Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed STM32L152withMPU-9250
main.cpp@0:1a6e8ffa801b, 2015-04-30 (annotated)
- Committer:
 - xosuuu
 - Date:
 - Thu Apr 30 11:22:00 2015 +0000
 - Revision:
 - 0:1a6e8ffa801b
 - Child:
 - 1:61bf659e4a1f
 
void getCompassOrientation()
Who changed what in which revision?
| User | Revision | Line number | New contents of line | 
|---|---|---|---|
| xosuuu | 0:1a6e8ffa801b | 1 | #include "mbed.h" | 
| xosuuu | 0:1a6e8ffa801b | 2 | #include "MPU9250.h" | 
| xosuuu | 0:1a6e8ffa801b | 3 | |
| xosuuu | 0:1a6e8ffa801b | 4 | //----------------------------------------------- | 
| xosuuu | 0:1a6e8ffa801b | 5 | // Hyperterminal configuration: | 
| xosuuu | 0:1a6e8ffa801b | 6 | // 9600 bauds, 8-bit data, 1 stop bit, no parity | 
| xosuuu | 0:1a6e8ffa801b | 7 | //----------------------------------------------- | 
| xosuuu | 0:1a6e8ffa801b | 8 | |
| xosuuu | 0:1a6e8ffa801b | 9 | Serial pc(USBTX, USBRX); // Default: 9600 bauds, 8-bit data, 1 stop bit, no parity | 
| xosuuu | 0:1a6e8ffa801b | 10 | MPU9250 mpu9250; | 
| xosuuu | 0:1a6e8ffa801b | 11 | Timer t; | 
| xosuuu | 0:1a6e8ffa801b | 12 | //DigitalOut myled(LED1); | 
| xosuuu | 0:1a6e8ffa801b | 13 | |
| xosuuu | 0:1a6e8ffa801b | 14 | float sum = 0; | 
| xosuuu | 0:1a6e8ffa801b | 15 | uint32_t sumCount = 0; | 
| xosuuu | 0:1a6e8ffa801b | 16 | char buffer[14]; | 
| xosuuu | 0:1a6e8ffa801b | 17 | uint8_t dato_leido[2]; | 
| xosuuu | 0:1a6e8ffa801b | 18 | |
| xosuuu | 0:1a6e8ffa801b | 19 | int main() { | 
| xosuuu | 0:1a6e8ffa801b | 20 | |
| xosuuu | 0:1a6e8ffa801b | 21 | //___ Set up I2C: use fast (400 kHz) I2C ___ | 
| xosuuu | 0:1a6e8ffa801b | 22 | i2c.frequency(400000); | 
| xosuuu | 0:1a6e8ffa801b | 23 | |
| xosuuu | 0:1a6e8ffa801b | 24 | pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock); | 
| xosuuu | 0:1a6e8ffa801b | 25 | |
| xosuuu | 0:1a6e8ffa801b | 26 | t.start(); // Timer ON | 
| xosuuu | 0:1a6e8ffa801b | 27 | |
| xosuuu | 0:1a6e8ffa801b | 28 | // Read the WHO_AM_I register, this is a good test of communication | 
| xosuuu | 0:1a6e8ffa801b | 29 | uint8_t whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); | 
| xosuuu | 0:1a6e8ffa801b | 30 | |
| xosuuu | 0:1a6e8ffa801b | 31 | pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x71\n\r"); | 
| xosuuu | 0:1a6e8ffa801b | 32 | if (I2Cstate != 0) // error on I2C | 
| xosuuu | 0:1a6e8ffa801b | 33 | pc.printf("I2C failure while reading WHO_AM_I register"); | 
| xosuuu | 0:1a6e8ffa801b | 34 | |
| xosuuu | 0:1a6e8ffa801b | 35 | if (whoami == 0x71) // WHO_AM_I should always be 0x71 | 
| xosuuu | 0:1a6e8ffa801b | 36 | { | 
| xosuuu | 0:1a6e8ffa801b | 37 | pc.printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami); | 
| xosuuu | 0:1a6e8ffa801b | 38 | pc.printf("MPU9250 is online...\n\r"); | 
| xosuuu | 0:1a6e8ffa801b | 39 | sprintf(buffer, "0x%x", whoami); | 
| xosuuu | 0:1a6e8ffa801b | 40 | wait(1); | 
| xosuuu | 0:1a6e8ffa801b | 41 | |
| xosuuu | 0:1a6e8ffa801b | 42 | mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration | 
| xosuuu | 0:1a6e8ffa801b | 43 | |
| xosuuu | 0:1a6e8ffa801b | 44 | mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values (accelerometer and gyroscope self test) | 
| xosuuu | 0:1a6e8ffa801b | 45 | pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]); | 
