Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Diff: inv_mpu.c
- Revision:
- 0:814475fdc553
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/inv_mpu.c Tue Jul 05 07:19:59 2016 +0000
@@ -0,0 +1,3377 @@
+/*
+ $License:
+ Copyright (C) 2011-2012 InvenSense Corporation, All Rights Reserved.
+ See included License.txt for License information.
+ $
+ */
+/**
+ * @addtogroup DRIVERS Sensor Driver Layer
+ * @brief Hardware drivers to communicate with sensors via I2C.
+ *
+ * @{
+ * @file inv_mpu.c
+ * @brief An I2C-based driver for Invensense gyroscopes.
+ * @details This driver currently works for the following devices:
+ * MPU6050
+ * MPU6500
+ * MPU9150 (or MPU6050 w/ AK8975 on the auxiliary bus)
+ * MPU9250 (or MPU6500 w/ AK8963 on the auxiliary bus)
+ */
+#include <stdio.h>
+#include <stdint.h>
+#include <stdlib.h>
+#include <string.h>
+#include <math.h>
+#include "inv_mpu.h"
+
+/* The following functions must be defined for this platform:
+ * mpu_hal_write(unsigned char slave_addr, unsigned char reg_addr,
+ * unsigned char length, unsigned char const *data)
+ * mpu_hal_read(unsigned char slave_addr, unsigned char reg_addr,
+ * unsigned char length, unsigned char *data)
+ * delay_ms(unsigned long num_ms)
+ * get_ms(unsigned long *count)
+ * reg_int_cb(void (*cb)(void), unsigned char port, unsigned char pin)
+ * labs(long x)
+ * fabsf(float x)
+ * min(int a, int b)
+ */
+#if defined __MBED__ // for mbed platform
+#include "mpu_mbed_config.h"
+#elif defined MOTION_DRIVER_TARGET_MSP430
+#include "msp430.h"
+#include "msp430_i2c.h"
+#include "msp430_clock.h"
+#include "msp430_interrupt.h"
+#define mpu_hal_write msp430_mpu_hal_write
+#define mpu_hal_read msp430_mpu_hal_read
+#define delay_ms msp430_delay_ms
+#define get_ms msp430_get_clock_ms
+static inline int reg_int_cb(struct int_param_s *int_param)
+{
+ return msp430_reg_int_cb(int_param->cb, int_param->pin, int_param->lp_exit,
+ int_param->active_low);
+}
+#define log_i(...) do {} while (0)
+#define log_e(...) do {} while (0)
+/* labs is already defined by TI's toolchain. */
+/* fabs is for doubles. fabsf is for floats. */
+#define fabs fabsf
+#define min(a,b) ((a<b)?a:b)
+#elif defined EMPL_TARGET_MSP430
+#include "msp430.h"
+#include "msp430_i2c.h"
+#include "msp430_clock.h"
+#include "msp430_interrupt.h"
+#include "log.h"
+#define mpu_hal_write msp430_mpu_hal_write
+#define mpu_hal_read msp430_mpu_hal_read
+#define delay_ms msp430_delay_ms
+#define get_ms msp430_get_clock_ms
+static inline int reg_int_cb(struct int_param_s *int_param)
+{
+ return msp430_reg_int_cb(int_param->cb, int_param->pin, int_param->lp_exit,
+ int_param->active_low);
+}
+#define log_i MPL_LOGI
+#define log_e MPL_LOGE
+/* labs is already defined by TI's toolchain. */
+/* fabs is for doubles. fabsf is for floats. */
+#define fabs fabsf
+#define min(a,b) ((a<b)?a:b)
+#elif defined EMPL_TARGET_UC3L0
+/* Instead of using the standard TWI driver from the ASF library, we're using
+ * a TWI driver that follows the slave address + register address convention.
+ */
+#include "twi.h"
+#include "delay.h"
+#include "sysclk.h"
+#include "log.h"
+#include "sensors_xplained.h"
+#include "uc3l0_clock.h"
+#define mpu_hal_write(a, b, c, d) twi_write(a, b, d, c)
+#define mpu_hal_read(a, b, c, d) twi_read(a, b, d, c)
+/* delay_ms is a function already defined in ASF. */
+#define get_ms uc3l0_get_clock_ms
+static inline int reg_int_cb(struct int_param_s *int_param)
+{
+ sensor_board_irq_connect(int_param->pin, int_param->cb, int_param->arg);
+ return 0;
+}
+#define log_i MPL_LOGI
+#define log_e MPL_LOGE
+/* UC3 is a 32-bit processor, so abs and labs are equivalent. */
+#define labs abs
+#define fabs(x) (((x)>0)?(x):-(x))
+
+#else
+#error Gyro driver is missing the system layer implementations.
+#endif
+
+#if !defined MPU6050 && !defined MPU9150 && !defined MPU6500 && !defined MPU9250
+#error Which gyro are you using? Define MPUxxxx in your compiler options.
+#endif
+
+/* Time for some messy macro work. =]
+ * #define MPU9150
+ * is equivalent to..
+ * #define MPU6050
+ * #define AK8975_SECONDARY
+ *
+ * #define MPU9250
+ * is equivalent to..
+ * #define MPU6500
+ * #define AK8963_SECONDARY
+ */
+#if defined MPU9150
+#ifndef MPU6050
+#define MPU6050
+#endif /* #ifndef MPU6050 */
+#if defined AK8963_SECONDARY
+#error "MPU9150 and AK8963_SECONDARY cannot both be defined."
+#elif !defined AK8975_SECONDARY /* #if defined AK8963_SECONDARY */
+#define AK8975_SECONDARY
+#endif /* #if defined AK8963_SECONDARY */
+#elif defined MPU9250 /* #if defined MPU9150 */
+#ifndef MPU6500
+#define MPU6500
+#endif /* #ifndef MPU6500 */
+#if defined AK8975_SECONDARY
+#error "MPU9250 and AK8975_SECONDARY cannot both be defined."
+#elif !defined AK8963_SECONDARY /* #if defined AK8975_SECONDARY */
+#define AK8963_SECONDARY
+#endif /* #if defined AK8975_SECONDARY */
+#endif /* #if defined MPU9150 */
+
+#if defined AK8975_SECONDARY || defined AK8963_SECONDARY
+#define AK89xx_SECONDARY
+#else
+/* #warning "No compass = less profit for Invensense. Lame." */
+#endif
+
+static int set_int_enable(unsigned char enable);
+
+/* Hardware registers needed by driver. */
+struct gyro_reg_s {
+ unsigned char who_am_i;
+ unsigned char rate_div;
+ unsigned char lpf;
+ unsigned char prod_id;
+ unsigned char user_ctrl;
+ unsigned char fifo_en;
+ unsigned char gyro_cfg;
+ unsigned char accel_cfg;
+ unsigned char accel_cfg2;
+ unsigned char lp_accel_odr;
+ unsigned char motion_thr;
+ unsigned char motion_dur;
+ unsigned char fifo_count_h;
+ unsigned char fifo_r_w;
+ unsigned char raw_gyro;
+ unsigned char raw_accel;
+ unsigned char temp;
+ unsigned char int_enable;
+ unsigned char dmp_int_status;
+ unsigned char int_status;
+ unsigned char accel_intel;
+ unsigned char pwr_mgmt_1;
+ unsigned char pwr_mgmt_2;
+ unsigned char int_pin_cfg;
+ unsigned char mem_r_w;
+ unsigned char accel_offs;
+ unsigned char i2c_mst;
+ unsigned char bank_sel;
+ unsigned char mem_start_addr;
+ unsigned char prgm_start_h;
+#if defined AK89xx_SECONDARY
+ unsigned char s0_addr;
+ unsigned char s0_reg;
+ unsigned char s0_ctrl;
+ unsigned char s1_addr;
+ unsigned char s1_reg;
+ unsigned char s1_ctrl;
+ unsigned char s4_ctrl;
+ unsigned char s0_do;
+ unsigned char s1_do;
+ unsigned char i2c_delay_ctrl;
+ unsigned char raw_compass;
+ /* The I2C_MST_VDDIO bit is in this register. */
+ unsigned char yg_offs_tc;
+#endif
+};
+
+/* Information specific to a particular device. */
+struct hw_s {
+ unsigned char addr;
+ unsigned short max_fifo;
+ unsigned char num_reg;
+ unsigned short temp_sens;
+ short temp_offset;
+ unsigned short bank_size;
+#if defined AK89xx_SECONDARY
+ unsigned short compass_fsr;
+#endif
+};
+
+/* When entering motion interrupt mode, the driver keeps track of the
+ * previous state so that it can be restored at a later time.
+ * TODO: This is tacky. Fix it.
+ */
+struct motion_int_cache_s {
+ unsigned short gyro_fsr;
+ unsigned char accel_fsr;
+ unsigned short lpf;
+ unsigned short sample_rate;
+ unsigned char sensors_on;
+ unsigned char fifo_sensors;
+ unsigned char dmp_on;
+};
+
+/* Cached chip configuration data.
+ * TODO: A lot of these can be handled with a bitmask.
+ */
+struct chip_cfg_s {
+ /* Matches gyro_cfg >> 3 & 0x03 */
+ unsigned char gyro_fsr;
+ /* Matches accel_cfg >> 3 & 0x03 */
+ unsigned char accel_fsr;
+ /* Enabled sensors. Uses same masks as fifo_en, NOT pwr_mgmt_2. */
+ unsigned char sensors;
+ /* Matches config register. */
+ unsigned char lpf;
+ unsigned char clk_src;
+ /* Sample rate, NOT rate divider. */
+ unsigned short sample_rate;
+ /* Matches fifo_en register. */
+ unsigned char fifo_enable;
+ /* Matches int enable register. */
+ unsigned char int_enable;
+ /* 1 if devices on auxiliary I2C bus appear on the primary. */
+ unsigned char bypass_mode;
+ /* 1 if half-sensitivity.
+ * NOTE: This doesn't belong here, but everything else in hw_s is const,
+ * and this allows us to save some precious RAM.
+ */
+ unsigned char accel_half;
+ /* 1 if device in low-power accel-only mode. */
+ unsigned char lp_accel_mode;
+ /* 1 if interrupts are only triggered on motion events. */
+ unsigned char int_motion_only;
+ struct motion_int_cache_s cache;
+ /* 1 for active low interrupts. */
+ unsigned char active_low_int;
+ /* 1 for latched interrupts. */
+ unsigned char latched_int;
+ /* 1 if DMP is enabled. */
+ unsigned char dmp_on;
+ /* Ensures that DMP will only be loaded once. */
+ unsigned char dmp_loaded;
+ /* Sampling rate used when DMP is enabled. */
+ unsigned short dmp_sample_rate;
+#ifdef AK89xx_SECONDARY
+ /* Compass sample rate. */
+ unsigned short compass_sample_rate;
+ unsigned char compass_addr;
+ short mag_sens_adj[3];
+#endif
+};
+
+/* Information for self-test. */
+struct test_s {
+ unsigned long gyro_sens;
+ unsigned long accel_sens;
+ unsigned char reg_rate_div;
+ unsigned char reg_lpf;
+ unsigned char reg_gyro_fsr;
+ unsigned char reg_accel_fsr;
+ unsigned short wait_ms;
+ unsigned char packet_thresh;
+ float min_dps;
+ float max_dps;
+ float max_gyro_var;
+ float min_g;
+ float max_g;
+ float max_accel_var;
+#ifdef MPU6500
+ float max_g_offset;
+ unsigned short sample_wait_ms;
+#endif
+};
+
+/* Gyro driver state variables. */
+struct gyro_state_s {
+ const struct gyro_reg_s *reg;
+ const struct hw_s *hw;
+ struct chip_cfg_s chip_cfg;
+ const struct test_s *test;
+};
+
+/* Filter configurations. */
+enum lpf_e {
+ INV_FILTER_256HZ_NOLPF2 = 0,
+ INV_FILTER_188HZ,
+ INV_FILTER_98HZ,
+ INV_FILTER_42HZ,
+ INV_FILTER_20HZ,
+ INV_FILTER_10HZ,
+ INV_FILTER_5HZ,
+ INV_FILTER_2100HZ_NOLPF,
+ NUM_FILTER
+};
+
+/* Full scale ranges. */
+enum gyro_fsr_e {
+ INV_FSR_250DPS = 0,
+ INV_FSR_500DPS,
+ INV_FSR_1000DPS,
+ INV_FSR_2000DPS,
+ NUM_GYRO_FSR
+};
+
+/* Full scale ranges. */
+enum accel_fsr_e {
+ INV_FSR_2G = 0,
+ INV_FSR_4G,
+ INV_FSR_8G,
+ INV_FSR_16G,
+ NUM_ACCEL_FSR
+};
+
+/* Clock sources. */
+enum clock_sel_e {
+ INV_CLK_INTERNAL = 0,
+ INV_CLK_PLL,
+ NUM_CLK
+};
+
+/* Low-power accel wakeup rates. */
+enum lp_accel_rate_e {
+#if defined MPU6050
+ INV_LPA_1_25HZ,
+ INV_LPA_5HZ,
+ INV_LPA_20HZ,
+ INV_LPA_40HZ
+#elif defined MPU6500
+ INV_LPA_0_3125HZ,
+ INV_LPA_0_625HZ,
+ INV_LPA_1_25HZ,
+ INV_LPA_2_5HZ,
+ INV_LPA_5HZ,
+ INV_LPA_10HZ,
+ INV_LPA_20HZ,
+ INV_LPA_40HZ,
+ INV_LPA_80HZ,
+ INV_LPA_160HZ,
+ INV_LPA_320HZ,
+ INV_LPA_640HZ
+#endif
+};
+
+#define BIT_I2C_MST_VDDIO (0x80)
+#define BIT_FIFO_EN (0x40)
+#define BIT_DMP_EN (0x80)
+#define BIT_FIFO_RST (0x04)
+#define BIT_DMP_RST (0x08)
+#define BIT_FIFO_OVERFLOW (0x10)
+#define BIT_DATA_RDY_EN (0x01)
+#define BIT_DMP_INT_EN (0x02)
+#define BIT_MOT_INT_EN (0x40)
+#define BITS_FSR (0x18)
+#define BITS_LPF (0x07)
+#define BITS_HPF (0x07)
+#define BITS_CLK (0x07)
+#define BIT_FIFO_SIZE_1024 (0x40)
+#define BIT_FIFO_SIZE_2048 (0x80)
+#define BIT_FIFO_SIZE_4096 (0xC0)
+#define BIT_RESET (0x80)
+#define BIT_SLEEP (0x40)
+#define BIT_S0_DELAY_EN (0x01)
+#define BIT_S2_DELAY_EN (0x04)
+#define BITS_SLAVE_LENGTH (0x0F)
+#define BIT_SLAVE_BYTE_SW (0x40)
+#define BIT_SLAVE_GROUP (0x10)
+#define BIT_SLAVE_EN (0x80)
+#define BIT_I2C_READ (0x80)
+#define BITS_I2C_MASTER_DLY (0x1F)
+#define BIT_AUX_IF_EN (0x20)
+#define BIT_ACTL (0x80)
+#define BIT_LATCH_EN (0x20)
+#define BIT_ANY_RD_CLR (0x10)
+#define BIT_BYPASS_EN (0x02)
+#define BITS_WOM_EN (0xC0)
+#define BIT_LPA_CYCLE (0x20)
+#define BIT_STBY_XA (0x20)
+#define BIT_STBY_YA (0x10)
+#define BIT_STBY_ZA (0x08)
+#define BIT_STBY_XG (0x04)
+#define BIT_STBY_YG (0x02)
+#define BIT_STBY_ZG (0x01)
+#define BIT_STBY_XYZA (BIT_STBY_XA | BIT_STBY_YA | BIT_STBY_ZA)
