Demonstration of Class-A LoRaWAN device using NAMote-72

Dependencies:   LoRaWAN-lib mbed lib_mpl3115a2 lib_mma8451q lib_gps SX1272Lib

Dependents:   LoRaWAN-NAMote72-BVS-confirmed-tester-0-7v1_copy

LoRaWAN-NAMote72 Application Demo is a Class-A device example project using LoRaWAN-lib and SX1272Lib libraries.

This project is compliant with LoRaWAN V1.0.1 specification.

Comissioning.h (LoRaWAN Network Configuration)

The end-device can be activated in one of the two ways:

Over the Air (OTA) activation can be enabled as shown in the figure below. /media/uploads/ubhat/ota_enable.png

The end-device must be configured with the following parameters:

  • LORAWAN_DEVICE_EUI (8 Bytes) : Fist 3 Bytes is the Organizationally Unique Identifier (OUI) followed by 5 bytes of unique ID. If not defined by user, then the firmware automatically assigns one to the end-device
  • LORAWAN_APPLICATION_EUI (8 Bytes)
  • LORAWAN_APPLICATION_KEY (or DEVKEY) (16 Bytes)

/media/uploads/ubhat/ota_eui.png

Activation by Personalization (ABP) can be enabled as shown in the figure below. /media/uploads/ubhat/abp_enable.png

The end-device must be configured with the following parameters:

  • LORAWAN_DEVICE_ADDRESS (4 Bytes) : If not defined by user, then the firmware automatically assigns one to the end-device
  • LORAWAN_NWKSKEY (16 Bytes)
  • LORAWAN_APPSKEY (16 Bytes)

/media/uploads/ubhat/abp_key.png

Config.h (LoRaWAN Communication Parameters)

  • Mode of Operation : Hybrid If the end-device needs to be configured to operate over 8-channels, then Hybrid Mode needs to be enabled /media/uploads/ubhat/hybridenable.png
  • Mode of Operation : Frequency Hop If the end-device needs to be configured to operate over 64-channels, then Hybrid Mode needs to be disabled
  • Delay between successive JOIN REQUESTs : The delay between successive Join Requests (until the end-device joins the network) can be configured using the parameter OVER_THE_AIR_ACTIVATION_DUTYCYCLE
  • Inter-Frame Delay : One can change the delay between each frame transmission using APP_TX_DUTYCYCLE It is advisable that APP_TX_DUTYCYCLE is greater than or equal to 3sec.
  • Data Rate : The data rate can be configured as per LoRaWAN specification using the paramter LORAWAN_DEFAULT_DATARATE. The range of values are DR_0, DR_1, DR_2, DR_3 and DR_4
  • Confirmed/Unconfirmed Messages : The uplink message or payload can be chosen to be confirmed or unconfirmed using the parameter LORAWAN_CONFIRMED_MSG_ON. When set to 1, the transmitted messages need to be confirmed with an ACK by the network server in the subsequent RX window. When set to 0, no ACK is requested.
  • ADR ON/OFF : The ADR can be enabled or disabled using the parameter LORAWAN_ADR_ON. When set to 1, ADR is enabled and disabled when set to 0.
  • Application Port : The application port can be set using parameter LORAWAN_APP_PORT.
  • Payload Length : The lenght of the payload (in bytes) to be transmitted can be configured using LORAWAN_APP_DATA_SIZE
  • Transmit Power : The transmit power can be configured using LORAWAN_TX_POWER (LoRaMAC verifies if the set power is compliant with the LoRaWAN spec and FCC guidelines)

/media/uploads/ubhat/loraconfig.png

Main.cpp (Device State Machine)

The end-device state machine is defined.

  • Initial State : Device is initialized.
  • Join State : For OTA, Join Request is transmitted to the network until Join Accept is received by the end-device. Join event function is called that sets Red LED ON.
  • Send State : Transmit payload frame is prepared. Tx event is called that blinks the Red LED indicating uplink transmission.
  • Cycle State : Next packet transmission is scheduled

LoRaEventProc.cpp (Events and On-board Application)

Define events during Join, Tx & Rx. Prepare TX packet by appending with appropriate application data.