| xosuuu | 0:1a6e8ffa801b | 46 | pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]); | 
| xosuuu | 0:1a6e8ffa801b | 47 | pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]); | 
| xosuuu | 0:1a6e8ffa801b | 48 | pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]); | 
| xosuuu | 0:1a6e8ffa801b | 49 | pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]); | 
| xosuuu | 0:1a6e8ffa801b | 50 | pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]); | 
| xosuuu | 0:1a6e8ffa801b | 51 | |
| xosuuu | 0:1a6e8ffa801b | 52 | mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometer, load biases in bias registers | 
| xosuuu | 0:1a6e8ffa801b | 53 | pc.printf("x gyro bias = %f\n\r", gyroBias[0]); | 
| xosuuu | 0:1a6e8ffa801b | 54 | pc.printf("y gyro bias = %f\n\r", gyroBias[1]); | 
| xosuuu | 0:1a6e8ffa801b | 55 | pc.printf("z gyro bias = %f\n\r", gyroBias[2]); | 
| xosuuu | 0:1a6e8ffa801b | 56 | pc.printf("x accel bias = %f\n\r", accelBias[0]); | 
| xosuuu | 0:1a6e8ffa801b | 57 | pc.printf("y accel bias = %f\n\r", accelBias[1]); | 
| xosuuu | 0:1a6e8ffa801b | 58 | pc.printf("z accel bias = %f\n\r", accelBias[2]); | 
| xosuuu | 0:1a6e8ffa801b | 59 | wait(2); | 
| xosuuu | 0:1a6e8ffa801b | 60 | |
| xosuuu | 0:1a6e8ffa801b | 61 | // Initialize device for active mode read of acclerometer, gyroscope, and temperature | 
| xosuuu | 0:1a6e8ffa801b | 62 | mpu9250.initMPU9250(); | 
| xosuuu | 0:1a6e8ffa801b | 63 | pc.printf("MPU9250 initialized for active data mode....\n\r"); | 
| xosuuu | 0:1a6e8ffa801b | 64 | |
| xosuuu | 0:1a6e8ffa801b | 65 | // Initialize device for active mode read of magnetometer, 16 bit resolution, 100Hz. | 
| xosuuu | 0:1a6e8ffa801b | 66 | mpu9250.initAK8963(magCalibration); | 
| xosuuu | 0:1a6e8ffa801b | 67 | pc.printf("AK8963 initialized for active data mode....\n\r"); | 
| xosuuu | 0:1a6e8ffa801b | 68 | pc.printf("Accelerometer full-scale range = %f g\n\r", 2.0f*(float)(1<<Ascale)); | 
| xosuuu | 0:1a6e8ffa801b | 69 | pc.printf("Gyroscope full-scale range = %f deg/s\n\r", 250.0f*(float)(1<<Gscale)); | 
| xosuuu | 0:1a6e8ffa801b | 70 | if(Mscale == 0) pc.printf("Magnetometer resolution = 14 bits\n\r"); | 
| xosuuu | 0:1a6e8ffa801b | 71 | if(Mscale == 1) pc.printf("Magnetometer resolution = 16 bits\n\r"); | 
| xosuuu | 0:1a6e8ffa801b | 72 | if(Mmode == 2) pc.printf("Magnetometer ODR = 8 Hz\n\r"); | 
| xosuuu | 0:1a6e8ffa801b | 73 | if(Mmode == 6) pc.printf("Magnetometer ODR = 100 Hz\n\r"); | 
| xosuuu | 0:1a6e8ffa801b | 74 | wait(1); | 
| xosuuu | 0:1a6e8ffa801b | 75 | } | 
| xosuuu | 0:1a6e8ffa801b | 76 | |
| xosuuu | 0:1a6e8ffa801b | 77 | else // Connection failure | 
| xosuuu | 0:1a6e8ffa801b | 78 | { | 
| xosuuu | 0:1a6e8ffa801b | 79 | pc.printf("Could not connect to MPU9250: \n\r"); | 
| xosuuu | 0:1a6e8ffa801b | 80 | pc.printf("%#x \n", whoami); | 
| xosuuu | 0:1a6e8ffa801b | 81 | sprintf(buffer, "WHO_AM_I 0x%x", whoami); | 
| xosuuu | 0:1a6e8ffa801b | 82 | while(1) ; // Loop forever if communication doesn't happen | 
| xosuuu | 0:1a6e8ffa801b | 83 | } | 
| xosuuu | 0:1a6e8ffa801b | 84 | |
| xosuuu | 0:1a6e8ffa801b | 85 | mpu9250.getAres(); // Get accelerometer sensitivity | 
| xosuuu | 0:1a6e8ffa801b | 86 | mpu9250.getGres(); // Get gyro sensitivity | 