+#define BIT_STBY_XYZG (BIT_STBY_XG | BIT_STBY_YG | BIT_STBY_ZG)
+
+#if defined AK8975_SECONDARY
+#define SUPPORTS_AK89xx_HIGH_SENS (0x00)
+#define AK89xx_FSR (9830)
+#elif defined AK8963_SECONDARY
+#define SUPPORTS_AK89xx_HIGH_SENS (0x10)
+#define AK89xx_FSR (4915)
+#endif
+
+#ifdef AK89xx_SECONDARY
+#define AKM_REG_WHOAMI (0x00)
+
+#define AKM_REG_ST1 (0x02)
+#define AKM_REG_HXL (0x03)
+#define AKM_REG_ST2 (0x09)
+
+#define AKM_REG_CNTL (0x0A)
+#define AKM_REG_ASTC (0x0C)
+#define AKM_REG_ASAX (0x10)
+#define AKM_REG_ASAY (0x11)
+#define AKM_REG_ASAZ (0x12)
+
+#define AKM_DATA_READY (0x01)
+#define AKM_DATA_OVERRUN (0x02)
+#define AKM_OVERFLOW (0x80)
+#define AKM_DATA_ERROR (0x40)
+
+#define AKM_BIT_SELF_TEST (0x40)
+
+#define AKM_POWER_DOWN (0x00 | SUPPORTS_AK89xx_HIGH_SENS)
+#define AKM_SINGLE_MEASUREMENT (0x01 | SUPPORTS_AK89xx_HIGH_SENS)
+#define AKM_FUSE_ROM_ACCESS (0x0F | SUPPORTS_AK89xx_HIGH_SENS)
+#define AKM_MODE_SELF_TEST (0x08 | SUPPORTS_AK89xx_HIGH_SENS)
+
+#define AKM_WHOAMI (0x48)
+#endif
+
+#if defined MPU6050
+const struct gyro_reg_s reg = {
+ .who_am_i = 0x75,
+ .rate_div = 0x19,
+ .lpf = 0x1A,
+ .prod_id = 0x0C,
+ .user_ctrl = 0x6A,
+ .fifo_en = 0x23,
+ .gyro_cfg = 0x1B,
+ .accel_cfg = 0x1C,
+ .motion_thr = 0x1F,
+ .motion_dur = 0x20,
+ .fifo_count_h = 0x72,
+ .fifo_r_w = 0x74,
+ .raw_gyro = 0x43,
+ .raw_accel = 0x3B,
+ .temp = 0x41,
+ .int_enable = 0x38,
+ .dmp_int_status = 0x39,
+ .int_status = 0x3A,
+ .pwr_mgmt_1 = 0x6B,
+ .pwr_mgmt_2 = 0x6C,
+ .int_pin_cfg = 0x37,
+ .mem_r_w = 0x6F,
+ .accel_offs = 0x06,
+ .i2c_mst = 0x24,
+ .bank_sel = 0x6D,
+ .mem_start_addr = 0x6E,
+ .prgm_start_h = 0x70
+#ifdef AK89xx_SECONDARY
+ ,.raw_compass = 0x49,
+ .yg_offs_tc = 0x01,
+ .s0_addr = 0x25,
+ .s0_reg = 0x26,
+ .s0_ctrl = 0x27,
+ .s1_addr = 0x28,
+ .s1_reg = 0x29,
+ .s1_ctrl = 0x2A,
+ .s4_ctrl = 0x34,
+ .s0_do = 0x63,
+ .s1_do = 0x64,
+ .i2c_delay_ctrl = 0x67
+#endif
+};
+const struct hw_s hw = {
+ .addr = 0x69,
+ .max_fifo = 1024,
+ .num_reg = 118,
+ .temp_sens = 340,
+ .temp_offset = -521,
+ .bank_size = 256
+#if defined AK89xx_SECONDARY
+ ,.compass_fsr = AK89xx_FSR
+#endif
+};
+
+const struct test_s test = {
+ .gyro_sens = 32768/250,
+ .accel_sens = 32768/16,
+ .reg_rate_div = 0, /* 1kHz. */
+ .reg_lpf = 1, /* 188Hz. */
+ .reg_gyro_fsr = 0, /* 250dps. */
+ .reg_accel_fsr = 0x18, /* 16g. */
+ .wait_ms = 50,
+ .packet_thresh = 5, /* 5% */
+ .min_dps = 10.f,
+ .max_dps = 105.f,
+ .max_gyro_var = 0.14f,
+ .min_g = 0.3f,
+ .max_g = 0.95f,
+ .max_accel_var = 0.14f
+};
+
+static struct gyro_state_s st = {
+ .reg = ®,
+ .hw = &hw,
+ .test = &test
+};
+#elif defined MPU6500
+const struct gyro_reg_s reg = {
+ .who_am_i = 0x75,
+ .rate_div = 0x19,
+ .lpf = 0x1A,
+ .prod_id = 0x0C,
+ .user_ctrl = 0x6A,
+ .fifo_en = 0x23,
+ .gyro_cfg = 0x1B,
+ .accel_cfg = 0x1C,
+ .accel_cfg2 = 0x1D,
+ .lp_accel_odr = 0x1E,
+ .motion_thr = 0x1F,
+ .motion_dur = 0x20,
+ .fifo_count_h = 0x72,
+ .fifo_r_w = 0x74,
+ .raw_gyro = 0x43,
+ .raw_accel = 0x3B,
+ .temp = 0x41,
+ .int_enable = 0x38,
+ .dmp_int_status = 0x39,
+ .int_status = 0x3A,
+ .accel_intel = 0x69,
+ .pwr_mgmt_1 = 0x6B,
+ .pwr_mgmt_2 = 0x6C,
+ .int_pin_cfg = 0x37,
+ .mem_r_w = 0x6F,
+ .accel_offs = 0x77,
+ .i2c_mst = 0x24,
+ .bank_sel = 0x6D,
+ .mem_start_addr = 0x6E,
+ .prgm_start_h = 0x70
+#ifdef AK89xx_SECONDARY
+ ,.raw_compass = 0x49,
+ .s0_addr = 0x25,
+ .s0_reg = 0x26,
+ .s0_ctrl = 0x27,
+ .s1_addr = 0x28,
+ .s1_reg = 0x29,
+ .s1_ctrl = 0x2A,
+ .s4_ctrl = 0x34,
+ .s0_do = 0x63,
+ .s1_do = 0x64,
+ .i2c_delay_ctrl = 0x67
+#endif
+};
+const struct hw_s hw = {
+ .addr = 0x68,
+ .max_fifo = 1024,
+ .num_reg = 128,
+ .temp_sens = 321,
+ .temp_offset = 0,
+ .bank_size = 256
+#if defined AK89xx_SECONDARY
+ ,.compass_fsr = AK89xx_FSR
+#endif
+};
+
+const struct test_s test = {
+ .gyro_sens = 32768/250,
+ .accel_sens = 32768/2, //FSR = +-2G = 16384 LSB/G
+ .reg_rate_div = 0, /* 1kHz. */
+ .reg_lpf = 2, /* 92Hz low pass filter*/
+ .reg_gyro_fsr = 0, /* 250dps. */
+ .reg_accel_fsr = 0x0, /* Accel FSR setting = 2g. */
+ .wait_ms = 200, //200ms stabilization time
+ .packet_thresh = 200, /* 200 samples */
+ .min_dps = 20.f, //20 dps for Gyro Criteria C
+ .max_dps = 60.f, //Must exceed 60 dps threshold for Gyro Criteria B
+ .max_gyro_var = .5f, //Must exceed +50% variation for Gyro Criteria A
+ .min_g = .225f, //Accel must exceed Min 225 mg for Criteria B
+ .max_g = .675f, //Accel cannot exceed Max 675 mg for Criteria B
+ .max_accel_var = .5f, //Accel must be within 50% variation for Criteria A
+ .max_g_offset = .5f, //500 mg for Accel Criteria C
+ .sample_wait_ms = 10 //10ms sample time wait
+};
+
+static struct gyro_state_s st = {
+ .reg = ®,
+ .hw = &hw,
+ .test = &test
+};
+#endif
+
+#define MAX_PACKET_LENGTH (12)
+#ifdef MPU6500
+#define HWST_MAX_PACKET_LENGTH (512)
+#endif
+
+#ifdef AK89xx_SECONDARY
+static int setup_compass(void);
+#define MAX_COMPASS_SAMPLE_RATE (100)
+#endif
+
+/**
+ * @brief Enable/disable data ready interrupt.
+ * If the DMP is on, the DMP interrupt is enabled. Otherwise, the data ready
+ * interrupt is used.
+ * @param[in] enable 1 to enable interrupt.
+ * @return 0 if successful.
+ */
+static int set_int_enable(unsigned char enable)
+{
+ unsigned char tmp;
+
+ if (st.chip_cfg.dmp_on) {
+ if (enable)
+ tmp = BIT_DMP_INT_EN;
+ else
+ tmp = 0x00;
+ if (mpu_hal_write(st.hw->addr, st.reg->int_enable, 1, &tmp))
+ return -1;
+ st.chip_cfg.int_enable = tmp;
+ } else {
+ if (!st.chip_cfg.sensors)
+ return -1;
+ if (enable && st.chip_cfg.int_enable)
+ return 0;
+ if (enable)
+ tmp = BIT_DATA_RDY_EN;
+ else
+ tmp = 0x00;
+ if (mpu_hal_write(st.hw->addr, st.reg->int_enable, 1, &tmp))
+ return -1;
+ st.chip_cfg.int_enable = tmp;
+ }
+ return 0;
+}
+
+/**
+ * @brief Register dump for testing.
+ * @return 0 if successful.
+ */
+int mpu_reg_dump(void)
+{
+ unsigned char ii;
+ unsigned char data;
+
+ for (ii = 0; ii < st.hw->num_reg; ii++) {
+ if (ii == st.reg->fifo_r_w || ii == st.reg->mem_r_w)
+ continue;
+ if (mpu_hal_read(st.hw->addr, ii, 1, &data))
+ return -1;
+ log_i("%#5x: %#5x\r\n", ii, data);
+ }
+ return 0;
+}
+
+/**
+ * @brief Read from a single register.
+ * NOTE: The memory and FIFO read/write registers cannot be accessed.
+ * @param[in] reg Register address.
+ * @param[out] data Register data.
+ * @return 0 if successful.
+ */
+int mpu_read_reg(unsigned char reg, unsigned char *data)
+{
+ if (reg == st.reg->fifo_r_w || reg == st.reg->mem_r_w)
+ return -1;
+ if (reg >= st.hw->num_reg)
+ return -1;
+ return mpu_hal_read(st.hw->addr, reg, 1, data);
+}
+
+/**
+ * @brief Initialize hardware.
+ * Initial configuration:\n
+ * Gyro FSR: +/- 2000DPS\n
+ * Accel FSR +/- 2G\n
+ * DLPF: 42Hz\n
+ * FIFO rate: 50Hz\n
+ * Clock source: Gyro PLL\n
+ * FIFO: Disabled.\n
+ * Data ready interrupt: Disabled, active low, unlatched.
+ * @param[in] int_param Platform-specific parameters to interrupt API.
+ * @return 0 if successful.
+ */
+int mpu_init(struct int_param_s *int_param)
+{
+ unsigned char data[6];
+
+ /* Reset device. */
+ data[0] = BIT_RESET;
+ if (mpu_hal_write(st.hw->addr, st.reg->pwr_mgmt_1, 1, data))
+ return -1;
+ delay_ms(100);
+
+ /* Wake up chip. */
+ data[0] = 0x00;
+ if (mpu_hal_write(st.hw->addr, st.reg->pwr_mgmt_1, 1, data))
+ return -1;
+
+ st.chip_cfg.accel_half = 0;
+
+#ifdef MPU6500
+ /* MPU6500 shares 4kB of memory between the DMP and the FIFO. Since the
+ * first 3kB are needed by the DMP, we'll use the last 1kB for the FIFO.
+ */
+ data[0] = BIT_FIFO_SIZE_1024 | 0x8;
+ if (mpu_hal_write(st.hw->addr, st.reg->accel_cfg2, 1, data))
+ return -1;
+#endif
+
+ /* Set to invalid values to ensure no I2C writes are skipped. */
+ st.chip_cfg.sensors = 0xFF;
+ st.chip_cfg.gyro_fsr = 0xFF;
+ st.chip_cfg.accel_fsr = 0xFF;
+ st.chip_cfg.lpf = 0xFF;
+ st.chip_cfg.sample_rate = 0xFFFF;
+ st.chip_cfg.fifo_enable = 0xFF;
+ st.chip_cfg.bypass_mode = 0xFF;
+#ifdef AK89xx_SECONDARY
+ st.chip_cfg.compass_sample_rate = 0xFFFF;
+#endif
+ /* mpu_set_sensors always preserves this setting. */
+ st.chip_cfg.clk_src = INV_CLK_PLL;
+ /* Handled in next call to mpu_set_bypass. */
+ st.chip_cfg.active_low_int = 1;
+ st.chip_cfg.latched_int = 0;
+ st.chip_cfg.int_motion_only = 0;
+ st.chip_cfg.lp_accel_mode = 0;
+ memset(&st.chip_cfg.cache, 0, sizeof(st.chip_cfg.cache));
+ st.chip_cfg.dmp_on = 0;
+ st.chip_cfg.dmp_loaded = 0;
+ st.chip_cfg.dmp_sample_rate = 0;
+
+ if (mpu_set_gyro_fsr(2000))
+ return -1;
+ if (mpu_set_accel_fsr(2))
+ return -1;
+ if (mpu_set_lpf(42))
+ return -1;
+ if (mpu_set_sample_rate(50))
+ return -1;
+ if (mpu_configure_fifo(0))
+ return -1;
+
+ if (int_param)
+ reg_int_cb(int_param);
+
+#ifdef AK89xx_SECONDARY
+ setup_compass();
+ if (mpu_set_compass_sample_rate(10))
+ return -1;
+#else
+ /* Already disabled by setup_compass. */
+ if (mpu_set_bypass(0))
+ return -1;
+#endif
+
+ mpu_set_sensors(0);
+ return 0;
+}
+
+/**
+ * @brief Enter low-power accel-only mode.
+ * In low-power accel mode, the chip goes to sleep and only wakes up to sample
+ * the accelerometer at one of the following frequencies:
+ * \n MPU6050: 1.25Hz, 5Hz, 20Hz, 40Hz
+ * \n MPU6500: 1.25Hz, 2.5Hz, 5Hz, 10Hz, 20Hz, 40Hz, 80Hz, 160Hz, 320Hz, 640Hz
+ * \n If the requested rate is not one listed above, the device will be set to
+ * the next highest rate. Requesting a rate above the maximum supported
+ * frequency will result in an error.
+ * \n To select a fractional wake-up frequency, round down the value passed to
+ * @e rate.
+ * @param[in] rate Minimum sampling rate, or zero to disable LP
+ * accel mode.
+ * @return 0 if successful.
+ */
+int mpu_lp_accel_mode(unsigned char rate)
+{
+ unsigned char tmp[2];
+
+ if (rate > 40)
+ return -1;
+
+ if (!rate) {
+ mpu_set_int_latched(0);
+ tmp[0] = 0;
+ tmp[1] = BIT_STBY_XYZG;
+ if (mpu_hal_write(st.hw->addr, st.reg->pwr_mgmt_1, 2, tmp))
+ return -1;
+ st.chip_cfg.lp_accel_mode = 0;
+ return 0;
+ }
+ /* For LP accel, we automatically configure the hardware to produce latched
+ * interrupts. In LP accel mode, the hardware cycles into sleep mode before
+ * it gets a chance to deassert the interrupt pin; therefore, we shift this
+ * responsibility over to the MCU.
+ *
+ * Any register read will clear the interrupt.
+ */
+ mpu_set_int_latched(1);
+#if defined MPU6050
+ tmp[0] = BIT_LPA_CYCLE;
+ if (rate == 1) {
+ tmp[1] = INV_LPA_1_25HZ;
+ mpu_set_lpf(5);
+ } else if (rate <= 5) {
+ tmp[1] = INV_LPA_5HZ;
+ mpu_set_lpf(5);
+ } else if (rate <= 20) {
+ tmp[1] = INV_LPA_20HZ;
+ mpu_set_lpf(10);
+ } else {
+ tmp[1] = INV_LPA_40HZ;
+ mpu_set_lpf(20);
+ }
+ tmp[1] = (tmp[1] << 6) | BIT_STBY_XYZG;
+ if (mpu_hal_write(st.hw->addr, st.reg->pwr_mgmt_1, 2, tmp))
+ return -1;
+#elif defined MPU6500
+ /* Set wake frequency. */
+ if (rate == 1)
+ tmp[0] = INV_LPA_1_25HZ;
+ else if (rate == 2)
+ tmp[0] = INV_LPA_2_5HZ;
+ else if (rate <= 5)
+ tmp[0] = INV_LPA_5HZ;
+ else if (rate <= 10)
+ tmp[0] = INV_LPA_10HZ;
+ else if (rate <= 20)
+ tmp[0] = INV_LPA_20HZ;
+ else if (rate <= 40)
+ tmp[0] = INV_LPA_40HZ;
+ else if (rate <= 80)
+ tmp[0] = INV_LPA_80HZ;
+ else if (rate <= 160)
+ tmp[0] = INV_LPA_160HZ;
+ else if (rate <= 320)
+ tmp[0] = INV_LPA_320HZ;
+ else
+ tmp[0] = INV_LPA_640HZ;
+ if (mpu_hal_write(st.hw->addr, st.reg->lp_accel_odr, 1, tmp))
+ return -1;
+ tmp[0] = BIT_LPA_CYCLE;
+ if (mpu_hal_write(st.hw->addr, st.reg->pwr_mgmt_1, 1, tmp))
+ return -1;
+#endif
+ st.chip_cfg.sensors = INV_XYZ_ACCEL;
+ st.chip_cfg.clk_src = 0;
+ st.chip_cfg.lp_accel_mode = 1;
+ mpu_configure_fifo(0);
+
+ return 0;
+}
+
+/**
+ * @brief Read raw gyro data directly from the registers.