/media/uploads/ubhat/lora_events.png

  • PrepareLoRaFrame(uint8_t port ) : Prepare LoRa payload frame with on-board application data such as GPS, Temperature, Battery, etc. LoRa.ApplicationCall(AppType ) calls application AppType defined in LoRaApp.cpp. AppType is defined in LoRaApp.h

/media/uploads/ubhat/lora_app.png

LoRaApp.cpp

User-defined applications such as GPS, Temp, Accelerometer, LED indications etc. Event based actions such as LED blink on Tx, LED toggle on downlink etc /media/uploads/ubhat/apptype.png

LoRaDeviceStateProc.cpp

Process function calls corresponding to different Device states /media/uploads/ubhat/device_state.png

LoRaMacLayerService.cpp

Define MAC Layer Services: MLME & MCPS

Serial Terminal Display

By using a serial port connection using applications such as teraterm or putty, one can view the status of the End-Device. Once the End-Device Joins the network, transmission parameters such as payload data, application port, message type etc. are displayed on the terminal.

/media/uploads/ubhat/serial.png

Default Application Payload

This application defaults to sending uplink data to logical port 5. The application payload consists of: /media/uploads/jknapp_smtc/payload.png

Sample Application Payload Calculation for Longitude/Latitude

Payload => 00 19 F6 352BBA A94C20 FFFF

Temperature Calculation

19H => 2510

Temp = 25/2 = 12.5 oC

Battery Level

FFH => 100 %

F6H => 96.5 %

Longitude Calculation

longitude = A94C20H => 1109507210

longitudinal coordinate = -360 + (longitude10 x 180/(223))

longitudinal coordinate = -121.93

Latitude Calculation

latitude = 352BBAH = 348460210

latitude coordinate = (latitude10 x 90/(223-1))

latitude coordinate = 37.39

Committer:
mluis
Date:
Mon Apr 24 13:47:27 2017 +0000
Revision:
18:18408c3c2d0c
Parent:
2:d119a85c793c
WARNING: Radio API timings changed from micro-seconds to milliseconds; ; Synchronized with https://github.com/Lora-net/LoRaMac-node git revision e506c246652fa44c3f24cecb89d0707b49ece739; Updated all libraries to the latest versions

Who changed what in which revision?

