( REG_LR_RANGINGRESULTBASEADDR + 1 ) << 8 ) | ( ReadRegister( REG_LR_RANGINGRESULTBASEADDR + 2 ) ) );
00783             this->SetStandby( STDBY_RC );
00784 
00785             // Convertion from LSB to distance. For explanation on the formula, refer to Datasheet of SX1280
00786             switch( resultType )
00787             {
00788                 case RANGING_RESULT_RAW:
00789                     // Convert the ranging LSB to distance in meter
00790                     // The theoretical conversion from register value to distance [m] is given by:
00791                     // distance [m] = ( complement2( register ) * 150 ) / ( 2^12 * bandwidth[MHz] ) )
00792                     // The API provide BW in [Hz] so the implemented formula is complement2( register ) / bandwidth[Hz] * A,
00793                     // where A = 150 / (2^12 / 1e6) = 36621.09
00794                     val = ( double )complement2( valLsb, 24 ) / ( double )this->GetLoRaBandwidth( ) * 36621.09375;
00795                     break;
00796 
00797                 case RANGING_RESULT_AVERAGED:
00798                 case RANGING_RESULT_DEBIASED:
00799                 case RANGING_RESULT_FILTERED:
00800                     val = ( double )valLsb * 20.0 / 100.0;
00801                     break;
00802                 default:
00803                     val = 0.0;
00804             }
00805             break;
00806         default:
00807             break;
00808     }
00809     return val;
00810 }
00811 
00812 uint8_t SX1280::GetRangingPowerDeltaThresholdIndicator( void )
00813 {
00814     SetStandby( STDBY_XOSC );
00815     WriteRegister( 0x97F, ReadRegister( 0x97F ) | ( 1 << 1 ) ); // enable LoRa modem clock
00816     WriteRegister( REG_LR_RANGINGRESULTCONFIG, ( ReadRegister( REG_LR_RANGINGRESULTCONFIG ) & MASK_RANGINGMUXSEL ) | ( ( ( ( uint8_t )RANGING_RESULT_RAW ) & 0x03 ) << 4 ) ); // Select raw results
00817     return ReadRegister( REG_RANGING_RSSI );
00818 }
00819 
00820 void SX1280::SetRangingCalibration( uint16_t cal )
00821 {
00822     switch( GetPacketType( true ) )
00823     {
00824         case PACKET_TYPE_RANGING:
00825             WriteRegister( REG_LR_RANGINGRERXTXDELAYCAL, ( uint8_t )( ( cal >> 8 ) & 0xFF ) );
00826             WriteRegister( REG_LR_RANGINGRERXTXDELAYCAL + 1, ( uint8_t )( ( cal ) & 0xFF ) );
00827             break;
00828         default:
00829             break;
00830     }
00831 }
00832 
00833 void SX1280::RangingClearFilterResult( void )
00834 {
00835     uint8_t regVal = ReadRegister( REG_LR_RANGINGRESULTCLEARREG );
00836 
00837     // To clear result, set bit 5 to 1 then to 0
00838     WriteRegister( REG_LR_RANGINGRESULTCLEARREG, regVal | ( 1 << 5 ) );
00839     WriteRegister( REG_LR_RANGINGRESULTCLEARREG, regVal & ( ~( 1 << 5 ) ) );
00840 }
00841 
00842 void SX1280::RangingSetFilterNumSamples( uint8_t num )
00843 {
00844     // Silently set 8 as minimum value
00845     WriteRegister( REG_LR_RANGINGFILTERWINDOWSIZE, ( num < DEFAULT_RANGING_FILTER_SIZE ) ? DEFAULT_RANGING_FILTER_SIZE : num );
00846 }
00847 
00848 void SX1280::SetRangingRole( RadioRangingRoles_t role )
00849 {
00850     uint8_t buf[1];
00851 
00852     buf[0] = role;
00853     WriteCommand( RADIO_SET_RANGING_ROLE, &buf[0], 1 );
00854 }
00855 
00856 double SX1280::GetFrequencyError( )
00857 {
00858     uint8_t efeRaw[3] = {0};
00859     uint32_t efe = 0;
00860     double efeHz = 0.0;
00861 
00862     switch( this->GetPacketType( true ) )
00863     {
00864         case PACKET_TYPE_LORA:
00865         case PACKET_TYPE_RANGING:
00866             efeRaw[0] = this->ReadRegister( REG_LR_ESTIMATED_FREQUENCY_ERROR_MSB );
00867             efeRaw[1] = this->ReadRegister( REG_LR_ESTIMATED_FREQUENCY_ERROR_MSB + 1 );
00868             efeRaw[2] = this->ReadRegister( REG_LR_ESTIMATED_FREQUENCY_ERROR_MSB + 2 );
00869             efe = ( efeRaw[0]<<16 ) | ( efeRaw[1]<<8 ) | efeRaw[2];
00870             efe &= REG_LR_ESTIMATED_FREQUENCY_ERROR_MASK;
00871 
00872             efeHz = 1.55 * ( double )complement2( efe, 20 ) / ( 1600.0 / ( double )this->GetLoRaBandwidth( ) * 1000.0 );
00873             break;
00874 
00875         case PACKET_TYPE_NONE:
00876         case PACKET_TYPE_BLE:
00877         case PACKET_TYPE_FLRC:
00878         case PACKET_TYPE_GFSK:
00879             break;
00880     }
00881 
00882     return efeHz;
00883 }
00884 
00885 void SX1280::SetPollingMode( void )
00886 {
00887     this->PollingMode = true;
00888 }
00889 
00890 int32_t SX1280::complement2( const uint32_t num, const uint8_t bitCnt )