+ * @param[out] data Raw data in hardware units.
+ * @param[out] timestamp Timestamp in milliseconds. Null if not needed.
+ * @return 0 if successful.
+ */
+int mpu_get_gyro_reg(short *data, unsigned long *timestamp)
+{
+ unsigned char tmp[6];
+
+ if (!(st.chip_cfg.sensors & INV_XYZ_GYRO))
+ return -1;
+
+ if (mpu_hal_read(st.hw->addr, st.reg->raw_gyro, 6, tmp))
+ return -1;
+ data[0] = (tmp[0] << 8) | tmp[1];
+ data[1] = (tmp[2] << 8) | tmp[3];
+ data[2] = (tmp[4] << 8) | tmp[5];
+ if (timestamp)
+ get_ms(timestamp);
+ return 0;
+}
+
+/**
+ * @brief Read raw accel data directly from the registers.
+ * @param[out] data Raw data in hardware units.
+ * @param[out] timestamp Timestamp in milliseconds. Null if not needed.
+ * @return 0 if successful.
+ */
+int mpu_get_accel_reg(short *data, unsigned long *timestamp)
+{
+ unsigned char tmp[6];
+
+ if (!(st.chip_cfg.sensors & INV_XYZ_ACCEL))
+ return -1;
+
+ if (mpu_hal_read(st.hw->addr, st.reg->raw_accel, 6, tmp))
+ return -1;
+ data[0] = (tmp[0] << 8) | tmp[1];
+ data[1] = (tmp[2] << 8) | tmp[3];
+ data[2] = (tmp[4] << 8) | tmp[5];
+ if (timestamp)
+ get_ms(timestamp);
+ return 0;
+}
+
+/**
+ * @brief Read temperature data directly from the registers.
+ * @param[out] data Data in q16 format.
+ * @param[out] timestamp Timestamp in milliseconds. Null if not needed.
+ * @return 0 if successful.
+ */
+int mpu_get_temperature(long *data, unsigned long *timestamp)
+{
+ unsigned char tmp[2];
+ short raw;
+
+ if (!(st.chip_cfg.sensors))
+ return -1;
+
+ if (mpu_hal_read(st.hw->addr, st.reg->temp, 2, tmp))
+ return -1;
+ raw = (tmp[0] << 8) | tmp[1];
+ if (timestamp)
+ get_ms(timestamp);
+
+ data[0] = (long)((35 + ((raw - (float)st.hw->temp_offset) / st.hw->temp_sens)) * 65536L);
+ return 0;
+}
+
+/**
+ * @brief Read biases to the accel bias 6500 registers.
+ * This function reads from the MPU6500 accel offset cancellations registers.
+ * The format are G in +-8G format. The register is initialized with OTP
+ * factory trim values.
+ * @param[in] accel_bias returned structure with the accel bias
+ * @return 0 if successful.
+ */
+int mpu_read_6500_accel_bias(long *accel_bias) {
+ unsigned char data[6];
+ if (mpu_hal_read(st.hw->addr, 0x77, 2, &data[0]))
+ return -1;
+ if (mpu_hal_read(st.hw->addr, 0x7A, 2, &data[2]))
+ return -1;
+ if (mpu_hal_read(st.hw->addr, 0x7D, 2, &data[4]))
+ return -1;
+ accel_bias[0] = ((long)data[0]<<8) | data[1];
+ accel_bias[1] = ((long)data[2]<<8) | data[3];
+ accel_bias[2] = ((long)data[4]<<8) | data[5];
+ return 0;
+}
+
+/**
+ * @brief Read biases to the accel bias 6050 registers.
+ * This function reads from the MPU6050 accel offset cancellations registers.
+ * The format are G in +-8G format. The register is initialized with OTP
+ * factory trim values.
+ * @param[in] accel_bias returned structure with the accel bias
+ * @return 0 if successful.
+ */
+int mpu_read_6050_accel_bias(long *accel_bias) {
+ unsigned char data[6];
+ if (mpu_hal_read(st.hw->addr, 0x06, 2, &data[0]))
+ return -1;
+ if (mpu_hal_read(st.hw->addr, 0x08, 2, &data[2]))
+ return -1;
+ if (mpu_hal_read(st.hw->addr, 0x0A, 2, &data[4]))
+ return -1;
+ accel_bias[0] = ((long)data[0]<<8) | data[1];
+ accel_bias[1] = ((long)data[2]<<8) | data[3];
+ accel_bias[2] = ((long)data[4]<<8) | data[5];
+ return 0;
+}
+
+int mpu_read_6500_gyro_bias(long *gyro_bias) {
+ unsigned char data[6];
+ if (mpu_hal_read(st.hw->addr, 0x13, 2, &data[0]))
+ return -1;
+ if (mpu_hal_read(st.hw->addr, 0x15, 2, &data[2]))
+ return -1;
+ if (mpu_hal_read(st.hw->addr, 0x17, 2, &data[4]))
+ return -1;
+ gyro_bias[0] = ((long)data[0]<<8) | data[1];
+ gyro_bias[1] = ((long)data[2]<<8) | data[3];
+ gyro_bias[2] = ((long)data[4]<<8) | data[5];
+ return 0;
+}
+
+/**
+ * @brief Push biases to the gyro bias 6500/6050 registers.
+ * This function expects biases relative to the current sensor output, and
+ * these biases will be added to the factory-supplied values. Bias inputs are LSB
+ * in +-1000dps format.
+ * @param[in] gyro_bias New biases.
+ * @return 0 if successful.
+ */
+int mpu_set_gyro_bias_reg(long *gyro_bias)
+{
+ unsigned char data[6] = {0, 0, 0, 0, 0, 0};
+ int i=0;
+ for(i=0;i<3;i++) {
+ gyro_bias[i]= (-gyro_bias[i]);
+ }
+ data[0] = (gyro_bias[0] >> 8) & 0xff;
+ data[1] = (gyro_bias[0]) & 0xff;
+ data[2] = (gyro_bias[1] >> 8) & 0xff;
+ data[3] = (gyro_bias[1]) & 0xff;
+ data[4] = (gyro_bias[2] >> 8) & 0xff;
+ data[5] = (gyro_bias[2]) & 0xff;
+ if (mpu_hal_write(st.hw->addr, 0x13, 2, &data[0]))
+ return -1;
+ if (mpu_hal_write(st.hw->addr, 0x15, 2, &data[2]))
+ return -1;
+ if (mpu_hal_write(st.hw->addr, 0x17, 2, &data[4]))
+ return -1;
+ return 0;
+}
+
+/**
+ * @brief Push biases to the accel bias 6050 registers.
+ * This function expects biases relative to the current sensor output, and
+ * these biases will be added to the factory-supplied values. Bias inputs are LSB
+ * in +-8G format.
+ * @param[in] accel_bias New biases.
+ * @return 0 if successful.
+ */
+int mpu_set_accel_bias_6050_reg(const long *accel_bias)
+{
+ unsigned char data[6] = {0, 0, 0, 0, 0, 0};
+ long accel_reg_bias[3] = {0, 0, 0};
+ long mask = 0x0001;
+ unsigned char mask_bit[3] = {0, 0, 0};
+ unsigned char i = 0;
+ if(mpu_read_6050_accel_bias(accel_reg_bias))
+ return -1;
+
+ //bit 0 of the 2 byte bias is for temp comp
+ //calculations need to compensate for this and not change it
+ for(i=0; i<3; i++) {
+ if(accel_reg_bias[i]&mask)
+ mask_bit[i] = 0x01;
+ }
+
+ accel_reg_bias[0] -= accel_bias[0];
+ accel_reg_bias[1] -= accel_bias[1];
+ accel_reg_bias[2] -= accel_bias[2];
+
+ data[0] = (accel_reg_bias[0] >> 8) & 0xff;
+ data[1] = (accel_reg_bias[0]) & 0xff;
+ data[1] = data[1]|mask_bit[0];
+ data[2] = (accel_reg_bias[1] >> 8) & 0xff;
+ data[3] = (accel_reg_bias[1]) & 0xff;
+ data[3] = data[3]|mask_bit[1];
+ data[4] = (accel_reg_bias[2] >> 8) & 0xff;
+ data[5] = (accel_reg_bias[2]) & 0xff;
+ data[5] = data[5]|mask_bit[2];
+
+ if (mpu_hal_write(st.hw->addr, 0x06, 2, &data[0]))
+ return -1;
+ if (mpu_hal_write(st.hw->addr, 0x08, 2, &data[2]))
+ return -1;
+ if (mpu_hal_write(st.hw->addr, 0x0A, 2, &data[4]))
+ return -1;
+
+ return 0;
+}
+
+
+/**
+ * @brief Push biases to the accel bias 6500 registers.
+ * This function expects biases relative to the current sensor output, and
+ * these biases will be added to the factory-supplied values. Bias inputs are LSB
+ * in +-8G format.
+ * @param[in] accel_bias New biases.
+ * @return 0 if successful.
+ */
+int mpu_set_accel_bias_6500_reg(const long *accel_bias)
+{
+ unsigned char data[6] = {0, 0, 0, 0, 0, 0};
+ long accel_reg_bias[3] = {0, 0, 0};
+ long mask = 0x0001;
+ unsigned char mask_bit[3] = {0, 0, 0};
+ unsigned char i = 0;
+
+ if(mpu_read_6500_accel_bias(accel_reg_bias))
+ return -1;
+
+ //bit 0 of the 2 byte bias is for temp comp
+ //calculations need to compensate for this
+ for(i=0; i<3; i++) {
+ if(accel_reg_bias[i]&mask)
+ mask_bit[i] = 0x01;
+ }
+
+ accel_reg_bias[0] -= accel_bias[0];
+ accel_reg_bias[1] -= accel_bias[1];
+ accel_reg_bias[2] -= accel_bias[2];
+
+ data[0] = (accel_reg_bias[0] >> 8) & 0xff;
+ data[1] = (accel_reg_bias[0]) & 0xff;
+ data[1] = data[1]|mask_bit[0];
+ data[2] = (accel_reg_bias[1] >> 8) & 0xff;
+ data[3] = (accel_reg_bias[1]) & 0xff;
+ data[3] = data[3]|mask_bit[1];
+ data[4] = (accel_reg_bias[2] >> 8) & 0xff;
+ data[5] = (accel_reg_bias[2]) & 0xff;
+ data[5] = data[5]|mask_bit[2];
+
+ if (mpu_hal_write(st.hw->addr, 0x77, 2, &data[0]))
+ return -1;
+ if (mpu_hal_write(st.hw->addr, 0x7A, 2, &data[2]))
+ return -1;
+ if (mpu_hal_write(st.hw->addr, 0x7D, 2, &data[4]))
+ return -1;
+
+ return 0;
+}
+
+/**
+ * @brief Reset FIFO read/write pointers.
+ * @return 0 if successful.
+ */
+int mpu_reset_fifo(void)
+{
+ unsigned char data;
+
+ if (!(st.chip_cfg.sensors))
+ return -1;
+
+ data = 0;
+ if (mpu_hal_write(st.hw->addr, st.reg->int_enable, 1, &data))
+ return -1;
+ if (mpu_hal_write(st.hw->addr, st.reg->fifo_en, 1, &data))
+ return -1;
+ if (mpu_hal_write(st.hw->addr, st.reg->user_ctrl, 1, &data))
+ return -1;
+
+ if (st.chip_cfg.dmp_on) {
+ data = BIT_FIFO_RST | BIT_DMP_RST;
+ if (mpu_hal_write(st.hw->addr, st.reg->user_ctrl, 1, &data))
+ return -1;
+ delay_ms(50);
+ data = BIT_DMP_EN | BIT_FIFO_EN;
+ if (st.chip_cfg.sensors & INV_XYZ_COMPASS) {
+ data |= BIT_AUX_IF_EN;
+ }
+ if (mpu_hal_write(st.hw->addr, st.reg->user_ctrl, 1, &data))
+ return -1;
+ if (st.chip_cfg.int_enable)
+ data = BIT_DMP_INT_EN;
+ else
+ data = 0;
+ if (mpu_hal_write(st.hw->addr, st.reg->int_enable, 1, &data))
+ return -1;
+ data = 0;
+ if (mpu_hal_write(st.hw->addr, st.reg->fifo_en, 1, &data))
+ return -1;
+ } else {
+ data = BIT_FIFO_RST;
+ if (mpu_hal_write(st.hw->addr, st.reg->user_ctrl, 1, &data))
+ return -1;
+
+ if (st.chip_cfg.bypass_mode || !(st.chip_cfg.sensors & INV_XYZ_COMPASS))
+ data = BIT_FIFO_EN;
+ else {
+ data = BIT_FIFO_EN | BIT_AUX_IF_EN;
+ }
+ if (mpu_hal_write(st.hw->addr, st.reg->user_ctrl, 1, &data))
+ return -1;
+ delay_ms(50);
+ if (st.chip_cfg.int_enable)
+ data = BIT_DATA_RDY_EN;
+ else
+ data = 0;
+ if (mpu_hal_write(st.hw->addr, st.reg->int_enable, 1, &data))
+ return -1;
+ if (mpu_hal_write(st.hw->addr, st.reg->fifo_en, 1, &st.chip_cfg.fifo_enable))
+ return -1;
+ }
+ return 0;
+}
+
+/**
+ * @brief Get the gyro full-scale range.
+ * @param[out] fsr Current full-scale range.
+ * @return 0 if successful.
+ */
+int mpu_get_gyro_fsr(unsigned short *fsr)
+{
+ switch (st.chip_cfg.gyro_fsr) {
+ case INV_FSR_250DPS:
+ fsr[0] = 250;
+ break;
+ case INV_FSR_500DPS:
+ fsr[0] = 500;
+ break;
+ case INV_FSR_1000DPS:
+ fsr[0] = 1000;
+ break;
+ case INV_FSR_2000DPS:
+ fsr[0] = 2000;
+ break;
+ default:
+ fsr[0] = 0;
+ break;
+ }
+ return 0;
+}
+
+/**
+ * @brief Set the gyro full-scale range.
+ * @param[in] fsr Desired full-scale range.
+ * @return 0 if successful.
+ */
+int mpu_set_gyro_fsr(unsigned short fsr)
+{
+ unsigned char data;
+
+ if (!(st.chip_cfg.sensors))
+ return -1;
+
+ switch (fsr) {
+ case 250:
+ data = INV_FSR_250DPS << 3;
+ break;
+ case 500:
+ data = INV_FSR_500DPS << 3;
+ break;
+ case 1000:
+ data = INV_FSR_1000DPS << 3;
+ break;
+ case 2000:
+ data = INV_FSR_2000DPS << 3;
+ break;
+ default:
+ return -1;
+ }
+
+ if (st.chip_cfg.gyro_fsr == (data >> 3))
+ return 0;
+ if (mpu_hal_write(st.hw->addr, st.reg->gyro_cfg, 1, &data))
+ return -1;
+ st.chip_cfg.gyro_fsr = data >> 3;
+ return 0;
+}
+
+/**
+ * @brief Get the accel full-scale range.
+ * @param[out] fsr Current full-scale range.
+ * @return 0 if successful.
+ */
+int mpu_get_accel_fsr(unsigned char *fsr)
+{
+ switch (st.chip_cfg.accel_fsr) {
+ case INV_FSR_2G:
+ fsr[0] = 2;
+ break;
+ case INV_FSR_4G:
+ fsr[0] = 4;
+ break;
+ case INV_FSR_8G:
+ fsr[0] = 8;
+ break;
+ case INV_FSR_16G:
+ fsr[0] = 16;
+ break;
+ default:
+ return -1;
+ }
+ if (st.chip_cfg.accel_half)
+ fsr[0] <<= 1;
+ return 0;
+}
+
+/**
+ * @brief Set the accel full-scale range.
