Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependents: Nucleo_BLE_HeartRate Nucleo_BLE_UART Nucleo_BLE_UART
hci/src/hci.c
- Committer:
- sjallouli
- Date:
- 2014-12-19
- Revision:
- 0:a948f5f3904c
File content as of revision 0:a948f5f3904c:
/******************** (C) COPYRIGHT 2013 STMicroelectronics ********************
* File Name : bluenrg_hci.h
* Author : AMS - HEA&RF BU
* Version : V1.0.0
* Date : 4-Oct-2013
* Description : Function for managing HCI interface. Implementation of
* standard HCI commands.
********************************************************************************
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME.
* AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT,
* INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE
* CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING
* INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*******************************************************************************/
/**
******************************************************************************
* @file hci.c
* @author AMS/HESA Application Team
* @brief Function for managing HCI interface.
******************************************************************************
* @copy
*
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*
* <h2><center>© COPYRIGHT 2013 STMicroelectronics</center></h2>
*/
#include "hal_types.h"
#include "osal.h"
#include "ble_status.h"
#include "hal.h"
#include <hci_internal.h>
#include "gp_timer.h"
#if BLE_CONFIG_DBG_ENABLE
#define PRINTF(...) printf(__VA_ARGS__)
#else
#define PRINTF(...)
#endif
#define HCI_LOG_ON 0
#define HCI_READ_PACKET_NUM_MAX (5)
#define MIN(a,b) ((a) < (b) )? (a) : (b)
#define MAX(a,b) ((a) > (b) )? (a) : (b)
static void enqueue_packet(tHciDataPacket * hciReadPacket);
tListNode hciReadPktPool;
tListNode hciReadPktRxQueue;
/* pool of hci read packets */
static tHciDataPacket hciReadPacketBuffer[HCI_READ_PACKET_NUM_MAX];
static uint8_t *hci_buffer = NULL;
static volatile uint16_t hci_pckt_len;
void HCI_Init(void)
{
uint8_t index;
/* Initialize list heads of ready and free hci data packet queues */
list_init_head (&hciReadPktPool);
list_init_head (&hciReadPktRxQueue);
/* Initialize the queue of free hci data packets */
for (index = 0; index < HCI_READ_PACKET_NUM_MAX; index++)
{
list_insert_tail(&hciReadPktPool, (tListNode *)&hciReadPacketBuffer[index]);
}
}
static volatile hci_packet_complete_callback packet_complete_callback = NULL;
static void hci_set_packet_complete_callback(hci_packet_complete_callback cb)
{
packet_complete_callback = cb;
}
void HCI_Input(tHciDataPacket * hciReadPacket)
{
uint8_t byte;
hci_acl_hdr *acl_hdr;
static hci_state state = WAITING_TYPE;
tHalUint16 collected_payload_len = 0;