00891 {
00892     int32_t retVal = ( int32_t )num;
00893     if( num >= 2<<( bitCnt - 2 ) )
00894     {
00895         retVal -= 2<<( bitCnt - 1 );
00896     }
00897     return retVal;
00898 }
00899 
00900 int32_t SX1280::GetLoRaBandwidth( )
00901 {
00902     int32_t bwValue = 0;
00903 
00904     switch( this->LoRaBandwidth )
00905     {
00906         case LORA_BW_0200:
00907             bwValue = 203125;
00908             break;
00909         case LORA_BW_0400:
00910             bwValue = 406250;
00911             break;
00912         case LORA_BW_0800:
00913             bwValue = 812500;
00914             break;
00915         case LORA_BW_1600:
00916             bwValue = 1625000;
00917             break;
00918         default:
00919             bwValue = 0;
00920     }
00921     return bwValue;
00922 }
00923 
00924 void SX1280::SetInterruptMode( void )
00925 {
00926     this->PollingMode = false;
00927 }
00928 
00929 void SX1280::OnDioIrq( void )
00930 {
00931     /*
00932      * When polling mode is activated, it is up to the application to call
00933      * ProcessIrqs( ). Otherwise, the driver automatically calls ProcessIrqs( )
00934      * on radio interrupt.
00935      */
00936     if( this->PollingMode == true )
00937     {
00938         this->IrqState = true;
00939     }
00940     else
00941     {
00942         this->ProcessIrqs( );
00943     }
00944 }
00945 
00946 void SX1280::ProcessIrqs( void )
00947 {
00948     RadioPacketTypes_t packetType = PACKET_TYPE_NONE;
00949 
00950     if( this->PollingMode == true )
00951     {
00952         if( this->IrqState == true )
00953         {
00954             __disable_irq( );
00955             this->IrqState = false;
00956             __enable_irq( );
00957         }
00958         else
00959         {
00960             return;
00961         }
00962     }
00963 
00964     packetType = GetPacketType( true );
00965     uint16_t irqRegs = GetIrqStatus( );
00966     ClearIrqStatus( IRQ_RADIO_ALL );
00967 
00968 #if( SX1280_DEBUG == 1 )
00969     DigitalOut TEST_PIN_1( D14 );
00970     DigitalOut TEST_PIN_2( D15 );
00971     for( int i = 0x8000; i != 0; i >>= 1 )
00972     {
00973         TEST_PIN_2 = 0;
00974         TEST_PIN_1 = ( ( irqRegs & i ) != 0 ) ? 1 : 0;
00975         TEST_PIN_2 = 1;
00976     }
00977     TEST_PIN_1 = 0;
00978     TEST_PIN_2 = 0;
00979 #endif
00980 
00981     switch( packetType )
00982     {
00983         case PACKET_TYPE_GFSK:
00984         case PACKET_TYPE_FLRC:
00985         case PACKET_TYPE_BLE:
00986             switch( OperatingMode )
00987             {
00988                 case MODE_RX:
00989                     if( ( irqRegs & IRQ_RX_DONE ) == IRQ_RX_DONE )
00990                     {
00991                         if( ( irqRegs & IRQ_CRC_ERROR ) == IRQ_CRC_ERROR )
00992                         {
00993                             if( rxError != NULL )
00994                             {
00995                                 rxError( IRQ_CRC_ERROR_CODE );
00996                             }
00997                         }
00998                         else if( ( irqRegs & IRQ_SYNCWORD_ERROR ) == IRQ_SYNCWORD_ERROR )
00999                         {
01000                             if( rxError != NULL )
01001                             {
01002                                 rxError( IRQ_SYNCWORD_ERROR_CODE );
01003                             }
01004                         }
01005                         else
01006                         {
01007                             if( rxDone != NULL )
01008                             {
01009                                 rxDone( );
01010                             }
01011                         }
01012                     }
01013                     if( ( irqRegs & IRQ_SYNCWORD_VALID ) == IRQ_SYNCWORD_VALID )
01014                     {
01015                         if( rxSyncWordDone != NULL )
01016                         {
01017                             rxSyncWordDone( );
01018                         }
01019                     }
01020                     if( ( irqRegs & IRQ_SYNCWORD_ERROR ) == IRQ_SYNCWORD_ERROR )
01021                     {
01022                         if( rxError != NULL )
01023                         {
01024                             rxError( IRQ_SYNCWORD_ERROR_CODE );
01025                         }
01026                     }
01027                     if( ( irqRegs & IRQ_RX_TX_TIMEOUT ) == IRQ_RX_TX_TIMEOUT )
01028                     {