+ * @param[in] fsr Desired full-scale range.
+ * @return 0 if successful.
+ */
+int mpu_set_accel_fsr(unsigned char fsr)
+{
+ unsigned char data;
+
+ if (!(st.chip_cfg.sensors))
+ return -1;
+
+ switch (fsr) {
+ case 2:
+ data = INV_FSR_2G << 3;
+ break;
+ case 4:
+ data = INV_FSR_4G << 3;
+ break;
+ case 8:
+ data = INV_FSR_8G << 3;
+ break;
+ case 16:
+ data = INV_FSR_16G << 3;
+ break;
+ default:
+ return -1;
+ }
+
+ if (st.chip_cfg.accel_fsr == (data >> 3))
+ return 0;
+ if (mpu_hal_write(st.hw->addr, st.reg->accel_cfg, 1, &data))
+ return -1;
+ st.chip_cfg.accel_fsr = data >> 3;
+ return 0;
+}
+
+/**
+ * @brief Get the current DLPF setting.
+ * @param[out] lpf Current LPF setting.
+ * 0 if successful.
+ */
+int mpu_get_lpf(unsigned short *lpf)
+{
+ switch (st.chip_cfg.lpf) {
+ case INV_FILTER_188HZ:
+ lpf[0] = 188;
+ break;
+ case INV_FILTER_98HZ:
+ lpf[0] = 98;
+ break;
+ case INV_FILTER_42HZ:
+ lpf[0] = 42;
+ break;
+ case INV_FILTER_20HZ:
+ lpf[0] = 20;
+ break;
+ case INV_FILTER_10HZ:
+ lpf[0] = 10;
+ break;
+ case INV_FILTER_5HZ:
+ lpf[0] = 5;
+ break;
+ case INV_FILTER_256HZ_NOLPF2:
+ case INV_FILTER_2100HZ_NOLPF:
+ default:
+ lpf[0] = 0;
+ break;
+ }
+ return 0;
+}
+
+/**
+ * @brief Set digital low pass filter.
+ * The following LPF settings are supported: 188, 98, 42, 20, 10, 5.
+ * @param[in] lpf Desired LPF setting.
+ * @return 0 if successful.
+ */
+int mpu_set_lpf(unsigned short lpf)
+{
+ unsigned char data;
+
+ if (!(st.chip_cfg.sensors))
+ return -1;
+
+ if (lpf >= 188)
+ data = INV_FILTER_188HZ;
+ else if (lpf >= 98)
+ data = INV_FILTER_98HZ;
+ else if (lpf >= 42)
+ data = INV_FILTER_42HZ;
+ else if (lpf >= 20)
+ data = INV_FILTER_20HZ;
+ else if (lpf >= 10)
+ data = INV_FILTER_10HZ;
+ else
+ data = INV_FILTER_5HZ;
+
+ if (st.chip_cfg.lpf == data)
+ return 0;
+ if (mpu_hal_write(st.hw->addr, st.reg->lpf, 1, &data))
+ return -1;
+ st.chip_cfg.lpf = data;
+ return 0;
+}
+
+/**
+ * @brief Get sampling rate.
+ * @param[out] rate Current sampling rate (Hz).
+ * @return 0 if successful.
+ */
+int mpu_get_sample_rate(unsigned short *rate)
+{
+ if (st.chip_cfg.dmp_on)
+ return -1;
+ else
+ rate[0] = st.chip_cfg.sample_rate;
+ return 0;
+}
+
+/**
+ * @brief Set sampling rate.
+ * Sampling rate must be between 4Hz and 1kHz.
+ * @param[in] rate Desired sampling rate (Hz).
+ * @return 0 if successful.
+ */
+int mpu_set_sample_rate(unsigned short rate)
+{
+ unsigned char data;
+
+ if (!(st.chip_cfg.sensors))
+ return -1;
+
+ if (st.chip_cfg.dmp_on)
+ return -1;
+ else {
+ if (st.chip_cfg.lp_accel_mode) {
+ if (rate && (rate <= 40)) {
+ /* Just stay in low-power accel mode. */
+ mpu_lp_accel_mode(rate);
+ return 0;
+ }
+ /* Requested rate exceeds the allowed frequencies in LP accel mode,
+ * switch back to full-power mode.
+ */
+ mpu_lp_accel_mode(0);
+ }
+ if (rate < 4)
+ rate = 4;
+ else if (rate > 1000)
+ rate = 1000;
+
+ data = 1000 / rate - 1;
+ if (mpu_hal_write(st.hw->addr, st.reg->rate_div, 1, &data))
+ return -1;
+
+ st.chip_cfg.sample_rate = 1000 / (1 + data);
+
+#ifdef AK89xx_SECONDARY
+ mpu_set_compass_sample_rate(min(st.chip_cfg.compass_sample_rate, MAX_COMPASS_SAMPLE_RATE));
+#endif
+
+ /* Automatically set LPF to 1/2 sampling rate. */
+ mpu_set_lpf(st.chip_cfg.sample_rate >> 1);
+ return 0;
+ }
+}
+
+/**
+ * @brief Get compass sampling rate.
+ * @param[out] rate Current compass sampling rate (Hz).
+ * @return 0 if successful.
+ */
+int mpu_get_compass_sample_rate(unsigned short *rate)
+{
+#ifdef AK89xx_SECONDARY
+ rate[0] = st.chip_cfg.compass_sample_rate;
+ return 0;
+#else
+ rate[0] = 0;
+ return -1;
+#endif
+}
+
+/**
+ * @brief Set compass sampling rate.
+ * The compass on the auxiliary I2C bus is read by the MPU hardware at a
+ * maximum of 100Hz. The actual rate can be set to a fraction of the gyro
+ * sampling rate.
+ *
+ * \n WARNING: The new rate may be different than what was requested. Call
+ * mpu_get_compass_sample_rate to check the actual setting.
+ * @param[in] rate Desired compass sampling rate (Hz).
+ * @return 0 if successful.
+ */
+int mpu_set_compass_sample_rate(unsigned short rate)
+{
+#ifdef AK89xx_SECONDARY
+ unsigned char div;
+ if (!rate || rate > st.chip_cfg.sample_rate || rate > MAX_COMPASS_SAMPLE_RATE)
+ return -1;
+
+ div = st.chip_cfg.sample_rate / rate - 1;
+ printf("sample_rate: %d, compass sample rate: %d\n", st.chip_cfg.sample_rate, rate);
+ if (mpu_hal_write(st.hw->addr, st.reg->s4_ctrl, 1, &div))
+ return -1;
+ st.chip_cfg.compass_sample_rate = st.chip_cfg.sample_rate / (div + 1);
+ return 0;
+#else
+ return -1;
+#endif
+}
+
+/**
+ * @brief Get gyro sensitivity scale factor.
+ * @param[out] sens Conversion from hardware units to dps.
+ * @return 0 if successful.
+ */
+int mpu_get_gyro_sens(float *sens)
+{
+ switch (st.chip_cfg.gyro_fsr) {
+ case INV_FSR_250DPS:
+ sens[0] = 131.f;
+ break;
+ case INV_FSR_500DPS:
+ sens[0] = 65.5f;
+ break;
+ case INV_FSR_1000DPS:
+ sens[0] = 32.8f;
+ break;
+ case INV_FSR_2000DPS:
+ sens[0] = 16.4f;
+ break;
+ default:
+ return -1;
+ }
+ return 0;
+}
+
+/**
+ * @brief Get accel sensitivity scale factor.
+ * @param[out] sens Conversion from hardware units to g's.
+ * @return 0 if successful.
+ */
+int mpu_get_accel_sens(unsigned short *sens)
+{
+ switch (st.chip_cfg.accel_fsr) {
+ case INV_FSR_2G:
+ sens[0] = 16384;
+ break;
+ case INV_FSR_4G:
+ sens[0] = 8092;
+ break;
+ case INV_FSR_8G:
+ sens[0] = 4096;
+ break;
+ case INV_FSR_16G:
+ sens[0] = 2048;
+ break;
+ default:
+ return -1;
+ }
+ if (st.chip_cfg.accel_half)
+ sens[0] >>= 1;
+ return 0;
+}
+
+/**
+ * @brief Get current FIFO configuration.
+ * @e sensors can contain a combination of the following flags:
+ * \n INV_X_GYRO, INV_Y_GYRO, INV_Z_GYRO
+ * \n INV_XYZ_GYRO
+ * \n INV_XYZ_ACCEL
+ * @param[out] sensors Mask of sensors in FIFO.
+ * @return 0 if successful.
+ */
+int mpu_get_fifo_config(unsigned char *sensors)
+{
+ sensors[0] = st.chip_cfg.fifo_enable;
+ return 0;
+}
+
+/**
+ * @brief Select which sensors are pushed to FIFO.
+ * @e sensors can contain a combination of the following flags:
+ * \n INV_X_GYRO, INV_Y_GYRO, INV_Z_GYRO
+ * \n INV_XYZ_GYRO
+ * \n INV_XYZ_ACCEL
+ * @param[in] sensors Mask of sensors to push to FIFO.
+ * @return 0 if successful.
+ */
+int mpu_configure_fifo(unsigned char sensors)
+{
+ unsigned char prev;
+ int result = 0;
+
+ /* Compass data isn't going into the FIFO. Stop trying. */
+ sensors &= ~INV_XYZ_COMPASS;
+
+ if (st.chip_cfg.dmp_on)
+ return 0;
+ else {
+ if (!(st.chip_cfg.sensors))
+ return -1;
+ prev = st.chip_cfg.fifo_enable;
+ st.chip_cfg.fifo_enable = sensors & st.chip_cfg.sensors;
+ if (st.chip_cfg.fifo_enable != sensors)
+ /* You're not getting what you asked for. Some sensors are
+ * asleep.
+ */
+ result = -1;
+ else
+ result = 0;
+ if (sensors || st.chip_cfg.lp_accel_mode)
+ set_int_enable(1);
+ else
+ set_int_enable(0);
+ if (sensors) {
+ if (mpu_reset_fifo()) {
+ st.chip_cfg.fifo_enable = prev;
+ return -1;
+ }
+ }
+ }
+
+ return result;
+}
+
+/**
+ * @brief Get current power state.
+ * @param[in] power_on 1 if turned on, 0 if suspended.
+ * @return 0 if successful.
+ */
+int mpu_get_power_state(unsigned char *power_on)
+{
+ if (st.chip_cfg.sensors)
+ power_on[0] = 1;
+ else
+ power_on[0] = 0;
+ return 0;
+}
+
+/**
+ * @brief Turn specific sensors on/off.
+ * @e sensors can contain a combination of the following flags:
+ * \n INV_X_GYRO, INV_Y_GYRO, INV_Z_GYRO
+ * \n INV_XYZ_GYRO
+ * \n INV_XYZ_ACCEL
+ * \n INV_XYZ_COMPASS
+ * @param[in] sensors Mask of sensors to wake.
+ * @return 0 if successful.
+ */
+int mpu_set_sensors(unsigned char sensors)
+{
+ unsigned char data;
+#ifdef AK89xx_SECONDARY
+ unsigned char user_ctrl;
+#endif
+
+ if (sensors & INV_XYZ_GYRO)
+ data = INV_CLK_PLL;
+ else if (sensors)
+ data = 0;
+ else
+ data = BIT_SLEEP;
+ if (mpu_hal_write(st.hw->addr, st.reg->pwr_mgmt_1, 1, &data)) {
+ st.chip_cfg.sensors = 0;
+ return -1;
+ }
+ st.chip_cfg.clk_src = data & ~BIT_SLEEP;
+
+ data = 0;
+ if (!(sensors & INV_X_GYRO))
+ data |= BIT_STBY_XG;
+ if (!(sensors & INV_Y_GYRO))
+ data |= BIT_STBY_YG;
+ if (!(sensors & INV_Z_GYRO))
+ data |= BIT_STBY_ZG;
+ if (!(sensors & INV_XYZ_ACCEL))
+ data |= BIT_STBY_XYZA;
+ if (mpu_hal_write(st.hw->addr, st.reg->pwr_mgmt_2, 1, &data)) {
+ st.chip_cfg.sensors = 0;
+ return -1;
+ }
+
+ if (sensors && (sensors != INV_XYZ_ACCEL))
+ /* Latched interrupts only used in LP accel mode. */
+ mpu_set_int_latched(0);
+
+#ifdef AK89xx_SECONDARY
+#ifdef AK89xx_BYPASS
+ if (sensors & INV_XYZ_COMPASS)
+ mpu_set_bypass(1);
+ else
+ mpu_set_bypass(0);
+#else
+ if (mpu_hal_read(st.hw->addr, st.reg->user_ctrl, 1, &user_ctrl))
+ return -1;
+ /* Handle AKM power management. */
+ if (sensors & INV_XYZ_COMPASS) {
+ data = AKM_SINGLE_MEASUREMENT;
+ user_ctrl |= BIT_AUX_IF_EN;
+ } else {
+ data = AKM_POWER_DOWN;
+ user_ctrl &= ~BIT_AUX_IF_EN;
+ }
+ if (st.chip_cfg.dmp_on)
+ user_ctrl |= BIT_DMP_EN;
+ else
+ user_ctrl &= ~BIT_DMP_EN;
+ if (mpu_hal_write(st.hw->addr, st.reg->s1_do, 1, &data))
+ return -1;
+ /* Enable/disable I2C master mode. */
+ if (mpu_hal_write(st.hw->addr, st.reg->user_ctrl, 1, &user_ctrl))
+ return -1;
+#endif
+#endif
+
+ st.chip_cfg.sensors = sensors;
+ st.chip_cfg.lp_accel_mode = 0;
+ delay_ms(50);
+ return 0;
+}
+
+/**
+ * @brief Read the MPU interrupt status registers.
+ * @param[out] status Mask of interrupt bits.
+ * @return 0 if successful.
+ */
+int mpu_get_int_status(short *status)
+{
+ unsigned char tmp[2];
+ if (!st.chip_cfg.sensors)
+ return -1;
+ if (mpu_hal_read(st.hw->addr, st.reg->dmp_int_status, 2, tmp))
+ return -1;
+ status[0] = (tmp[0] << 8) | tmp[1];
+ return 0;
+}
+
+/**
+ * @brief Get one packet from the FIFO.
+ * If @e sensors does not contain a particular sensor, disregard the data
+ * returned to that pointer.
+ * \n @e sensors can contain a combination of the following flags:
+ * \n INV_X_GYRO, INV_Y_GYRO, INV_Z_GYRO
+ * \n INV_XYZ_GYRO
+ * \n INV_XYZ_ACCEL
+ * \n If the FIFO has no new data, @e sensors will be zero.
+ * \n If the FIFO is disabled, @e sensors will be zero and this function will
+ * return a non-zero error code.
+ * @param[out] gyro Gyro data in hardware units.
+ * @param[out] accel Accel data in hardware units.
+ * @param[out] timestamp Timestamp in milliseconds.
+ * @param[out] sensors Mask of sensors read from FIFO.
+ * @param[out] more Number of remaining packets.
+ * @return 0 if successful.