tHalUint16 payload_len;
hci_buffer = hciReadPacket->dataBuff;
while(hci_pckt_len < HCI_PACKET_SIZE){
if(state == WAITING_TYPE)
hci_pckt_len = 0;
byte = hci_buffer[hci_pckt_len++];
if(state == WAITING_TYPE){
/* Only ACL Data and Events packets are accepted. */
if(byte == HCI_EVENT_PKT){
state = WAITING_EVENT_CODE;
}
// else if(byte == HCI_ACLDATA_PKT){
// state = WAITING_HANDLE;
// }
else{
/* Incorrect type. Reset state machine. */
state = WAITING_TYPE;
}
}
else if(state == WAITING_EVENT_CODE)
state = WAITING_PARAM_LEN;
else if(state == WAITING_HANDLE)
state = WAITING_HANDLE_FLAG;
else if(state == WAITING_HANDLE_FLAG)
state = WAITING_DATA_LEN1;
else if(state == WAITING_DATA_LEN1)
state = WAITING_DATA_LEN2;
else if(state == WAITING_DATA_LEN2){
acl_hdr = (void *)&hci_buffer[HCI_HDR_SIZE];
payload_len = acl_hdr->dlen;
collected_payload_len = 0;
state = WAITING_PAYLOAD;
}
else if(state == WAITING_PARAM_LEN){
payload_len = byte;
collected_payload_len = 0;
state = WAITING_PAYLOAD;
}
else if(state == WAITING_PAYLOAD){
collected_payload_len += 1;
if(collected_payload_len >= payload_len){
/* Reset state machine. */
state = WAITING_TYPE;
enqueue_packet(hciReadPacket);
if(packet_complete_callback){
uint16_t len = hci_pckt_len;
packet_complete_callback(hci_buffer, len);
}
break;
}
}
if(hci_pckt_len >= HCI_MAX_PACKET_SIZE){
/* Packet too long for buffer. Reset state machine. */
state = WAITING_TYPE;
}
}
}
void enqueue_packet(tHciDataPacket * hciReadPacket)
{
hci_uart_pckt *hci_pckt = (void*)hciReadPacket->dataBuff;
hci_event_pckt *event_pckt = (void*)hci_pckt->data;
// Do not enqueue Command Complete or Command Status events
if((hci_pckt->type != HCI_EVENT_PKT) ||
event_pckt->evt == EVT_CMD_COMPLETE ||
event_pckt->evt == EVT_CMD_STATUS){
// Insert the packet back into the pool.
list_insert_tail(&hciReadPktPool, (tListNode *)hciReadPacket);
}
else {
// Insert the packet into the queue of events to be processed.
list_insert_tail(&hciReadPktRxQueue, (tListNode *)hciReadPacket);
}
}
void HCI_Process(void)
{
tHciDataPacket * hciReadPacket = NULL;
Disable_SPI_IRQ();
tHalBool list_empty = list_is_empty(&hciReadPktRxQueue);
/* process any pending events read */
while(list_empty == FALSE)
{
list_remove_head (&hciReadPktRxQueue, (tListNode **)&hciReadPacket);
Enable_SPI_IRQ();
HCI_Event_CB(hciReadPacket->dataBuff);
Disable_SPI_IRQ();
list_insert_tail(&hciReadPktPool, (tListNode *)hciReadPacket);
list_empty = list_is_empty(&hciReadPktRxQueue);
}
Enable_SPI_IRQ();
}
void hci_write(const void* data1, const void* data2, uint32_t n_bytes1, uint32_t n_bytes2){
#if HCI_LOG_ON
PRINTF("HCI <- ");
for(int i=0; i < n_bytes1; i++)
PRINTF("%02X ", *((uint8_t*)data1 + i));
for(int i=0; i < n_bytes2; i++)
PRINTF("%02X ", *((uint8_t*)data2 + i));