01029                         if( rxTimeout != NULL )
01030                         {
01031                             rxTimeout( );
01032                         }
01033                     }
01034                     if( ( irqRegs & IRQ_TX_DONE ) == IRQ_TX_DONE )
01035                     {
01036                         if( txDone != NULL )
01037                         {
01038                             txDone( );
01039                         }
01040                     }
01041                     break;
01042                 case MODE_TX:
01043                     if( ( irqRegs & IRQ_TX_DONE ) == IRQ_TX_DONE )
01044                     {
01045                         if( txDone != NULL )
01046                         {
01047                             txDone( );
01048                         }
01049                     }
01050                     if( ( irqRegs & IRQ_RX_TX_TIMEOUT ) == IRQ_RX_TX_TIMEOUT )
01051                     {
01052                         if( txTimeout != NULL )
01053                         {
01054                             txTimeout( );
01055                         }
01056                     }
01057                     break;
01058                 default:
01059                     // Unexpected IRQ: silently returns
01060                     break;
01061             }
01062             break;
01063         case PACKET_TYPE_LORA:
01064             switch( OperatingMode )
01065             {
01066                 case MODE_RX:
01067                     if( ( irqRegs & IRQ_RX_DONE ) == IRQ_RX_DONE )
01068                     {
01069                         if( ( irqRegs & IRQ_CRC_ERROR ) == IRQ_CRC_ERROR )
01070                         {
01071                             if( rxError != NULL )
01072                             {
01073                                 rxError( IRQ_CRC_ERROR_CODE );
01074                             }
01075                         }
01076                         else
01077                         {
01078                             if( rxDone != NULL )
01079                             {
01080                                 rxDone( );
01081                             }
01082                         }
01083                     }
01084                     if( ( irqRegs & IRQ_HEADER_VALID ) == IRQ_HEADER_VALID )
01085                     {
01086                         if( rxHeaderDone != NULL )
01087                         {
01088                             rxHeaderDone( );
01089                         }
01090                     }
01091                     if( ( irqRegs & IRQ_HEADER_ERROR ) == IRQ_HEADER_ERROR )
01092                     {
01093                         if( rxError != NULL )
01094                         {
01095                             rxError( IRQ_HEADER_ERROR_CODE );
01096                         }
01097                     }
01098                     if( ( irqRegs & IRQ_RX_TX_TIMEOUT ) == IRQ_RX_TX_TIMEOUT )
01099                     {
01100                         if( rxTimeout != NULL )
01101                         {
01102                             rxTimeout( );
01103                         }
01104                     }
01105                     if( ( irqRegs & IRQ_RANGING_SLAVE_REQUEST_DISCARDED ) == IRQ_RANGING_SLAVE_REQUEST_DISCARDED )
01106                     {
01107                         if( rxError != NULL )
01108                         {
01109                             rxError( IRQ_RANGING_ON_LORA_ERROR_CODE );
01110                         }
01111                     }
01112                     break;
01113                 case MODE_TX:
01114                     if( ( irqRegs & IRQ_TX_DONE ) == IRQ_TX_DONE )
01115                     {
01116                         if( txDone != NULL )
01117                         {
01118                             txDone( );
01119                         }
01120                     }
01121                     if( ( irqRegs & IRQ_RX_TX_TIMEOUT ) == IRQ_RX_TX_TIMEOUT )
01122                     {
01123                         if( txTimeout != NULL )
01124                         {
01125                             txTimeout( );
01126                         }
01127                     }
01128                     break;
01129                 case MODE_CAD:
01130                     if( ( irqRegs & IRQ_CAD_DONE ) == IRQ_CAD_DONE )
01131                     {
01132                         if( ( irqRegs & IRQ_CAD_DETECTED ) == IRQ_CAD_DETECTED )
01133                         {