+ */
+int mpu_read_fifo(short *gyro, short *accel, unsigned long *timestamp,
+ unsigned char *sensors, unsigned char *more)
+{
+ /* Assumes maximum packet size is gyro (6) + accel (6). */
+ unsigned char data[MAX_PACKET_LENGTH];
+ unsigned char packet_size = 0;
+ unsigned short fifo_count, index = 0;
+
+ if (st.chip_cfg.dmp_on)
+ return -1;
+
+ sensors[0] = 0;
+ if (!st.chip_cfg.sensors)
+ return -1;
+ if (!st.chip_cfg.fifo_enable)
+ return -1;
+
+ if (st.chip_cfg.fifo_enable & INV_X_GYRO)
+ packet_size += 2;
+ if (st.chip_cfg.fifo_enable & INV_Y_GYRO)
+ packet_size += 2;
+ if (st.chip_cfg.fifo_enable & INV_Z_GYRO)
+ packet_size += 2;
+ if (st.chip_cfg.fifo_enable & INV_XYZ_ACCEL)
+ packet_size += 6;
+
+ if (mpu_hal_read(st.hw->addr, st.reg->fifo_count_h, 2, data))
+ return -1;
+ fifo_count = (data[0] << 8) | data[1];
+ if (fifo_count < packet_size)
+ return 0;
+// log_i("FIFO count: %hd\n", fifo_count);
+ if (fifo_count > (st.hw->max_fifo >> 1)) {
+ /* FIFO is 50% full, better check overflow bit. */
+ if (mpu_hal_read(st.hw->addr, st.reg->int_status, 1, data))
+ return -1;
+ if (data[0] & BIT_FIFO_OVERFLOW) {
+ mpu_reset_fifo();
+ return -2;
+ }
+ }
+ get_ms((unsigned long*)timestamp);
+
+ if (mpu_hal_read(st.hw->addr, st.reg->fifo_r_w, packet_size, data))
+ return -1;
+ more[0] = fifo_count / packet_size - 1;
+ sensors[0] = 0;
+
+ if ((index != packet_size) && st.chip_cfg.fifo_enable & INV_XYZ_ACCEL) {
+ accel[0] = (data[index+0] << 8) | data[index+1];
+ accel[1] = (data[index+2] << 8) | data[index+3];
+ accel[2] = (data[index+4] << 8) | data[index+5];
+ sensors[0] |= INV_XYZ_ACCEL;
+ index += 6;
+ }
+ if ((index != packet_size) && st.chip_cfg.fifo_enable & INV_X_GYRO) {
+ gyro[0] = (data[index+0] << 8) | data[index+1];
+ sensors[0] |= INV_X_GYRO;
+ index += 2;
+ }
+ if ((index != packet_size) && st.chip_cfg.fifo_enable & INV_Y_GYRO) {
+ gyro[1] = (data[index+0] << 8) | data[index+1];
+ sensors[0] |= INV_Y_GYRO;
+ index += 2;
+ }
+ if ((index != packet_size) && st.chip_cfg.fifo_enable & INV_Z_GYRO) {
+ gyro[2] = (data[index+0] << 8) | data[index+1];
+ sensors[0] |= INV_Z_GYRO;
+ index += 2;
+ }
+
+ return 0;
+}
+
+/**
+ * @brief Get one unparsed packet from the FIFO.
+ * This function should be used if the packet is to be parsed elsewhere.
+ * @param[in] length Length of one FIFO packet.
+ * @param[in] data FIFO packet.
+ * @param[in] more Number of remaining packets.
+ */
+int mpu_read_fifo_stream(unsigned short length, unsigned char *data,
+ unsigned char *more)
+{
+ unsigned char tmp[2];
+ unsigned short fifo_count;
+ if (!st.chip_cfg.dmp_on)
+ return -1;
+ if (!st.chip_cfg.sensors)
+ return -1;
+
+ if (mpu_hal_read(st.hw->addr, st.reg->fifo_count_h, 2, tmp))
+ return -1;
+ fifo_count = (tmp[0] << 8) | tmp[1];
+ if (fifo_count < length) {
+ more[0] = 0;
+ return -1;
+ }
+ if (fifo_count > (st.hw->max_fifo >> 1)) {
+ /* FIFO is 50% full, better check overflow bit. */
+ if (mpu_hal_read(st.hw->addr, st.reg->int_status, 1, tmp))
+ return -1;
+ if (tmp[0] & BIT_FIFO_OVERFLOW) {
+ mpu_reset_fifo();
+ return -2;
+ }
+ }
+
+ if (mpu_hal_read(st.hw->addr, st.reg->fifo_r_w, length, data))
+ return -1;
+ more[0] = fifo_count / length - 1;
+ return 0;
+}
+
+/**
+ * @brief Set device to bypass mode.
+ * @param[in] bypass_on 1 to enable bypass mode.
+ * @return 0 if successful.
+ */
+int mpu_set_bypass(unsigned char bypass_on)
+{
+ unsigned char tmp;
+
+ if (st.chip_cfg.bypass_mode == bypass_on)
+ return 0;
+
+ if (bypass_on) {
+ if (mpu_hal_read(st.hw->addr, st.reg->user_ctrl, 1, &tmp))
+ return -1;
+ tmp &= ~BIT_AUX_IF_EN;
+ if (mpu_hal_write(st.hw->addr, st.reg->user_ctrl, 1, &tmp))
+ return -1;
+ delay_ms(3);
+ tmp = BIT_BYPASS_EN;
+ if (st.chip_cfg.active_low_int)
+ tmp |= BIT_ACTL;
+ if (st.chip_cfg.latched_int)
+ tmp |= BIT_LATCH_EN | BIT_ANY_RD_CLR;
+ if (mpu_hal_write(st.hw->addr, st.reg->int_pin_cfg, 1, &tmp))
+ return -1;
+ } else {
+ /* Enable I2C master mode if compass is being used. */
+ if (mpu_hal_read(st.hw->addr, st.reg->user_ctrl, 1, &tmp))
+ return -1;
+ if (st.chip_cfg.sensors & INV_XYZ_COMPASS)
+ tmp |= BIT_AUX_IF_EN;
+ else
+ tmp &= ~BIT_AUX_IF_EN;
+ if (mpu_hal_write(st.hw->addr, st.reg->user_ctrl, 1, &tmp))
+ return -1;
+ delay_ms(3);
+ if (st.chip_cfg.active_low_int)
+ tmp = BIT_ACTL;
+ else
+ tmp = 0;
+ if (st.chip_cfg.latched_int)
+ tmp |= BIT_LATCH_EN | BIT_ANY_RD_CLR;
+ if (mpu_hal_write(st.hw->addr, st.reg->int_pin_cfg, 1, &tmp))
+ return -1;
+ }
+ st.chip_cfg.bypass_mode = bypass_on;
+ return 0;
+}
+
+/**
+ * @brief Set interrupt level.
+ * @param[in] active_low 1 for active low, 0 for active high.
+ * @return 0 if successful.
+ */
+int mpu_set_int_level(unsigned char active_low)
+{
+ st.chip_cfg.active_low_int = active_low;
+ return 0;
+}
+
+/**
+ * @brief Enable latched interrupts.
+ * Any MPU register will clear the interrupt.
+ * @param[in] enable 1 to enable, 0 to disable.
+ * @return 0 if successful.
+ */
+int mpu_set_int_latched(unsigned char enable)
+{
+ unsigned char tmp;
+ if (st.chip_cfg.latched_int == enable)
+ return 0;
+
+ if (enable)
+ tmp = BIT_LATCH_EN | BIT_ANY_RD_CLR;
+ else
+ tmp = 0;
+ if (st.chip_cfg.bypass_mode)
+ tmp |= BIT_BYPASS_EN;
+ if (st.chip_cfg.active_low_int)
+ tmp |= BIT_ACTL;
+ if (mpu_hal_write(st.hw->addr, st.reg->int_pin_cfg, 1, &tmp))
+ return -1;
+ st.chip_cfg.latched_int = enable;
+ return 0;
+}
+
+#ifdef MPU6050
+static int get_accel_prod_shift(float *st_shift)
+{
+ unsigned char tmp[4], shift_code[3], ii;
+
+ if (mpu_hal_read(st.hw->addr, 0x0D, 4, tmp))
+ return 0x07;
+
+ shift_code[0] = ((tmp[0] & 0xE0) >> 3) | ((tmp[3] & 0x30) >> 4);
+ shift_code[1] = ((tmp[1] & 0xE0) >> 3) | ((tmp[3] & 0x0C) >> 2);
+ shift_code[2] = ((tmp[2] & 0xE0) >> 3) | (tmp[3] & 0x03);
+ for (ii = 0; ii < 3; ii++) {
+ if (!shift_code[ii]) {
+ st_shift[ii] = 0.f;
+ continue;
+ }
+ /* Equivalent to..
+ * st_shift[ii] = 0.34f * powf(0.92f/0.34f, (shift_code[ii]-1) / 30.f)
+ */
+ st_shift[ii] = 0.34f;
+ while (--shift_code[ii])
+ st_shift[ii] *= 1.034f;
+ }
+ return 0;
+}
+
+static int accel_self_test(long *bias_regular, long *bias_st)
+{
+ int jj, result = 0;
+ float st_shift[3], st_shift_cust, st_shift_var;
+
+ get_accel_prod_shift(st_shift);
+ for(jj = 0; jj < 3; jj++) {
+ st_shift_cust = labs(bias_regular[jj] - bias_st[jj]) / 65536.f;
+ if (st_shift[jj]) {
+ st_shift_var = st_shift_cust / st_shift[jj] - 1.f;
+ if (fabs(st_shift_var) > test.max_accel_var)
+ result |= 1 << jj;
+ } else if ((st_shift_cust < test.min_g) ||
+ (st_shift_cust > test.max_g))
+ result |= 1 << jj;
+ }
+
+ return result;
+}
+
+static int gyro_self_test(long *bias_regular, long *bias_st)
+{
+ int jj, result = 0;
+ unsigned char tmp[3];
+ float st_shift, st_shift_cust, st_shift_var;
+
+ if (mpu_hal_read(st.hw->addr, 0x0D, 3, tmp))
+ return 0x07;
+
+ tmp[0] &= 0x1F;
+ tmp[1] &= 0x1F;
+ tmp[2] &= 0x1F;
+
+ for (jj = 0; jj < 3; jj++) {
+ st_shift_cust = labs(bias_regular[jj] - bias_st[jj]) / 65536.f;
+ if (tmp[jj]) {
+ st_shift = 3275.f / test.gyro_sens;
+ while (--tmp[jj])
+ st_shift *= 1.046f;
+ st_shift_var = st_shift_cust / st_shift - 1.f;
+ if (fabs(st_shift_var) > test.max_gyro_var)
+ result |= 1 << jj;
+ } else if ((st_shift_cust < test.min_dps) ||
+ (st_shift_cust > test.max_dps))
+ result |= 1 << jj;
+ }
+ return result;
+}
+
+#endif
+#ifdef AK89xx_SECONDARY
+static int compass_self_test(void)
+{
+ int result = 0x07;
+
+#ifndef MPU_USE_SPI
+ unsigned char tmp[6];
+ unsigned char tries = 10;
+ short data;
+
+ mpu_set_bypass(1);
+
+ tmp[0] = AKM_POWER_DOWN;
+ if (mpu_hal_write(st.chip_cfg.compass_addr, AKM_REG_CNTL, 1, tmp))
+ return 0x07;
+ tmp[0] = AKM_BIT_SELF_TEST;
+ if (mpu_hal_write(st.chip_cfg.compass_addr, AKM_REG_ASTC, 1, tmp))
+ goto AKM_restore;
+ tmp[0] = AKM_MODE_SELF_TEST;
+ if (mpu_hal_write(st.chip_cfg.compass_addr, AKM_REG_CNTL, 1, tmp))
+ goto AKM_restore;
+
+ do {
+ delay_ms(10);
+ if (mpu_hal_read(st.chip_cfg.compass_addr, AKM_REG_ST1, 1, tmp))
+ goto AKM_restore;
+ if (tmp[0] & AKM_DATA_READY)
+ break;
+ } while (tries--);
+ if (!(tmp[0] & AKM_DATA_READY))
+ goto AKM_restore;
+
+ if (mpu_hal_read(st.chip_cfg.compass_addr, AKM_REG_HXL, 6, tmp))
+ goto AKM_restore;
+
+ result = 0;
+#if defined MPU9150
+ data = (short)(tmp[1] << 8) | tmp[0];
+ if ((data > 100) || (data < -100))
+ result |= 0x01;
+ data = (short)(tmp[3] << 8) | tmp[2];
+ if ((data > 100) || (data < -100))
+ result |= 0x02;
+ data = (short)(tmp[5] << 8) | tmp[4];
+ if ((data > -300) || (data < -1000))
+ result |= 0x04;
+#elif defined MPU9250
+ data = (short)(tmp[1] << 8) | tmp[0];
+ if ((data > 200) || (data < -200))
+ result |= 0x01;
+ data = (short)(tmp[3] << 8) | tmp[2];
+ if ((data > 200) || (data < -200))
+ result |= 0x02;
+ data = (short)(tmp[5] << 8) | tmp[4];
+ if ((data > -800) || (data < -3200))
+ result |= 0x04;
+#endif
+AKM_restore:
+ tmp[0] = 0 | SUPPORTS_AK89xx_HIGH_SENS;
+ mpu_hal_write(st.chip_cfg.compass_addr, AKM_REG_ASTC, 1, tmp);
+ tmp[0] = SUPPORTS_AK89xx_HIGH_SENS;
+ mpu_hal_write(st.chip_cfg.compass_addr, AKM_REG_CNTL, 1, tmp);
+ mpu_set_bypass(0);
+#else
+ // to do - compass self test through spi interface
+#endif
+
+ return result;
+}
+#endif
+
+static int get_st_biases(long *gyro, long *accel, unsigned char hw_test)
+{
+ unsigned char data[MAX_PACKET_LENGTH];
+ unsigned char packet_count, ii;
+ unsigned short fifo_count;
+
+ data[0] = 0x01;
+ data[1] = 0;
+ if (mpu_hal_write(st.hw->addr, st.reg->pwr_mgmt_1, 2, data))
+ return -1;
+ delay_ms(200);
+ data[0] = 0;
+ if (mpu_hal_write(st.hw->addr, st.reg->int_enable, 1, data))
+ return -1;
+ if (mpu_hal_write(st.hw->addr, st.reg->fifo_en, 1, data))
+ return -1;
+ if (mpu_hal_write(st.hw->addr, st.reg->pwr_mgmt_1, 1, data))
+ return -1;
+ if (mpu_hal_write(st.hw->addr, st.reg->i2c_mst, 1, data))
+ return -1;
+ if (mpu_hal_write(st.hw->addr, st.reg->user_ctrl, 1, data))
+ return -1;
+ data[0] = BIT_FIFO_RST | BIT_DMP_RST;
+ if (mpu_hal_write(st.hw->addr, st.reg->user_ctrl, 1, data))
+ return -1;
+ delay_ms(15);
+ data[0] = st.test->reg_lpf;
+ if (mpu_hal_write(st.hw->addr, st.reg->lpf, 1, data))
+ return -1;
+ data[0] = st.test->reg_rate_div;
+ if (mpu_hal_write(st.hw->addr, st.reg->rate_div, 1, data))
+ return -1;
+ if (hw_test)
+ data[0] = st.test->reg_gyro_fsr | 0xE0;
+ else
+ data[0] = st.test->reg_gyro_fsr;
+ if (mpu_hal_write(st.hw->addr, st.reg->gyro_cfg, 1, data))
+ return -1;
+
+ if (hw_test)
+ data[0] = st.test->reg_accel_fsr | 0xE0;
+ else
+ data[0] = test.reg_accel_fsr;
+ if (mpu_hal_write(st.hw->addr, st.reg->accel_cfg, 1, data))
+ return -1;
+ if (hw_test)
+ delay_ms(200);
+
+ /* Fill FIFO for test.wait_ms milliseconds. */
+ data[0] = BIT_FIFO_EN;
+ if (mpu_hal_write(st.hw->addr, st.reg->user_ctrl, 1, data))
+ return -1;
+
+ data[0] = INV_XYZ_GYRO | INV_XYZ_ACCEL;
+ if (mpu_hal_write(st.hw->addr, st.reg->fifo_en, 1, data))
+ return -1;
+ delay_ms(test.wait_ms);
+ data[0] = 0;
+ if (mpu_hal_write(st.hw->addr, st.reg->fifo_en, 1, data))
+ return -1;
+
+ if (mpu_hal_read(st.hw->addr, st.reg->fifo_count_h, 2, data))
+ return -1;
+
+ fifo_count = (data[0] << 8) | data[1];
+ packet_count = fifo_count / MAX_PACKET_LENGTH;
+ gyro[0] = gyro[1] = gyro[2] = 0;
+ accel[0] = accel[1] = accel[2] = 0;
+
+ for (ii = 0; ii < packet_count; ii++) {
+ short accel_cur[3], gyro_cur[3];
+ if (mpu_hal_read(st.hw->addr, st.reg->fifo_r_w, MAX_PACKET_LENGTH, data))
+ return -1;
+ accel_cur[0] = ((short)data[0] << 8) | data[1];
+ accel_cur[1] = ((short)data[2] << 8) | data[3];
+ accel_cur[2] = ((short)data[4] << 8) | data[5];
+ accel[0] += (long)accel_cur[0];
+ accel[1] += (long)accel_cur[1];
+ accel[2] += (long)accel_cur[2];
+ gyro_cur[0] = (((short)data[6] << 8) | data[7]);
+ gyro_cur[1] = (((short)data[8] << 8) | data[9]);
+ gyro_cur[2] = (((short)data[10] << 8) | data[11]);
+ gyro[0] += (long)gyro_cur[0];
+ gyro[1] += (long)gyro_cur[1];
+ gyro[2] += (long)gyro_cur[2];
+ }
+#ifdef EMPL_NO_64BIT
+ gyro[0] = (long)(((float)gyro[0]*65536.f) / test.gyro_sens / packet_count);
+ gyro[1] = (long)(((float)gyro[1]*65536.f) / test.gyro_sens / packet_count);