PRINTF("\n");
#endif
Hal_Write_Serial(data1, data2, n_bytes1, n_bytes2);
}
int hci_send_cmd(uint16_t ogf, uint16_t ocf, uint8_t plen, void *param)
{
hci_command_hdr hc;
hc.opcode = htobs(cmd_opcode_pack(ogf, ocf));
hc.plen= plen;
uint8_t header[HCI_HDR_SIZE + HCI_COMMAND_HDR_SIZE];
header[0] = HCI_COMMAND_PKT;
Osal_MemCpy(header+1, &hc, sizeof(hc));
hci_write(header, param, sizeof(header), plen);
return 0;
}
static tHalBool new_packet;
void new_hci_event(void *pckt, tHalUint16 len)
{
Disable_SPI_IRQ(); /* Must be re-enabled after packet processing. */
new_packet = TRUE;
}
/* 'to' is timeout in system clock ticks. */
int hci_send_req(struct hci_request *r)
{
tHalUint8 *ptr;
tHalUint16 opcode = htobs(cmd_opcode_pack(r->ogf, r->ocf));
hci_event_pckt *event_pckt;
hci_uart_pckt *hci_hdr;
int try;
int to = DEFAULT_TIMEOUT;
new_packet = FALSE;
hci_set_packet_complete_callback(new_hci_event);
if (hci_send_cmd(r->ogf, r->ocf, r->clen, r->cparam) < 0)
goto failed;
try = 10;
while (try--) {
evt_cmd_complete *cc;
evt_cmd_status *cs;
evt_le_meta_event *me;
int len;
/* Minimum timeout is 1. */
if(to == 0)
to = 1;
if (to > 0) {
struct timer t;
Timer_Set(&t, to);
while(1){
if(Timer_Expired(&t)){
goto failed;
}
if(new_packet){
break;
}
}
}
hci_hdr = (void *)hci_buffer;
if(hci_hdr->type != HCI_EVENT_PKT){
new_packet = FALSE;
Enable_SPI_IRQ();
continue;
}
event_pckt = (void *) (hci_hdr->data);
ptr = hci_buffer + (1 + HCI_EVENT_HDR_SIZE);
len = hci_pckt_len - (1 + HCI_EVENT_HDR_SIZE);
switch (event_pckt->evt) {
case EVT_CMD_STATUS:
cs = (void *) ptr;
if (cs->opcode != opcode)
break;
if (r->event != EVT_CMD_STATUS) {
if (cs->status) {
goto failed;
}
break;
}
r->rlen = MIN(len, r->rlen);
Osal_MemCpy(r->rparam, ptr, r->rlen);
goto done;
case EVT_CMD_COMPLETE:
cc = (void *) ptr;
if (cc->opcode != opcode)
break;
ptr += EVT_CMD_COMPLETE_SIZE;
len -= EVT_CMD_COMPLETE_SIZE;
r->rlen = MIN(len, r->rlen);
Osal_MemCpy(r->rparam, ptr, r->rlen);
goto done;
case EVT_LE_META_EVENT:
me = (void *) ptr;
if (me->subevent != r->event)
break;
len -= 1;
r->rlen = MIN(len, r->rlen);
Osal_MemCpy(r->rparam, me->data, r->rlen);
goto done;
case EVT_HARDWARE_ERROR:
goto failed;
default:
break; // In the meantime there could be other events from the controller.
}
new_packet = FALSE;
Enable_SPI_IRQ();
}
failed:
hci_set_packet_complete_callback(NULL);
Enable_SPI_IRQ();
return -1;
done:
hci_set_packet_complete_callback(NULL);
Enable_SPI_IRQ();
return 0;
}
int hci_reset()
{
struct hci_request rq;
tHalUint8 status;
Osal_MemSet(&rq, 0, sizeof(rq));
rq.ogf = OGF_HOST_CTL;
rq.ocf = OCF_RESET;
rq.rparam = &status;
rq.rlen = 1;
if (hci_send_req(&rq) < 0)
return -1;
if (status) {
return -1;
}
return 0;
}
int hci_disconnect(uint16_t handle, uint8_t reason)