01134                             if( cadDone != NULL )
01135                             {
01136                                 cadDone( true );
01137                             }
01138                         }
01139                         else
01140                         {
01141                             if( cadDone != NULL )
01142                             {
01143                                 cadDone( false );
01144                             }
01145                         }
01146                     }
01147                     else if( ( irqRegs & IRQ_RX_TX_TIMEOUT ) == IRQ_RX_TX_TIMEOUT )
01148                     {
01149                         if( rxTimeout != NULL )
01150                         {
01151                             rxTimeout( );
01152                         }
01153                     }
01154                     break;
01155                 default:
01156                     // Unexpected IRQ: silently returns
01157                     break;
01158             }
01159             break;
01160         case PACKET_TYPE_RANGING:
01161             switch( OperatingMode )
01162             {
01163                 // MODE_RX indicates an IRQ on the Slave side
01164                 case MODE_RX:
01165                     if( ( irqRegs & IRQ_RANGING_SLAVE_REQUEST_DISCARDED ) == IRQ_RANGING_SLAVE_REQUEST_DISCARDED )
01166                     {
01167                         if( rangingDone != NULL )
01168                         {
01169                             rangingDone( IRQ_RANGING_SLAVE_ERROR_CODE );
01170                         }
01171                     }
01172                     if( ( irqRegs & IRQ_RANGING_SLAVE_REQUEST_VALID ) == IRQ_RANGING_SLAVE_REQUEST_VALID )
01173                     {
01174                         if( rangingDone != NULL )
01175                         {
01176                             rangingDone( IRQ_RANGING_SLAVE_VALID_CODE );
01177                         }
01178                     }
01179                     if( ( irqRegs & IRQ_RANGING_SLAVE_RESPONSE_DONE ) == IRQ_RANGING_SLAVE_RESPONSE_DONE )
01180                     {
01181                         if( rangingDone != NULL )
01182                         {
01183                             rangingDone( IRQ_RANGING_SLAVE_VALID_CODE );
01184                         }
01185                     }
01186                     if( ( irqRegs & IRQ_RX_TX_TIMEOUT ) == IRQ_RX_TX_TIMEOUT )
01187                     {
01188                         if( rangingDone != NULL )
01189                         {
01190                             rangingDone( IRQ_RANGING_SLAVE_ERROR_CODE );
01191                         }
01192                     }
01193                     if( ( irqRegs & IRQ_HEADER_VALID ) == IRQ_HEADER_VALID )
01194                     {
01195                         if( rxHeaderDone != NULL )
01196                         {
01197                             rxHeaderDone( );
01198                         }
01199                     }
01200                     if( ( irqRegs & IRQ_HEADER_ERROR ) == IRQ_HEADER_ERROR )
01201                     {
01202                         if( rxError != NULL )
01203                         {
01204                             rxError( IRQ_HEADER_ERROR_CODE );
01205                         }
01206                     }
01207                     break;
01208                 // MODE_TX indicates an IRQ on the Master side
01209                 case MODE_TX:
01210                     if( ( irqRegs & IRQ_RANGING_MASTER_TIMEOUT ) == IRQ_RANGING_MASTER_TIMEOUT )
01211                     {
01212                         if( rangingDone != NULL )
01213                         {
01214                             rangingDone( IRQ_RANGING_MASTER_ERROR_CODE );
01215                         }
01216                     }
01217                     if( ( irqRegs & IRQ_RANGING_MASTER_RESULT_VALID ) == IRQ_RANGING_MASTER_RESULT_VALID )
01218                     {
01219                         if( rangingDone != NULL )
01220                         {
01221                             rangingDone( IRQ_RANGING_MASTER_VALID_CODE );
01222                         }
01223                     }
01224                     break;
01225                 default:
01226                     // Unexpected IRQ: silently returns
01227                     break;
01228             }
01229             break;
01230         default:
01231             // Unexpected IRQ: silently returns
01232             break;
01233     }
01234 }