+ gyro[2] = (long)(((float)gyro[2]*65536.f) / test.gyro_sens / packet_count);
+ if (has_accel) {
+ accel[0] = (long)(((float)accel[0]*65536.f) / test.accel_sens /
+ packet_count);
+ accel[1] = (long)(((float)accel[1]*65536.f) / test.accel_sens /
+ packet_count);
+ accel[2] = (long)(((float)accel[2]*65536.f) / test.accel_sens /
+ packet_count);
+ /* Don't remove gravity! */
+ accel[2] -= 65536L;
+ }
+#else
+ gyro[0] = (long)(((long long)gyro[0]<<16) / test.gyro_sens / packet_count);
+ gyro[1] = (long)(((long long)gyro[1]<<16) / test.gyro_sens / packet_count);
+ gyro[2] = (long)(((long long)gyro[2]<<16) / test.gyro_sens / packet_count);
+ accel[0] = (long)(((long long)accel[0]<<16) / test.accel_sens /
+ packet_count);
+ accel[1] = (long)(((long long)accel[1]<<16) / test.accel_sens /
+ packet_count);
+ accel[2] = (long)(((long long)accel[2]<<16) / test.accel_sens /
+ packet_count);
+ /* Don't remove gravity! */
+ if (accel[2] > 0L)
+ accel[2] -= 65536L;
+ else
+ accel[2] += 65536L;
+#endif
+
+ return 0;
+}
+
+#ifdef MPU6500
+#define REG_6500_XG_ST_DATA 0x0
+#define REG_6500_XA_ST_DATA 0xD
+static const unsigned short mpu_6500_st_tb[256] = {
+ 2620,2646,2672,2699,2726,2753,2781,2808, //7
+ 2837,2865,2894,2923,2952,2981,3011,3041, //15
+ 3072,3102,3133,3165,3196,3228,3261,3293, //23
+ 3326,3359,3393,3427,3461,3496,3531,3566, //31
+ 3602,3638,3674,3711,3748,3786,3823,3862, //39
+ 3900,3939,3979,4019,4059,4099,4140,4182, //47
+ 4224,4266,4308,4352,4395,4439,4483,4528, //55
+ 4574,4619,4665,4712,4759,4807,4855,4903, //63
+ 4953,5002,5052,5103,5154,5205,5257,5310, //71
+ 5363,5417,5471,5525,5581,5636,5693,5750, //79
+ 5807,5865,5924,5983,6043,6104,6165,6226, //87
+ 6289,6351,6415,6479,6544,6609,6675,6742, //95
+ 6810,6878,6946,7016,7086,7157,7229,7301, //103
+ 7374,7448,7522,7597,7673,7750,7828,7906, //111
+ 7985,8065,8145,8227,8309,8392,8476,8561, //119
+ 8647,8733,8820,8909,8998,9088,9178,9270,
+ 9363,9457,9551,9647,9743,9841,9939,10038,
+ 10139,10240,10343,10446,10550,10656,10763,10870,
+ 10979,11089,11200,11312,11425,11539,11654,11771,
+ 11889,12008,12128,12249,12371,12495,12620,12746,
+ 12874,13002,13132,13264,13396,13530,13666,13802,
+ 13940,14080,14221,14363,14506,14652,14798,14946,
+ 15096,15247,15399,15553,15709,15866,16024,16184,
+ 16346,16510,16675,16842,17010,17180,17352,17526,
+ 17701,17878,18057,18237,18420,18604,18790,18978,
+ 19167,19359,19553,19748,19946,20145,20347,20550,
+ 20756,20963,21173,21385,21598,21814,22033,22253,
+ 22475,22700,22927,23156,23388,23622,23858,24097,
+ 24338,24581,24827,25075,25326,25579,25835,26093,
+ 26354,26618,26884,27153,27424,27699,27976,28255,
+ 28538,28823,29112,29403,29697,29994,30294,30597,
+ 30903,31212,31524,31839,32157,32479,32804,33132
+};
+static int accel_6500_self_test(long *bias_regular, long *bias_st, int debug)
+{
+ int i, result = 0, otp_value_zero = 0;
+ float accel_st_al_min, accel_st_al_max;
+ float st_shift_cust[3], st_shift_ratio[3], ct_shift_prod[3], accel_offset_max;
+ unsigned char regs[3];
+ if (mpu_hal_read(st.hw->addr, REG_6500_XA_ST_DATA, 3, regs)) {
+ if(debug)
+ log_i("Reading OTP Register Error.\n");
+ return 0x07;
+ }
+ if(debug)
+ log_i("Accel OTP:%d, %d, %d\n", regs[0], regs[1], regs[2]);
+ for (i = 0; i < 3; i++) {
+ if (regs[i] != 0) {
+ ct_shift_prod[i] = mpu_6500_st_tb[regs[i] - 1];
+ ct_shift_prod[i] *= 65536.f;
+ ct_shift_prod[i] /= test.accel_sens;
+ }
+ else {
+ ct_shift_prod[i] = 0;
+ otp_value_zero = 1;
+ }
+ }
+ if(otp_value_zero == 0) {
+ if(debug)
+ log_i("ACCEL:CRITERIA A\n");
+ for (i = 0; i < 3; i++) {
+ st_shift_cust[i] = bias_st[i] - bias_regular[i];
+ if(debug) {
+ log_i("Bias_Shift=%7.4f, Bias_Reg=%7.4f, Bias_HWST=%7.4f\r\n",
+ st_shift_cust[i]/1.f, bias_regular[i]/1.f,
+ bias_st[i]/1.f);
+ log_i("OTP value: %7.4f\r\n", ct_shift_prod[i]/1.f);
+ }
+
+ st_shift_ratio[i] = st_shift_cust[i] / ct_shift_prod[i] - 1.f;
+
+ if(debug)
+ log_i("ratio=%7.4f, threshold=%7.4f\r\n", st_shift_ratio[i]/1.f,
+ test.max_accel_var/1.f);
+
+ if (fabs(st_shift_ratio[i]) > test.max_accel_var) {
+ if(debug)
+ log_i("ACCEL Fail Axis = %d\n", i);
+ result |= 1 << i; //Error condition
+ }
+ }
+ }
+ else {
+ /* Self Test Pass/Fail Criteria B */
+ accel_st_al_min = test.min_g * 65536.f;
+ accel_st_al_max = test.max_g * 65536.f;
+
+ if(debug) {
+ log_i("ACCEL:CRITERIA B\r\n");
+ log_i("Min MG: %7.4f\r\n", accel_st_al_min/1.f);
+ log_i("Max MG: %7.4f\r\n", accel_st_al_max/1.f);
+ }
+
+ for (i = 0; i < 3; i++) {
+ st_shift_cust[i] = bias_st[i] - bias_regular[i];
+
+ if(debug)
+ log_i("Bias_shift=%7.4f, st=%7.4f, reg=%7.4f\n", st_shift_cust[i]/1.f, bias_st[i]/1.f, bias_regular[i]/1.f);
+ if(st_shift_cust[i] < accel_st_al_min || st_shift_cust[i] > accel_st_al_max) {
+ if(debug)
+ log_i("Accel FAIL axis:%d <= 225mg or >= 675mg\n", i);
+ result |= 1 << i; //Error condition
+ }
+ }
+ }
+
+ if(result == 0) {
+ /* Self Test Pass/Fail Criteria C */
+ accel_offset_max = test.max_g_offset * 65536.f;
+ if(debug)
+ log_i("Accel:CRITERIA C: bias less than %7.4f\n", accel_offset_max/1.f);
+ for (i = 0; i < 3; i++) {
+ if(fabs(bias_regular[i]) > accel_offset_max) {
+ if(debug)
+ log_i("FAILED: Accel axis:%d = %d > 500mg\n", i, bias_regular[i]);
+ result |= 1 << i; //Error condition
+ }
+ }
+ }
+
+ return result;
+}
+
+static int gyro_6500_self_test(long *bias_regular, long *bias_st, int debug)
+{
+ int i, result = 0, otp_value_zero = 0;
+ float gyro_st_al_max;
+ float st_shift_cust[3], st_shift_ratio[3], ct_shift_prod[3], gyro_offset_max;
+ unsigned char regs[3];
+
+ if (mpu_hal_read(st.hw->addr, REG_6500_XG_ST_DATA, 3, regs)) {
+ if(debug)
+ log_i("Reading OTP Register Error.\n");
+ return 0x07;
+ }
+
+ if(debug)
+ log_i("Gyro OTP:%d, %d, %d\r\n", regs[0], regs[1], regs[2]);
+
+ for (i = 0; i < 3; i++) {
+ if (regs[i] != 0) {
+ ct_shift_prod[i] = mpu_6500_st_tb[regs[i] - 1];
+ ct_shift_prod[i] *= 65536.f;
+ ct_shift_prod[i] /= test.gyro_sens;
+ }
+ else {
+ ct_shift_prod[i] = 0;
+ otp_value_zero = 1;
+ }
+ }
+
+ if(otp_value_zero == 0) {
+ if(debug)
+ log_i("GYRO:CRITERIA A\n");
+ /* Self Test Pass/Fail Criteria A */
+ for (i = 0; i < 3; i++) {
+ st_shift_cust[i] = bias_st[i] - bias_regular[i];
+
+ if(debug) {
+ log_i("Bias_Shift=%7.4f, Bias_Reg=%7.4f, Bias_HWST=%7.4f\r\n",
+ st_shift_cust[i]/1.f, bias_regular[i]/1.f,
+ bias_st[i]/1.f);
+ log_i("OTP value: %7.4f\r\n", ct_shift_prod[i]/1.f);
+ }
+
+ st_shift_ratio[i] = st_shift_cust[i] / ct_shift_prod[i];
+
+ if(debug)
+ log_i("ratio=%7.4f, threshold=%7.4f\r\n", st_shift_ratio[i]/1.f,
+ test.max_gyro_var/1.f);
+
+ if (fabs(st_shift_ratio[i]) < test.max_gyro_var) {
+ if(debug)
+ log_i("Gyro Fail Axis = %d\n", i);
+ result |= 1 << i; //Error condition
+ }
+ }
+ }
+ else {
+ /* Self Test Pass/Fail Criteria B */
+ gyro_st_al_max = test.max_dps * 65536.f;
+
+ if(debug) {
+ log_i("GYRO:CRITERIA B\r\n");
+ log_i("Max DPS: %7.4f\r\n", gyro_st_al_max/1.f);
+ }
+
+ for (i = 0; i < 3; i++) {
+ st_shift_cust[i] = bias_st[i] - bias_regular[i];
+
+ if(debug)
+ log_i("Bias_shift=%7.4f, st=%7.4f, reg=%7.4f\n", st_shift_cust[i]/1.f, bias_st[i]/1.f, bias_regular[i]/1.f);
+ if(st_shift_cust[i] < gyro_st_al_max) {
+ if(debug)
+ log_i("GYRO FAIL axis:%d greater than 60dps\n", i);
+ result |= 1 << i; //Error condition
+ }
+ }
+ }
+
+ if(result == 0) {
+ /* Self Test Pass/Fail Criteria C */
+ gyro_offset_max = test.min_dps * 65536.f;
+ if(debug)
+ log_i("Gyro:CRITERIA C: bias less than %7.4f\n", gyro_offset_max/1.f);
+ for (i = 0; i < 3; i++) {
+ if(fabs(bias_regular[i]) > gyro_offset_max) {
+ if(debug)
+ log_i("FAILED: Gyro axis:%d = %d > 20dps\n", i, bias_regular[i]);
+ result |= 1 << i; //Error condition
+ }
+ }
+ }
+ return result;
+}
+
+static int get_st_6500_biases(long *gyro, long *accel, unsigned char hw_test, int debug)
+{
+ unsigned char data[HWST_MAX_PACKET_LENGTH];
+ unsigned char packet_count, ii;
+ unsigned short fifo_count;
+ int s = 0, read_size = 0, ind;
+
+ data[0] = 0x01;
+ data[1] = 0;
+ if (mpu_hal_write(st.hw->addr, st.reg->pwr_mgmt_1, 2, data))
+ return -1;
+ delay_ms(200);
+ data[0] = 0;
+ if (mpu_hal_write(st.hw->addr, st.reg->int_enable, 1, data))
+ return -1;
+ if (mpu_hal_write(st.hw->addr, st.reg->fifo_en, 1, data))
+ return -1;
+ if (mpu_hal_write(st.hw->addr, st.reg->pwr_mgmt_1, 1, data))
+ return -1;
+ if (mpu_hal_write(st.hw->addr, st.reg->i2c_mst, 1, data))
+ return -1;
+ if (mpu_hal_write(st.hw->addr, st.reg->user_ctrl, 1, data))
+ return -1;
+ data[0] = BIT_FIFO_RST | BIT_DMP_RST;
+ if (mpu_hal_write(st.hw->addr, st.reg->user_ctrl, 1, data))
+ return -1;
+ delay_ms(15);
+ data[0] = st.test->reg_lpf;
+ if (mpu_hal_write(st.hw->addr, st.reg->lpf, 1, data))
+ return -1;
+ data[0] = st.test->reg_rate_div;
+ if (mpu_hal_write(st.hw->addr, st.reg->rate_div, 1, data))
+ return -1;
+ if (hw_test)
+ data[0] = st.test->reg_gyro_fsr | 0xE0;
+ else
+ data[0] = st.test->reg_gyro_fsr;
+ if (mpu_hal_write(st.hw->addr, st.reg->gyro_cfg, 1, data))
+ return -1;
+
+ if (hw_test)
+ data[0] = st.test->reg_accel_fsr | 0xE0;
+ else
+ data[0] = test.reg_accel_fsr;
+ if (mpu_hal_write(st.hw->addr, st.reg->accel_cfg, 1, data))
+ return -1;
+
+ delay_ms(test.wait_ms); //wait 200ms for sensors to stabilize
+
+ /* Enable FIFO */
+ data[0] = BIT_FIFO_EN;
+ if (mpu_hal_write(st.hw->addr, st.reg->user_ctrl, 1, data))
+ return -1;
+ data[0] = INV_XYZ_GYRO | INV_XYZ_ACCEL;
+ if (mpu_hal_write(st.hw->addr, st.reg->fifo_en, 1, data))
+ return -1;
+
+ //initialize the bias return values
+ gyro[0] = gyro[1] = gyro[2] = 0;
+ accel[0] = accel[1] = accel[2] = 0;
+
+ if(debug)
+ log_i("Starting Bias Loop Reads\n");
+
+ //start reading samples
+ while (s < test.packet_thresh) {
+ delay_ms(test.sample_wait_ms); //wait 10ms to fill FIFO
+ if (mpu_hal_read(st.hw->addr, st.reg->fifo_count_h, 2, data))
+ return -1;
+ fifo_count = (data[0] << 8) | data[1];
+ packet_count = fifo_count / MAX_PACKET_LENGTH;
+ if ((test.packet_thresh - s) < packet_count)
+ packet_count = test.packet_thresh - s;
+ read_size = packet_count * MAX_PACKET_LENGTH;
+
+ //burst read from FIFO
+ if (mpu_hal_read(st.hw->addr, st.reg->fifo_r_w, read_size, data))
+ return -1;
+ ind = 0;
+ for (ii = 0; ii < packet_count; ii++) {
+ short accel_cur[3], gyro_cur[3];
+ accel_cur[0] = ((short)data[ind + 0] << 8) | data[ind + 1];
+ accel_cur[1] = ((short)data[ind + 2] << 8) | data[ind + 3];
+ accel_cur[2] = ((short)data[ind + 4] << 8) | data[ind + 5];
+ accel[0] += (long)accel_cur[0];
+ accel[1] += (long)accel_cur[1];
+ accel[2] += (long)accel_cur[2];
+ gyro_cur[0] = (((short)data[ind + 6] << 8) | data[ind + 7]);
+ gyro_cur[1] = (((short)data[ind + 8] << 8) | data[ind + 9]);
+ gyro_cur[2] = (((short)data[ind + 10] << 8) | data[ind + 11]);
+ gyro[0] += (long)gyro_cur[0];
+ gyro[1] += (long)gyro_cur[1];
+ gyro[2] += (long)gyro_cur[2];
+ ind += MAX_PACKET_LENGTH;
+ }
+ s += packet_count;
+ }
+
+ if(debug)
+ log_i("Samples: %d\n", s);
+
+ //stop FIFO
+ data[0] = 0;
+ if (mpu_hal_write(st.hw->addr, st.reg->fifo_en, 1, data))
+ return -1;
+
+ gyro[0] = (long)(((long long)gyro[0]<<16) / test.gyro_sens / s);
+ gyro[1] = (long)(((long long)gyro[1]<<16) / test.gyro_sens / s);
+ gyro[2] = (long)(((long long)gyro[2]<<16) / test.gyro_sens / s);
+ accel[0] = (long)(((long long)accel[0]<<16) / test.accel_sens / s);
+ accel[1] = (long)(((long long)accel[1]<<16) / test.accel_sens / s);
+ accel[2] = (long)(((long long)accel[2]<<16) / test.accel_sens / s);
+ /* remove gravity from bias calculation */
+ if (accel[2] > 0L)
+ accel[2] -= 65536L;
+ else
+ accel[2] += 65536L;
+
+
+ if(debug) {
+ log_i("Accel offset data HWST bit=%d: %7.4f %7.4f %7.4f\r\n", hw_test, accel[0]/65536.f, accel[1]/65536.f, accel[2]/65536.f);
+ log_i("Gyro offset data HWST bit=%d: %7.4f %7.4f %7.4f\r\n", hw_test, gyro[0]/65536.f, gyro[1]/65536.f, gyro[2]/65536.f);
+ }
+
+ return 0;
+}
+/**
+ * @brief Trigger gyro/accel/compass self-test for MPU6500/MPU9250
+ * On success/error, the self-test returns a mask representing the sensor(s)
+ * that failed. For each bit, a one (1) represents a "pass" case; conversely,
+ * a zero (0) indicates a failure.