{
struct hci_request rq;
disconnect_cp cp;
uint8_t status;
cp.handle = handle;
cp.reason = reason;
Osal_MemSet(&rq, 0, sizeof(rq));
rq.ogf = OGF_LINK_CTL;
rq.ocf = OCF_DISCONNECT;
rq.cparam = &cp;
rq.clen = DISCONNECT_CP_SIZE;
rq.event = EVT_CMD_STATUS;
rq.rparam = &status;
rq.rlen = 1;
if (hci_send_req(&rq) < 0)
return -1;
if (status) {
return -1;
}
return 0;
}
int hci_le_read_local_version(/* TODO: insert parameters */)
{
struct hci_request rq;
read_local_version_rp resp;
Osal_MemSet(&resp, 0, sizeof(resp));
Osal_MemSet(&rq, 0, sizeof(rq));
rq.ogf = OGF_INFO_PARAM;
rq.ocf = OCF_READ_LOCAL_VERSION;
rq.cparam = NULL;
rq.clen = 0;
rq.rparam = &resp;
rq.rlen = READ_LOCAL_VERSION_RP_SIZE;
if (hci_send_req(&rq) < 0)
return -1;
if (resp.status) {
return -1;
}
return 0;
}
int hci_le_read_buffer_size(uint16_t *pkt_len, uint8_t *max_pkt)
{
struct hci_request rq;
le_read_buffer_size_rp resp;
Osal_MemSet(&resp, 0, sizeof(resp));
Osal_MemSet(&rq, 0, sizeof(rq));
rq.ogf = OGF_LE_CTL;
rq.ocf = OCF_LE_READ_BUFFER_SIZE;
rq.cparam = NULL;
rq.clen = 0;
rq.rparam = &resp;
rq.rlen = LE_READ_BUFFER_SIZE_RP_SIZE;
if (hci_send_req(&rq) < 0)
return -1;
if (resp.status) {
return -1;
}
*pkt_len = resp.pkt_len;
*max_pkt = resp.max_pkt;
return 0;
}
int hci_le_set_advertising_parameters(uint16_t min_interval, uint16_t max_interval, uint8_t advtype,
uint8_t own_bdaddr_type, uint8_t direct_bdaddr_type, tBDAddr direct_bdaddr, uint8_t chan_map,
uint8_t filter)
{
struct hci_request rq;
le_set_adv_parameters_cp adv_cp;
uint8_t status;
Osal_MemSet(&adv_cp, 0, sizeof(adv_cp));
adv_cp.min_interval = min_interval;
adv_cp.max_interval = max_interval;
adv_cp.advtype = advtype;
adv_cp.own_bdaddr_type = own_bdaddr_type;
adv_cp.direct_bdaddr_type = direct_bdaddr_type;
Osal_MemCpy(adv_cp.direct_bdaddr,direct_bdaddr,sizeof(adv_cp.direct_bdaddr));
adv_cp.chan_map = chan_map;
adv_cp.filter = filter;
Osal_MemSet(&rq, 0, sizeof(rq));
rq.ogf = OGF_LE_CTL;
rq.ocf = OCF_LE_SET_ADV_PARAMETERS;
rq.cparam = &adv_cp;
rq.clen = LE_SET_ADV_PARAMETERS_CP_SIZE;
rq.rparam = &status;
rq.rlen = 1;
if (hci_send_req(&rq) < 0)
return -1;
if (status) {
return -1;
}
return 0;
}
int hci_le_set_advertising_data(uint8_t length, const uint8_t data[])
{
struct hci_request rq;
le_set_adv_data_cp adv_cp;
uint8_t status;
Osal_MemSet(&adv_cp, 0, sizeof(adv_cp));
adv_cp.length = length;
Osal_MemCpy(adv_cp.data, data, MIN(31,length));
Osal_MemSet(&rq, 0, sizeof(rq));
rq.ogf = OGF_LE_CTL;
rq.ocf = OCF_LE_SET_ADV_DATA;
rq.cparam = &adv_cp;
rq.clen = LE_SET_ADV_DATA_CP_SIZE;
rq.rparam = &status;
rq.rlen = 1;
if (hci_send_req(&rq) < 0)
return -1;
if (status) {
return -1;
}
return 0;
}
int hci_le_set_advertise_enable(tHalUint8 enable)
{
struct hci_request rq;