UserRevisionLine numberNew contents of line
ubhat 2:d119a85c793c 1 /*
ubhat 2:d119a85c793c 2 / _____) _ | |
ubhat 2:d119a85c793c 3 ( (____ _____ ____ _| |_ _____ ____| |__
ubhat 2:d119a85c793c 4 \____ \| ___ | (_ _) ___ |/ ___) _ \
ubhat 2:d119a85c793c 5 _____) ) ____| | | || |_| ____( (___| | | |
ubhat 2:d119a85c793c 6 (______/|_____)_|_|_| \__)_____)\____)_| |_|
ubhat 2:d119a85c793c 7 (C)2013 Semtech
ubhat 2:d119a85c793c 8
ubhat 2:d119a85c793c 9 Description: Timer objects and scheduling management
ubhat 2:d119a85c793c 10
ubhat 2:d119a85c793c 11 License: Revised BSD License, see LICENSE.TXT file include in the project
ubhat 2:d119a85c793c 12
ubhat 2:d119a85c793c 13 Maintainer: Miguel Luis and Gregory Cristian
ubhat 2:d119a85c793c 14 */
ubhat 2:d119a85c793c 15 #include "board.h"
ubhat 2:d119a85c793c 16
ubhat 2:d119a85c793c 17 Timer TimeCounter;
ubhat 2:d119a85c793c 18 Ticker LoadTimeCounter;
ubhat 2:d119a85c793c 19
ubhat 2:d119a85c793c 20 volatile uint32_t CurrentTime = 0;
ubhat 2:d119a85c793c 21
ubhat 2:d119a85c793c 22 void TimerResetTimeCounter( void )
ubhat 2:d119a85c793c 23 {
mluis 18:18408c3c2d0c 24 CurrentTime = CurrentTime + TimeCounter.read_us( ) / 1e3;
ubhat 2:d119a85c793c 25 TimeCounter.reset( );
ubhat 2:d119a85c793c 26 TimeCounter.start( );
ubhat 2:d119a85c793c 27 }
ubhat 2:d119a85c793c 28
ubhat 2:d119a85c793c 29 void TimerTimeCounterInit( void )
ubhat 2:d119a85c793c 30 {
ubhat 2:d119a85c793c 31 TimeCounter.start( );
mluis 18:18408c3c2d0c 32 LoadTimeCounter.attach( mbed::callback( &TimerResetTimeCounter ), 10 );
ubhat 2:d119a85c793c 33 }
ubhat 2:d119a85c793c 34
ubhat 2:d119a85c793c 35 TimerTime_t TimerGetCurrentTime( void )
ubhat 2:d119a85c793c 36 {
mluis 18:18408c3c2d0c 37 CurrentTime += TimeCounter.read_us( ) / 1e3;
ubhat 2:d119a85c793c 38 TimeCounter.reset( );
ubhat 2:d119a85c793c 39 TimeCounter.start( );
ubhat 2:d119a85c793c 40 return ( ( TimerTime_t )CurrentTime );
ubhat 2:d119a85c793c 41 }
ubhat 2:d119a85c793c 42
ubhat 2:d119a85c793c 43 TimerTime_t TimerGetElapsedTime( TimerTime_t savedTime )
ubhat 2:d119a85c793c 44 {
mluis 18:18408c3c2d0c 45 CurrentTime += TimeCounter.read_us( ) / 1e3;
ubhat 2:d119a85c793c 46 TimeCounter.reset( );
ubhat 2:d119a85c793c 47 TimeCounter.start( );
ubhat 2:d119a85c793c 48 return ( TimerTime_t )( CurrentTime - savedTime );
ubhat 2:d119a85c793c 49 }
ubhat 2:d119a85c793c 50
ubhat 2:d119a85c793c 51 TimerTime_t TimerGetFutureTime( TimerTime_t eventInFuture )
ubhat 2:d119a85c793c 52 {
mluis 18:18408c3c2d0c 53 CurrentTime += TimeCounter.read_us( ) / 1e3;
ubhat 2:d119a85c793c 54 TimeCounter.reset( );
ubhat 2:d119a85c793c 55 TimeCounter.start( );
ubhat 2:d119a85c793c 56 return ( TimerTime_t )( CurrentTime + eventInFuture );
ubhat 2:d119a85c793c 57 }
ubhat 2:d119a85c793c 58
ubhat 2:d119a85c793c 59 void TimerInit( TimerEvent_t *obj, void ( *callback )( void ) )
ubhat 2:d119a85c793c 60 {
ubhat 2:d119a85c793c 61 obj->value = 0;
ubhat 2:d119a85c793c 62 obj->Callback = callback;
ubhat 2:d119a85c793c 63 }
ubhat 2:d119a85c793c 64
ubhat 2:d119a85c793c 65 void TimerStart( TimerEvent_t *obj )
ubhat 2:d119a85c793c 66 {
mluis 18:18408c3c2d0c 67 obj->Timer.attach_us( mbed::callback( obj->Callback ), obj->value * 1e3 );
ubhat 2:d119a85c793c 68 }
ubhat 2:d119a85c793c 69
ubhat 2:d119a85c793c 70 void TimerStop( TimerEvent_t *obj )
ubhat 2:d119a85c793c 71 {
ubhat 2:d119a85c793c 72 obj->Timer.detach( );
ubhat 2:d119a85c793c 73 }
ubhat 2:d119a85c793c 74
ubhat 2:d119a85c793c 75 void TimerSetValue( TimerEvent_t *obj, uint32_t value )
ubhat 2:d119a85c793c 76 {
ubhat 2:d119a85c793c 77 obj->value = value;
ubhat 2:d119a85c793c 78 }