+ *
+ * \n The mask is defined as follows:
+ * \n Bit 0: Gyro.
+ * \n Bit 1: Accel.
+ * \n Bit 2: Compass.
+ *
+ * @param[out] gyro Gyro biases in q16 format.
+ * @param[out] accel Accel biases (if applicable) in q16 format.
+ * @param[in] debug Debug flag used to print out more detailed logs. Must first set up logging in Motion Driver.
+ * @return Result mask (see above).
+ */
+int mpu_run_6500_self_test(long *gyro, long *accel, unsigned char debug)
+{
+ const unsigned char tries = 2;
+ long gyro_st[3], accel_st[3];
+ unsigned char accel_result, gyro_result;
+#ifdef AK89xx_SECONDARY
+ unsigned char compass_result;
+#endif
+ int ii;
+
+ int result;
+ unsigned char accel_fsr, fifo_sensors, sensors_on;
+ unsigned short gyro_fsr, sample_rate, lpf;
+ unsigned char dmp_was_on;
+
+
+
+ if(debug)
+ log_i("Starting MPU6500 HWST!\r\n");
+
+ if (st.chip_cfg.dmp_on) {
+ mpu_set_dmp_state(0);
+ dmp_was_on = 1;
+ } else
+ dmp_was_on = 0;
+
+ /* Get initial settings. */
+ mpu_get_gyro_fsr(&gyro_fsr);
+ mpu_get_accel_fsr(&accel_fsr);
+ mpu_get_lpf(&lpf);
+ mpu_get_sample_rate(&sample_rate);
+ sensors_on = st.chip_cfg.sensors;
+ mpu_get_fifo_config(&fifo_sensors);
+
+ if(debug)
+ log_i("Retrieving Biases\r\n");
+
+ for (ii = 0; ii < tries; ii++)
+ if (!get_st_6500_biases(gyro, accel, 0, debug))
+ break;
+ if (ii == tries) {
+ /* If we reach this point, we most likely encountered an I2C error.
+ * We'll just report an error for all three sensors.
+ */
+ if(debug)
+ log_i("Retrieving Biases Error - possible I2C error\n");
+
+ result = 0;
+ goto restore;
+ }
+
+ if(debug)
+ log_i("Retrieving ST Biases\n");
+
+ for (ii = 0; ii < tries; ii++)
+ if (!get_st_6500_biases(gyro_st, accel_st, 1, debug))
+ break;
+ if (ii == tries) {
+
+ if(debug)
+ log_i("Retrieving ST Biases Error - possible I2C error\n");
+
+ /* Again, probably an I2C error. */
+ result = 0;
+ goto restore;
+ }
+
+ accel_result = accel_6500_self_test(accel, accel_st, debug);
+ if(debug)
+ log_i("Accel Self Test Results: %d\n", accel_result);
+
+ gyro_result = gyro_6500_self_test(gyro, gyro_st, debug);
+ if(debug)
+ log_i("Gyro Self Test Results: %d\n", gyro_result);
+
+ result = 0;
+ if (!gyro_result)
+ result |= 0x01;
+ if (!accel_result)
+ result |= 0x02;
+
+#ifdef AK89xx_SECONDARY
+ compass_result = compass_self_test();
+ if(debug)
+ log_i("Compass Self Test Results: %d\n", compass_result);
+ if (!compass_result)
+ result |= 0x04;
+#else
+ result |= 0x04;
+#endif
+restore:
+ if(debug)
+ log_i("Exiting HWST\n");
+ /* Set to invalid values to ensure no I2C writes are skipped. */
+ st.chip_cfg.gyro_fsr = 0xFF;
+ st.chip_cfg.accel_fsr = 0xFF;
+ st.chip_cfg.lpf = 0xFF;
+ st.chip_cfg.sample_rate = 0xFFFF;
+ st.chip_cfg.sensors = 0xFF;
+ st.chip_cfg.fifo_enable = 0xFF;
+ st.chip_cfg.clk_src = INV_CLK_PLL;
+ mpu_set_gyro_fsr(gyro_fsr);
+ mpu_set_accel_fsr(accel_fsr);
+ mpu_set_lpf(lpf);
+ mpu_set_sample_rate(sample_rate);
+ mpu_set_sensors(sensors_on);
+ mpu_configure_fifo(fifo_sensors);
+
+ if (dmp_was_on)
+ mpu_set_dmp_state(1);
+
+ return result;
+}
+#endif
+ /*
+ * \n This function must be called with the device either face-up or face-down
+ * (z-axis is parallel to gravity).
+ * @param[out] gyro Gyro biases in q16 format.
+ * @param[out] accel Accel biases (if applicable) in q16 format.
+ * @return Result mask (see above).
+ */
+int mpu_run_self_test(long *gyro, long *accel)
+{
+#ifdef MPU6050
+ const unsigned char tries = 2;
+ long gyro_st[3], accel_st[3];
+ unsigned char accel_result, gyro_result;
+#ifdef AK89xx_SECONDARY
+ unsigned char compass_result;
+#endif
+ int ii;
+#endif
+ int result;
+ unsigned char accel_fsr, fifo_sensors, sensors_on;
+ unsigned short gyro_fsr, sample_rate, lpf;
+ unsigned char dmp_was_on;
+
+ if (st.chip_cfg.dmp_on) {
+ mpu_set_dmp_state(0);
+ dmp_was_on = 1;
+ } else
+ dmp_was_on = 0;
+
+ /* Get initial settings. */
+ mpu_get_gyro_fsr(&gyro_fsr);
+ mpu_get_accel_fsr(&accel_fsr);
+ mpu_get_lpf(&lpf);
+ mpu_get_sample_rate(&sample_rate);
+ sensors_on = st.chip_cfg.sensors;
+ mpu_get_fifo_config(&fifo_sensors);
+
+ /* For older chips, the self-test will be different. */
+#if defined MPU6050
+ for (ii = 0; ii < tries; ii++)
+ if (!get_st_biases(gyro, accel, 0))
+ break;
+ if (ii == tries) {
+ /* If we reach this point, we most likely encountered an I2C error.
+ * We'll just report an error for all three sensors.
+ */
+ result = 0;
+ goto restore;
+ }
+ for (ii = 0; ii < tries; ii++)
+ if (!get_st_biases(gyro_st, accel_st, 1))
+ break;
+ if (ii == tries) {
+ /* Again, probably an I2C error. */
+ result = 0;
+ goto restore;
+ }
+ accel_result = accel_self_test(accel, accel_st);
+ gyro_result = gyro_self_test(gyro, gyro_st);
+
+ result = 0;
+ if (!gyro_result)
+ result |= 0x01;
+ if (!accel_result)
+ result |= 0x02;
+
+#ifdef AK89xx_SECONDARY
+ compass_result = compass_self_test();
+ if (!compass_result)
+ result |= 0x04;
+#else
+ result |= 0x04;
+#endif
+restore:
+#elif defined MPU6500
+ /* For now, this function will return a "pass" result for all three sensors
+ * for compatibility with current test applications.
+ */
+ get_st_biases(gyro, accel, 0);
+ result = 0x7;
+#endif
+ /* Set to invalid values to ensure no I2C writes are skipped. */
+ st.chip_cfg.gyro_fsr = 0xFF;
+ st.chip_cfg.accel_fsr = 0xFF;
+ st.chip_cfg.lpf = 0xFF;
+ st.chip_cfg.sample_rate = 0xFFFF;
+ st.chip_cfg.sensors = 0xFF;
+ st.chip_cfg.fifo_enable = 0xFF;
+ st.chip_cfg.clk_src = INV_CLK_PLL;
+ mpu_set_gyro_fsr(gyro_fsr);
+ mpu_set_accel_fsr(accel_fsr);
+ mpu_set_lpf(lpf);
+ mpu_set_sample_rate(sample_rate);
+ mpu_set_sensors(sensors_on);
+ mpu_configure_fifo(fifo_sensors);
+
+ if (dmp_was_on)
+ mpu_set_dmp_state(1);
+
+ return result;
+}
+
+/**
+ * @brief Write to the DMP memory.
+ * This function prevents I2C writes past the bank boundaries. The DMP memory
+ * is only accessible when the chip is awake.
+ * @param[in] mem_addr Memory location (bank << 8 | start address)
+ * @param[in] length Number of bytes to write.
+ * @param[in] data Bytes to write to memory.
+ * @return 0 if successful.
+ */
+int mpu_write_mem(unsigned short mem_addr, unsigned short length,
+ unsigned char *data)
+{
+ unsigned char tmp[2];
+
+ if (!data)
+ return -1;
+ if (!st.chip_cfg.sensors)
+ return -1;
+
+ tmp[0] = (unsigned char)(mem_addr >> 8);
+ tmp[1] = (unsigned char)(mem_addr & 0xFF);
+
+ /* Check bank boundaries. */
+ if (tmp[1] + length > st.hw->bank_size)
+ return -1;
+
+ if (mpu_hal_write(st.hw->addr, st.reg->bank_sel, 2, tmp))
+ return -1;
+ if (mpu_hal_write(st.hw->addr, st.reg->mem_r_w, length, data))
+ return -1;
+ return 0;
+}
+
+/**
+ * @brief Read from the DMP memory.
+ * This function prevents I2C reads past the bank boundaries. The DMP memory
+ * is only accessible when the chip is awake.
+ * @param[in] mem_addr Memory location (bank << 8 | start address)
+ * @param[in] length Number of bytes to read.
+ * @param[out] data Bytes read from memory.
+ * @return 0 if successful.
+ */
+int mpu_read_mem(unsigned short mem_addr, unsigned short length,
+ unsigned char *data)
+{
+ unsigned char tmp[2];
+
+ if (!data)
+ return -1;
+ if (!st.chip_cfg.sensors)
+ return -1;
+
+ tmp[0] = (unsigned char)(mem_addr >> 8);
+ tmp[1] = (unsigned char)(mem_addr & 0xFF);
+
+ /* Check bank boundaries. */
+ if (tmp[1] + length > st.hw->bank_size)
+ return -1;
+
+ if (mpu_hal_write(st.hw->addr, st.reg->bank_sel, 2, tmp))
+ return -1;
+ if (mpu_hal_read(st.hw->addr, st.reg->mem_r_w, length, data))
+ return -1;
+ return 0;
+}
+
+/**
+ * @brief Load and verify DMP image.
+ * @param[in] length Length of DMP image.
+ * @param[in] firmware DMP code.
+ * @param[in] start_addr Starting address of DMP code memory.
+ * @param[in] sample_rate Fixed sampling rate used when DMP is enabled.
+ * @return 0 if successful.
+ */
+int mpu_load_firmware(unsigned short length, const unsigned char *firmware,
+ unsigned short start_addr, unsigned short sample_rate)
+{
+ unsigned short ii;
+ unsigned short this_write;
+ /* Must divide evenly into st.hw->bank_size to avoid bank crossings. */
+#define LOAD_CHUNK (16)
+ static unsigned char cur[LOAD_CHUNK], tmp[2];
+
+ if (st.chip_cfg.dmp_loaded)
+ /* DMP should only be loaded once. */
+ return -1;
+
+ if (!firmware)
+ return -1;
+ for (ii = 0; ii < length; ii += this_write) {
+ this_write = min(LOAD_CHUNK, length - ii);
+ if (mpu_write_mem(ii, this_write, (unsigned char*)&firmware[ii]))
+ return -1;
+ if (mpu_read_mem(ii, this_write, cur))
+ return -1;
+ if (memcmp(firmware+ii, cur, this_write))
+ return -2;
+ }
+
+ /* Set program start address. */
+ tmp[0] = start_addr >> 8;
+ tmp[1] = start_addr & 0xFF;
+ if (mpu_hal_write(st.hw->addr, st.reg->prgm_start_h, 2, tmp))
+ return -1;
+
+ st.chip_cfg.dmp_loaded = 1;
+ st.chip_cfg.dmp_sample_rate = sample_rate;
+ return 0;
+}
+
+/**
+ * @brief Enable/disable DMP support.
+ * @param[in] enable 1 to turn on the DMP.
+ * @return 0 if successful.
+ */
+int mpu_set_dmp_state(unsigned char enable)
+{
+ unsigned char tmp;
+ if (st.chip_cfg.dmp_on == enable)
+ return 0;
+
+ if (enable) {
+ if (!st.chip_cfg.dmp_loaded)
+ return -1;
+ /* Disable data ready interrupt. */
+ set_int_enable(0);
+ /* Disable bypass mode. */
+ mpu_set_bypass(0);
+ /* Keep constant sample rate, FIFO rate controlled by DMP. */
+ mpu_set_sample_rate(st.chip_cfg.dmp_sample_rate);
+ /* Remove FIFO elements. */
+ tmp = 0;
+ mpu_hal_write(st.hw->addr, 0x23, 1, &tmp);
+ st.chip_cfg.dmp_on = 1;
+ /* Enable DMP interrupt. */
+ set_int_enable(1);
+ mpu_reset_fifo();
+ } else {
+ /* Disable DMP interrupt. */
+ set_int_enable(0);
+ /* Restore FIFO settings. */
+ tmp = st.chip_cfg.fifo_enable;
+ mpu_hal_write(st.hw->addr, 0x23, 1, &tmp);
+ st.chip_cfg.dmp_on = 0;
+ mpu_reset_fifo();
+ }
+ return 0;
+}
+
+/**
+ * @brief Get DMP state.
+ * @param[out] enabled 1 if enabled.
+ * @return 0 if successful.