le_set_advertise_enable_cp adv_cp;
uint8_t status;
Osal_MemSet(&adv_cp, 0, sizeof(adv_cp));
adv_cp.enable = enable?1:0;
Osal_MemSet(&rq, 0, sizeof(rq));
rq.ogf = OGF_LE_CTL;
rq.ocf = OCF_LE_SET_ADVERTISE_ENABLE;
rq.cparam = &adv_cp;
rq.clen = LE_SET_ADVERTISE_ENABLE_CP_SIZE;
rq.rparam = &status;
rq.rlen = 1;
if (hci_send_req(&rq) < 0)
return -1;
if (status) {
return -1;
}
return 0;
}
int hci_le_rand(uint8_t random_number[8])
{
struct hci_request rq;
le_rand_rp resp;
Osal_MemSet(&resp, 0, sizeof(resp));
Osal_MemSet(&rq, 0, sizeof(rq));
rq.ogf = OGF_LE_CTL;
rq.ocf = OCF_LE_RAND;
rq.cparam = NULL;
rq.clen = 0;
rq.rparam = &resp;
rq.rlen = LE_RAND_RP_SIZE;
if (hci_send_req(&rq) < 0)
return -1;
if (resp.status) {
return -1;
}
Osal_MemCpy(random_number, resp.random, 8);
return 0;
}
int hci_le_set_scan_resp_data(uint8_t length, const uint8_t data[])
{
struct hci_request rq;
le_set_scan_response_data_cp scan_resp_cp;
uint8_t status;
Osal_MemSet(&scan_resp_cp, 0, sizeof(scan_resp_cp));
scan_resp_cp.length = length;
Osal_MemCpy(scan_resp_cp.data, data, MIN(31,length));
Osal_MemSet(&rq, 0, sizeof(rq));
rq.ogf = OGF_LE_CTL;
rq.ocf = OCF_LE_SET_SCAN_RESPONSE_DATA;
rq.cparam = &scan_resp_cp;
rq.clen = LE_SET_SCAN_RESPONSE_DATA_CP_SIZE;
rq.rparam = &status;
rq.rlen = 1;
if (hci_send_req(&rq) < 0)
return -1;
if (status) {
return -1;
}
return 0;
}
int hci_le_read_advertising_channel_tx_power(int8_t *tx_power_level)
{
struct hci_request rq;
le_read_adv_channel_tx_power_rp resp;
Osal_MemSet(&resp, 0, sizeof(resp));
Osal_MemSet(&rq, 0, sizeof(rq));
rq.ogf = OGF_LE_CTL;
rq.ocf = OCF_LE_READ_ADV_CHANNEL_TX_POWER;
rq.cparam = NULL;
rq.clen = 0;
rq.rparam = &resp;
rq.rlen = LE_RAND_RP_SIZE;
if (hci_send_req(&rq) < 0)
return -1;
if (resp.status) {
return -1;
}
*tx_power_level = resp.level;
return 0;
}
int hci_le_set_random_address(tBDAddr bdaddr)
{
struct hci_request rq;
le_set_random_address_cp set_rand_addr_cp;
uint8_t status;
Osal_MemSet(&set_rand_addr_cp, 0, sizeof(set_rand_addr_cp));
Osal_MemCpy(set_rand_addr_cp.bdaddr, bdaddr, sizeof(tBDAddr));
Osal_MemSet(&rq, 0, sizeof(rq));
rq.ogf = OGF_LE_CTL;
rq.ocf = OCF_LE_SET_RANDOM_ADDRESS;
rq.cparam = &set_rand_addr_cp;
rq.clen = LE_SET_RANDOM_ADDRESS_CP_SIZE;
rq.rparam = &status;
rq.rlen = 1;
if (hci_send_req(&rq) < 0)
return -1;
if (status) {
return -1;
}
return 0;
}
int hci_read_bd_addr(tBDAddr bdaddr)
{
struct hci_request rq;
read_bd_addr_rp resp;
Osal_MemSet(&resp, 0, sizeof(resp));
Osal_MemSet(&rq, 0, sizeof(rq));
rq.ogf = OGF_INFO_PARAM;
rq.ocf = OCF_READ_BD_ADDR;
rq.cparam = NULL;
rq.clen = 0;
rq.rparam = &resp;
rq.rlen = READ_BD_ADDR_RP_SIZE;
if (hci_send_req(&rq) < 0)
return -1;
if (resp.status) {
return -1;
}
Osal_MemCpy(bdaddr, resp.bdaddr, sizeof(tBDAddr));
return 0;
}
int hci_le_create_connection(uint16_t interval, uint16_t window, uint8_t initiator_filter, uint8_t peer_bdaddr_type,
const tBDAddr peer_bdaddr, uint8_t own_bdaddr_type, uint16_t min_interval, uint16_t max_interval,
uint16_t latency, uint16_t supervision_timeout, uint16_t min_ce_length, uint16_t max_ce_length)
{
struct hci_request rq;
le_create_connection_cp create_cp;
uint8_t status;
Osal_MemSet(&create_cp, 0, sizeof(create_cp));
create_cp.interval = interval;
create_cp.window = window;
create_cp.initiator_filter = initiator_filter;
create_cp.peer_bdaddr_type = peer_bdaddr_type;
Osal_MemCpy(create_cp.peer_bdaddr, peer_bdaddr, sizeof(tBDAddr));
create_cp.own_bdaddr_type = own_bdaddr_type;
create_cp.min_interval=min_interval;
create_cp.max_interval=max_interval;
create_cp.latency = latency;
create_cp.supervision_timeout=supervision_timeout;
create_cp.min_ce_length=min_ce_length;
create_cp.max_ce_length=max_ce_length;
Osal_MemSet(&rq, 0, sizeof(rq));
rq.ogf = OGF_LE_CTL;
rq.ocf = OCF_LE_CREATE_CONN;
rq.cparam = &create_cp;
rq.clen = LE_CREATE_CONN_CP_SIZE;
rq.event = EVT_CMD_STATUS;
rq.rparam = &status;
rq.rlen = 1;
if (hci_send_req(&rq) < 0)
return -1;
if (status) {
return -1;
}
return 0;
}
int hci_le_encrypt(uint8_t key[16], uint8_t plaintextData[16], uint8_t encryptedData[16])
{
struct hci_request rq;
le_encrypt_cp params;
le_encrypt_rp resp;
Osal_MemSet(&resp, 0, sizeof(resp));
Osal_MemCpy(params.key, key, 16);
Osal_MemCpy(params.plaintext, plaintextData, 16);
Osal_MemSet(&rq, 0, sizeof(rq));
rq.ogf = OGF_LE_CTL;
rq.ocf = OCF_LE_ENCRYPT;
rq.cparam = ¶ms;
rq.clen = LE_ENCRYPT_CP_SIZE;
rq.rparam = &resp;
rq.rlen = LE_ENCRYPT_RP_SIZE;
if (hci_send_req(&rq) < 0){
return -1;
}
if (resp.status) {
return -1;
}
Osal_MemCpy(encryptedData, resp.encdata, 16);
return 0;
}
int hci_le_ltk_request_reply(uint8_t key[16])
{
struct hci_request rq;
le_ltk_reply_cp params;
le_ltk_reply_rp resp;
Osal_MemSet(&resp, 0, sizeof(resp));
params.handle = 1;
Osal_MemCpy(params.key, key, 16);
Osal_MemSet(&rq, 0, sizeof(rq));
rq.ogf = OGF_LE_CTL;
rq.ocf = OCF_LE_LTK_REPLY;
rq.cparam = ¶ms;
rq.clen = LE_LTK_REPLY_CP_SIZE;
rq.rparam = &resp;
rq.rlen = LE_LTK_REPLY_RP_SIZE;
if (hci_send_req(&rq) < 0)
return -1;
if (resp.status) {
return -1;
}
return 0;
}
int hci_le_ltk_request_neg_reply()
{
struct hci_request rq;
le_ltk_neg_reply_cp params;
le_ltk_neg_reply_rp resp;
Osal_MemSet(&resp, 0, sizeof(resp));
params.handle = 1;
Osal_MemSet(&rq, 0, sizeof(rq));
rq.ogf = OGF_LE_CTL;
rq.ocf = OCF_LE_LTK_NEG_REPLY;
rq.cparam = ¶ms;
rq.clen = LE_LTK_NEG_REPLY_CP_SIZE;
rq.rparam = &resp;
rq.rlen = LE_LTK_NEG_REPLY_RP_SIZE;
if (hci_send_req(&rq) < 0)
return -1;
if (resp.status) {
return -1;
}
return 0;
}
int hci_le_read_white_list_size(uint8_t *size)