+ */
+int mpu_get_dmp_state(unsigned char *enabled)
+{
+ enabled[0] = st.chip_cfg.dmp_on;
+ return 0;
+}
+
+#ifdef AK89xx_SECONDARY
+/* This initialization is similar to the one in ak8975.c. */
+static int setup_compass(void)
+{
+ unsigned char data[4], akm_addr;
+
+#ifndef MPU_USE_SPI
+ mpu_set_bypass(1);
+
+ /* Find compass. Possible addresses range from 0x0C to 0x0F. */
+ for (akm_addr = 0x0C; akm_addr <= 0x0F; akm_addr++) {
+ int result;
+ result = mpu_hal_read(akm_addr, AKM_REG_WHOAMI, 1, data);
+ if (!result && (data[0] == AKM_WHOAMI))
+ break;
+ }
+
+ if (akm_addr > 0x0F) {
+ /* TODO: Handle this case in all compass-related functions. */
+ log_e("Compass not found.\n");
+ return -1;
+ }
+
+ st.chip_cfg.compass_addr = akm_addr;
+
+ data[0] = AKM_POWER_DOWN;
+ if (mpu_hal_write(st.chip_cfg.compass_addr, AKM_REG_CNTL, 1, data))
+ return -1;
+ delay_ms(1);
+
+ data[0] = AKM_FUSE_ROM_ACCESS;
+ if (mpu_hal_write(st.chip_cfg.compass_addr, AKM_REG_CNTL, 1, data))
+ return -1;
+ delay_ms(1);
+
+ /* Get sensitivity adjustment data from fuse ROM. */
+ if (mpu_hal_read(st.chip_cfg.compass_addr, AKM_REG_ASAX, 3, data))
+ return -1;
+ st.chip_cfg.mag_sens_adj[0] = (long)data[0] + 128;
+ st.chip_cfg.mag_sens_adj[1] = (long)data[1] + 128;
+ st.chip_cfg.mag_sens_adj[2] = (long)data[2] + 128;
+
+ data[0] = AKM_POWER_DOWN;
+ if (mpu_hal_write(st.chip_cfg.compass_addr, AKM_REG_CNTL, 1, data))
+ return -1;
+ delay_ms(1);
+
+ mpu_set_bypass(0);
+
+ /* Set up master mode, master clock, and ES bit. */
+ data[0] = 0x40;
+ if (mpu_hal_write(st.hw->addr, st.reg->i2c_mst, 1, data))
+ return -1;
+
+#else
+ mpu_set_bypass(0);
+
+ akm_addr = 0x0C;
+ st.chip_cfg.compass_addr = akm_addr;
+
+ /* Set up master mode, master clock, and ES bit. */
+ data[0] = 0x40;
+ if (mpu_hal_write(st.hw->addr, st.reg->i2c_mst, 1, data))
+ return -1;
+
+ /* Slave 0 to enable fuse rom access. */
+ data[0] = st.chip_cfg.compass_addr;
+ if (mpu_hal_write(st.hw->addr, st.reg->s0_addr, 1, data))
+ return -1;
+
+ /* Enable fuse rom assess. */
+ data[0] = AKM_REG_CNTL;
+ if (mpu_hal_write(st.hw->addr, st.reg->s0_reg, 1, data))
+ return -1;
+
+ /* Enable slave 0, 1-byte writes. */
+ data[0] = BIT_SLAVE_EN | 1;
+ if (mpu_hal_write(st.hw->addr, st.reg->s0_ctrl, 1, data))
+ return -1;
+
+ /* Set slave 1 data. */
+ data[0] = AKM_FUSE_ROM_ACCESS;
+ if (mpu_hal_write(st.hw->addr, st.reg->s0_do, 1, data))
+ return -1;
+
+ /* Slave 0 reads from AKM adj registers. */
+ data[0] = BIT_I2C_READ | st.chip_cfg.compass_addr;
+ if (mpu_hal_write(st.hw->addr, st.reg->s0_addr, 1, data))
+ return -1;
+
+ /* Compass reads start at this register. */
+ data[0] = AKM_REG_ASAX;
+ if (mpu_hal_write(st.hw->addr, st.reg->s0_reg, 1, data))
+ return -1;
+
+ /* Enable slave 0, 8-byte reads. */
+ data[0] = BIT_SLAVE_EN | 3;
+ if (mpu_hal_write(st.hw->addr, st.reg->s0_ctrl, 1, data))
+ return -1;
+
+ /* Trigger slave 0 actions at each sample. */
+ data[0] = 0x01;
+ if (mpu_hal_write(st.hw->addr, st.reg->i2c_delay_ctrl, 1, data))
+ return -1;
+
+ delay_ms(1);
+
+ if (mpu_hal_read(st.hw->addr, st.reg->raw_compass, 3, data))
+ return -1;
+
+ st.chip_cfg.mag_sens_adj[0] = (long)data[0] + 128;
+ st.chip_cfg.mag_sens_adj[1] = (long)data[1] + 128;
+ st.chip_cfg.mag_sens_adj[2] = (long)data[2] + 128;
+#endif
+
+ /* Slave 0 reads from AKM data registers. */
+ data[0] = BIT_I2C_READ | st.chip_cfg.compass_addr;
+ if (mpu_hal_write(st.hw->addr, st.reg->s0_addr, 1, data))
+ return -1;
+
+ /* Compass reads start at this register. */
+ data[0] = AKM_REG_ST1;
+ if (mpu_hal_write(st.hw->addr, st.reg->s0_reg, 1, data))
+ return -1;
+
+ /* Enable slave 0, 8-byte reads. */
+ data[0] = BIT_SLAVE_EN | 8;
+ if (mpu_hal_write(st.hw->addr, st.reg->s0_ctrl, 1, data))
+ return -1;
+
+ /* Slave 1 changes AKM measurement mode. */
+ data[0] = st.chip_cfg.compass_addr;
+ if (mpu_hal_write(st.hw->addr, st.reg->s1_addr, 1, data))
+ return -1;
+
+ /* AKM measurement mode register. */
+ data[0] = AKM_REG_CNTL;
+ if (mpu_hal_write(st.hw->addr, st.reg->s1_reg, 1, data))
+ return -1;
+
+ /* Enable slave 1, 1-byte writes. */
+ data[0] = BIT_SLAVE_EN | 1;
+ if (mpu_hal_write(st.hw->addr, st.reg->s1_ctrl, 1, data))
+ return -1;
+
+ /* Set slave 1 data. */
+ data[0] = AKM_SINGLE_MEASUREMENT;
+ if (mpu_hal_write(st.hw->addr, st.reg->s1_do, 1, data))
+ return -1;
+
+ /* Trigger slave 0 and slave 1 actions at each sample. */
+ data[0] = 0x03;
+ if (mpu_hal_write(st.hw->addr, st.reg->i2c_delay_ctrl, 1, data))
+ return -1;
+
+#ifdef MPU9150
+ /* For the MPU9150, the auxiliary I2C bus needs to be set to VDD. */
+ data[0] = BIT_I2C_MST_VDDIO;
+ if (mpu_hal_write(st.hw->addr, st.reg->yg_offs_tc, 1, data))
+ return -1;
+#endif
+
+ return 0;
+}
+#endif
+
+/**
+ * @brief Read raw compass data.
+ * @param[out] data Raw data in hardware units.
+ * @param[out] timestamp Timestamp in milliseconds. Null if not needed.
+ * @return 0 if successful.
+ */
+int mpu_get_compass_reg(short *data, unsigned long *timestamp)
+{
+#ifdef AK89xx_SECONDARY
+ unsigned char tmp[9];
+
+ if (!(st.chip_cfg.sensors & INV_XYZ_COMPASS))
+ return -1;
+
+#ifdef AK89xx_BYPASS
+ if (mpu_hal_read(st.chip_cfg.compass_addr, AKM_REG_ST1, 8, tmp))
+ return -1;
+ tmp[8] = AKM_SINGLE_MEASUREMENT;
+ if (mpu_hal_write(st.chip_cfg.compass_addr, AKM_REG_CNTL, 1, tmp+8))
+ return -1;
+#else
+ if (mpu_hal_read(st.hw->addr, st.reg->raw_compass, 8, tmp))
+ return -1;
+#endif
+
+#if defined AK8975_SECONDARY
+ /* AK8975 doesn't have the overrun error bit. */
+ if (!(tmp[0] & AKM_DATA_READY))
+ return -2;
+ if ((tmp[7] & AKM_OVERFLOW) || (tmp[7] & AKM_DATA_ERROR))
+ return -3;
+#elif defined AK8963_SECONDARY
+ /* AK8963 doesn't have the data read error bit. */
+ if (!(tmp[0] & AKM_DATA_READY) || (tmp[0] & AKM_DATA_OVERRUN))
+ return -2;
+ if (tmp[7] & AKM_OVERFLOW)
+ return -3;
+#endif
+ data[0] = (tmp[2] << 8) | tmp[1];
+ data[1] = (tmp[4] << 8) | tmp[3];
+ data[2] = (tmp[6] << 8) | tmp[5];
+
+ data[0] = ((long)data[0] * st.chip_cfg.mag_sens_adj[0]) >> 8;
+ data[1] = ((long)data[1] * st.chip_cfg.mag_sens_adj[1]) >> 8;
+ data[2] = ((long)data[2] * st.chip_cfg.mag_sens_adj[2]) >> 8;
+
+ if (timestamp)
+ get_ms(timestamp);
+ return 0;
+#else
+ return -1;
+#endif
+}
+
+/**
+ * @brief Get the compass full-scale range.
+ * @param[out] fsr Current full-scale range.
+ * @return 0 if successful.
+ */
+int mpu_get_compass_fsr(unsigned short *fsr)
+{
+#ifdef AK89xx_SECONDARY
+ fsr[0] = st.hw->compass_fsr;
+ return 0;
+#else
+ return -1;
+#endif
+}
+
+/**
+ * @brief Enters LP accel motion interrupt mode.
+ * The behaviour of this feature is very different between the MPU6050 and the
+ * MPU6500. Each chip's version of this feature is explained below.
+ *
+ * \n The hardware motion threshold can be between 32mg and 8160mg in 32mg
+ * increments.
+ *
+ * \n Low-power accel mode supports the following frequencies:
+ * \n 1.25Hz, 5Hz, 20Hz, 40Hz
+ *
+ * \n MPU6500:
+ * \n Unlike the MPU6050 version, the hardware does not "lock in" a reference
+ * sample. The hardware monitors the accel data and detects any large change
+ * over a short period of time.
+ *
+ * \n The hardware motion threshold can be between 4mg and 1020mg in 4mg
+ * increments.
+ *
+ * \n MPU6500 Low-power accel mode supports the following frequencies:
+ * \n 1.25Hz, 2.5Hz, 5Hz, 10Hz, 20Hz, 40Hz, 80Hz, 160Hz, 320Hz, 640Hz
+ *
+ * \n\n NOTES:
+ * \n The driver will round down @e thresh to the nearest supported value if
+ * an unsupported threshold is selected.
+ * \n To select a fractional wake-up frequency, round down the value passed to
+ * @e lpa_freq.
+ * \n The MPU6500 does not support a delay parameter. If this function is used
+ * for the MPU6500, the value passed to @e time will be ignored.
+ * \n To disable this mode, set @e lpa_freq to zero. The driver will restore
+ * the previous configuration.
+ *
+ * @param[in] thresh Motion threshold in mg.
+ * @param[in] time Duration in milliseconds that the accel data must
+ * exceed @e thresh before motion is reported.
+ * @param[in] lpa_freq Minimum sampling rate, or zero to disable.
+ * @return 0 if successful.
+ */
+int mpu_lp_motion_interrupt(unsigned short thresh, unsigned char time,
+ unsigned char lpa_freq)
+{
+
+#if defined MPU6500
+ unsigned char data[3];
+#endif
+ if (lpa_freq) {
+#if defined MPU6500
+ unsigned char thresh_hw;
+
+ /* 1LSb = 4mg. */
+ if (thresh > 1020)
+ thresh_hw = 255;
+ else if (thresh < 4)
+ thresh_hw = 1;
+ else
+ thresh_hw = thresh >> 2;
+#endif
+
+ if (!time)
+ /* Minimum duration must be 1ms. */
+ time = 1;
+
+#if defined MPU6500
+ if (lpa_freq > 640)
+ /* At this point, the chip has not been re-configured, so the
+ * function can safely exit.
+ */
+ return -1;
+#endif
+
+ if (!st.chip_cfg.int_motion_only) {
+ /* Store current settings for later. */
+ if (st.chip_cfg.dmp_on) {
+ mpu_set_dmp_state(0);
+ st.chip_cfg.cache.dmp_on = 1;
+ } else
+ st.chip_cfg.cache.dmp_on = 0;
+ mpu_get_gyro_fsr(&st.chip_cfg.cache.gyro_fsr);
+ mpu_get_accel_fsr(&st.chip_cfg.cache.accel_fsr);
+ mpu_get_lpf(&st.chip_cfg.cache.lpf);
+ mpu_get_sample_rate(&st.chip_cfg.cache.sample_rate);
+ st.chip_cfg.cache.sensors_on = st.chip_cfg.sensors;
+ mpu_get_fifo_config(&st.chip_cfg.cache.fifo_sensors);
+ }
+
+#if defined MPU6500
+ /* Disable hardware interrupts. */
+ set_int_enable(0);
+
+ /* Enter full-power accel-only mode, no FIFO/DMP. */
+ data[0] = 0;
+ data[1] = 0;
+ data[2] = BIT_STBY_XYZG;
+ if (mpu_hal_write(st.hw->addr, st.reg->user_ctrl, 3, data))
+ goto lp_int_restore;
+
+ /* Set motion threshold. */
+ data[0] = thresh_hw;
+ if (mpu_hal_write(st.hw->addr, st.reg->motion_thr, 1, data))
+ goto lp_int_restore;
+
+ /* Set wake frequency. */
+ if (lpa_freq == 1)
+ data[0] = INV_LPA_1_25HZ;
+ else if (lpa_freq == 2)
+ data[0] = INV_LPA_2_5HZ;
+ else if (lpa_freq <= 5)
+ data[0] = INV_LPA_5HZ;
+ else if (lpa_freq <= 10)
+ data[0] = INV_LPA_10HZ;
+ else if (lpa_freq <= 20)
+ data[0] = INV_LPA_20HZ;
+ else if (lpa_freq <= 40)
+ data[0] = INV_LPA_40HZ;
+ else if (lpa_freq <= 80)
+ data[0] = INV_LPA_80HZ;
+ else if (lpa_freq <= 160)
+ data[0] = INV_LPA_160HZ;
+ else if (lpa_freq <= 320)
+ data[0] = INV_LPA_320HZ;
+ else
+ data[0] = INV_LPA_640HZ;
+ if (mpu_hal_write(st.hw->addr, st.reg->lp_accel_odr, 1, data))
+ goto lp_int_restore;
+
+ /* Enable motion interrupt (MPU6500 version). */
+ data[0] = BITS_WOM_EN;
+ if (mpu_hal_write(st.hw->addr, st.reg->accel_intel, 1, data))
+ goto lp_int_restore;
+
+ /* Enable cycle mode. */
+ data[0] = BIT_LPA_CYCLE;
+ if (mpu_hal_write(st.hw->addr, st.reg->pwr_mgmt_1, 1, data))
+ goto lp_int_restore;
+
+ /* Enable interrupt. */
+ data[0] = BIT_MOT_INT_EN;
+ if (mpu_hal_write(st.hw->addr, st.reg->int_enable, 1, data))
+ goto lp_int_restore;
+
+ st.chip_cfg.int_motion_only = 1;
+ return 0;
+#endif
+ } else {
+ /* Don't "restore" the previous state if no state has been saved. */
+ int ii;
+ char *cache_ptr = (char*)&st.chip_cfg.cache;
+ for (ii = 0; ii < sizeof(st.chip_cfg.cache); ii++) {
+ if (cache_ptr[ii] != 0)
+ goto lp_int_restore;
+ }
+ /* If we reach this point, motion interrupt mode hasn't been used yet. */
+ return -1;
+ }
+lp_int_restore:
+ /* Set to invalid values to ensure no I2C writes are skipped. */
+ st.chip_cfg.gyro_fsr = 0xFF;
+ st.chip_cfg.accel_fsr = 0xFF;
+ st.chip_cfg.lpf = 0xFF;
+ st.chip_cfg.sample_rate = 0xFFFF;
+ st.chip_cfg.sensors = 0xFF;
+ st.chip_cfg.fifo_enable = 0xFF;
+ st.chip_cfg.clk_src = INV_CLK_PLL;
+ mpu_set_sensors(st.chip_cfg.cache.sensors_on);
+ mpu_set_gyro_fsr(st.chip_cfg.cache.gyro_fsr);
+ mpu_set_accel_fsr(st.chip_cfg.cache.accel_fsr);
+ mpu_set_lpf(st.chip_cfg.cache.lpf);
+ mpu_set_sample_rate(st.chip_cfg.cache.sample_rate);
+ mpu_configure_fifo(st.chip_cfg.cache.fifo_sensors);
+
+ if (st.chip_cfg.cache.dmp_on)
+ mpu_set_dmp_state(1);
+
+#ifdef MPU6500
+ /* Disable motion interrupt (MPU6500 version). */
+ data[0] = 0;
+ if (mpu_hal_write(st.hw->addr, st.reg->accel_intel, 1, data))
+ goto lp_int_restore;
+#endif
+
+ st.chip_cfg.int_motion_only = 0;
+ return 0;
+}
+
+int mpu_enable_int(unsigned char enable)
+{
+ return set_int_enable(1);
+}
+
+/**
+ * @}
+ */