{
struct hci_request rq;
le_read_white_list_size_rp resp;
Osal_MemSet(&resp, 0, sizeof(resp));
Osal_MemSet(&rq, 0, sizeof(rq));
rq.ogf = OGF_LE_CTL;
rq.ocf = OCF_LE_READ_WHITE_LIST_SIZE;
rq.rparam = &resp;
rq.rlen = LE_READ_WHITE_LIST_SIZE_RP_SIZE;
if (hci_send_req(&rq) < 0){
return -1;
}
if (resp.status) {
return -1;
}
*size = resp.size;
return 0;
}
int hci_le_clear_white_list()
{
struct hci_request rq;
uint8_t status;
Osal_MemSet(&rq, 0, sizeof(rq));
rq.ogf = OGF_LE_CTL;
rq.ocf = OCF_LE_CLEAR_WHITE_LIST;
rq.rparam = &status;
rq.rlen = 1;
if (hci_send_req(&rq) < 0){
return -1;
}
if (status) {
return -1;
}
return 0;
}
int hci_le_add_device_to_white_list(uint8_t bdaddr_type, tBDAddr bdaddr)
{
struct hci_request rq;
le_add_device_to_white_list_cp params;
uint8_t status;
params.bdaddr_type = bdaddr_type;
Osal_MemCpy(params.bdaddr, bdaddr, 6);
Osal_MemSet(&rq, 0, sizeof(rq));
rq.ogf = OGF_LE_CTL;
rq.ocf = OCF_LE_ADD_DEVICE_TO_WHITE_LIST;
rq.cparam = ¶ms;
rq.clen = LE_ADD_DEVICE_TO_WHITE_LIST_CP_SIZE;
rq.rparam = &status;
rq.rlen = 1;
if (hci_send_req(&rq) < 0){
return -1;
}
if (status) {
return -1;
}
return 0;
}
int hci_le_remove_device_from_white_list(uint8_t bdaddr_type, tBDAddr bdaddr)
{
struct hci_request rq;
le_remove_device_from_white_list_cp params;
uint8_t status;
params.bdaddr_type = bdaddr_type;
Osal_MemCpy(params.bdaddr, bdaddr, 6);
Osal_MemSet(&rq, 0, sizeof(rq));
rq.ogf = OGF_LE_CTL;
rq.ocf = OCF_LE_REMOVE_DEVICE_FROM_WHITE_LIST;
rq.cparam = ¶ms;
rq.clen = LE_REMOVE_DEVICE_FROM_WHITE_LIST_CP_SIZE;
rq.rparam = &status;
rq.rlen = 1;
if (hci_send_req(&rq) < 0){
return -1;
}
if (status) {
return -1;
}
return 0;
}
int hci_read_transmit_power_level(uint16_t *conn_handle, uint8_t type, int8_t * tx_level)
{
struct hci_request rq;
read_transmit_power_level_cp params;
read_transmit_power_level_rp resp;
Osal_MemSet(&resp, 0, sizeof(resp));
params.handle = *conn_handle;
params.type = type;
Osal_MemSet(&rq, 0, sizeof(rq));
rq.ogf = OGF_HOST_CTL;
rq.ocf = OCF_READ_TRANSMIT_POWER_LEVEL;
rq.cparam = ¶ms;
rq.clen = READ_TRANSMIT_POWER_LEVEL_CP_SIZE;
rq.rparam = &resp;
rq.rlen = READ_TRANSMIT_POWER_LEVEL_RP_SIZE;
if (hci_send_req(&rq) < 0){
return -1;
}
if (resp.status) {
return -1;
}
*conn_handle = resp.handle;
*tx_level = resp.handle;
return 0;
}
int hci_read_rssi(uint16_t *conn_handle, int8_t * rssi)
{
struct hci_request rq;
read_rssi_cp params;
read_rssi_rp resp;
Osal_MemSet(&resp, 0, sizeof(resp));
params.handle = *conn_handle;
Osal_MemSet(&rq, 0, sizeof(rq));
rq.ogf = OGF_STATUS_PARAM;
rq.ocf = OCF_READ_RSSI;
rq.cparam = ¶ms;
rq.clen = READ_RSSI_CP_SIZE;
rq.rparam = &resp;
rq.rlen = READ_RSSI_RP_SIZE;
if (hci_send_req(&rq) < 0){
return -1;
}
if (resp.status) {
return -1;
}
*conn_handle = resp.handle;
*rssi = resp.rssi;
return 0;
}
int hci_le_read_local_supported_features(uint8_t *features)
{
struct hci_request rq;
le_read_local_supported_features_rp resp;
Osal_MemSet(&resp, 0, sizeof(resp));
Osal_MemSet(&rq, 0, sizeof(rq));
rq.ogf = OGF_LE_CTL;
rq.ocf = OCF_LE_READ_LOCAL_SUPPORTED_FEATURES;
rq.rparam = &resp;
rq.rlen = LE_READ_LOCAL_SUPPORTED_FEATURES_RP_SIZE;
if (hci_send_req(&rq) < 0){
return -1;
}
if (resp.status) {
return -1;
}
Osal_MemCpy(features, resp.features, sizeof(resp.features));
return 0;
}
int hci_le_read_channel_map(uint16_t conn_handle, uint8_t ch_map[5])
{
struct hci_request rq;
le_read_channel_map_cp params;
le_read_channel_map_rp resp;
Osal_MemSet(&resp, 0, sizeof(resp));
params.handle = conn_handle;
Osal_MemSet(&rq, 0, sizeof(rq));
rq.ogf = OGF_LE_CTL;
rq.ocf = OCF_LE_READ_CHANNEL_MAP;
rq.cparam = ¶ms;
rq.clen = LE_READ_CHANNEL_MAP_CP_SIZE;
rq.rparam = &resp;
rq.rlen = LE_READ_CHANNEL_MAP_RP_SIZE;
if (hci_send_req(&rq) < 0){
return -1;
}
if (resp.status) {
return -1;
}
Osal_MemCpy(ch_map, resp.map, 5);
return 0;
}
int hci_le_read_supported_states(uint8_t states[8])
{
struct hci_request rq;
le_read_supported_states_rp resp;
Osal_MemSet(&resp, 0, sizeof(resp));
Osal_MemSet(&rq, 0, sizeof(rq));
rq.ogf = OGF_LE_CTL;
rq.ocf = OCF_LE_READ_SUPPORTED_STATES;
rq.rparam = &resp;
rq.rlen = LE_READ_SUPPORTED_STATES_RP_SIZE;
if (hci_send_req(&rq) < 0){
return -1;
}
if (resp.status) {
return -1;
}
Osal_MemCpy(states, resp.states, 8);
return 0;
}
int hci_le_receiver_test(uint8_t frequency)
{
struct hci_request rq;
le_receiver_test_cp params;
uint8_t status;
params.frequency = frequency;
Osal_MemSet(&rq, 0, sizeof(rq));
rq.ogf = OGF_LE_CTL;
rq.ocf = OCF_LE_RECEIVER_TEST;
rq.cparam = ¶ms;
rq.clen = LE_RECEIVER_TEST_CP_SIZE;
rq.rparam = &status;
rq.rlen = 1;
if (hci_send_req(&rq) < 0){
return -1;
}
if (status) {
return -1;
}
return 0;
}
int hci_le_transmitter_test(uint8_t frequency, uint8_t length, uint8_t payload)
{
struct hci_request rq;
le_transmitter_test_cp params;
uint8_t status;
params.frequency = frequency;
params.length = length;
params.payload = payload;
Osal_MemSet(&rq, 0, sizeof(rq));
rq.ogf = OGF_LE_CTL;
rq.ocf = OCF_LE_TRANSMITTER_TEST;
rq.cparam = ¶ms;
rq.clen = LE_TRANSMITTER_TEST_CP_SIZE;
rq.rparam = &status;
rq.rlen = 1;
if (hci_send_req(&rq) < 0){
return -1;
}
if (status) {
return -1;
}
return 0;
}
int hci_le_test_end(uint16_t *num_pkts)
{
struct hci_request rq;
le_test_end_rp resp;
Osal_MemSet(&resp, 0, sizeof(resp));
Osal_MemSet(&rq, 0, sizeof(rq));
rq.ogf = OGF_LE_CTL;
rq.ocf = OCF_LE_TEST_END;
rq.rparam = &resp;
rq.rlen = LE_TEST_END_RP_SIZE;
if (hci_send_req(&rq) < 0){
return -1;
}
if (resp.status) {
return -1;
}
*num_pkts = resp.num_pkts;
return 0;
}