| xosuuu | 0:1a6e8ffa801b | 87 | mpu9250.getMres(); // Get magnetometer sensitivity | 
| xosuuu | 0:1a6e8ffa801b | 88 | pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes); | 
| xosuuu | 0:1a6e8ffa801b | 89 | pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes); | 
| xosuuu | 0:1a6e8ffa801b | 90 | pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes); | 
| xosuuu | 0:1a6e8ffa801b | 91 | magbias[0] = +470.; // User environmental x-axis correction in milliGauss, should be automatically calculated | 
| xosuuu | 0:1a6e8ffa801b | 92 | magbias[1] = +120.; // User environmental x-axis correction in milliGauss | 
| xosuuu | 0:1a6e8ffa801b | 93 | magbias[2] = +125.; // User environmental x-axis correction in milliGauss | 
| xosuuu | 0:1a6e8ffa801b | 94 | |
| xosuuu | 0:1a6e8ffa801b | 95 | while(1) { | 
| xosuuu | 0:1a6e8ffa801b | 96 | |
| xosuuu | 0:1a6e8ffa801b | 97 | // If intPin goes high, all data registers have new data | 
| xosuuu | 0:1a6e8ffa801b | 98 | if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) { // On interrupt, check if data ready interrupt | 
| xosuuu | 0:1a6e8ffa801b | 99 | |
| xosuuu | 0:1a6e8ffa801b | 100 | mpu9250.readAccelData(accelCount); // Read the x/y/z adc values | 
| xosuuu | 0:1a6e8ffa801b | 101 | // Now we'll calculate the accleration value into actual g's | 
| xosuuu | 0:1a6e8ffa801b | 102 | if (I2Cstate != 0) //error on I2C | 
| xosuuu | 0:1a6e8ffa801b | 103 | pc.printf("I2C error ocurred while reading accelerometer data. I2Cstate = %d \n\r", I2Cstate); | 
| xosuuu | 0:1a6e8ffa801b | 104 | else{ // I2C read or write ok | 
| xosuuu | 0:1a6e8ffa801b | 105 | I2Cstate = 1; | 
| xosuuu | 0:1a6e8ffa801b | 106 | ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set | 
| xosuuu | 0:1a6e8ffa801b | 107 | ay = (float)accelCount[1]*aRes - accelBias[1]; | 
| xosuuu | 0:1a6e8ffa801b | 108 | az = (float)accelCount[2]*aRes - accelBias[2]; | 
| xosuuu | 0:1a6e8ffa801b | 109 | } | 
| xosuuu | 0:1a6e8ffa801b | 110 | |
| xosuuu | 0:1a6e8ffa801b | 111 | mpu9250.readGyroData(gyroCount); // Read the x/y/z adc values | 
| xosuuu | 0:1a6e8ffa801b | 112 | // Calculate the gyro value into actual degrees per second | 
| xosuuu | 0:1a6e8ffa801b | 113 | if (I2Cstate != 0) //error on I2C | 
| xosuuu | 0:1a6e8ffa801b | 114 | pc.printf("I2C error ocurred while reading gyrometer data. I2Cstate = %d \n\r", I2Cstate); | 
| xosuuu | 0:1a6e8ffa801b | 115 | else{ // I2C read or write ok | 
| xosuuu | 0:1a6e8ffa801b | 116 | I2Cstate = 1; | 
| xosuuu | 0:1a6e8ffa801b | 117 | gx = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set | 
| xosuuu | 0:1a6e8ffa801b | 118 | gy = (float)gyroCount[1]*gRes - gyroBias[1]; | 
| xosuuu | 0:1a6e8ffa801b | 119 | gz = (float)gyroCount[2]*gRes - gyroBias[2]; | 
| xosuuu | 0:1a6e8ffa801b | 120 | } | 
| xosuuu | 0:1a6e8ffa801b | 121 | |
| xosuuu | 0:1a6e8ffa801b | 122 | mpu9250.readMagData(magCount); // Read the x/y/z adc values | 
| xosuuu | 0:1a6e8ffa801b | 123 | // Calculate the magnetometer values in milliGauss | 
| xosuuu | 0:1a6e8ffa801b | 124 | // Include factory calibration per data sheet and user environmental corrections | 
| xosuuu | 0:1a6e8ffa801b | 125 | if (I2Cstate != 0) //error on I2C | 
| xosuuu | 0:1a6e8ffa801b | 126 | pc.printf("I2C error ocurred while reading magnetometer data. I2Cstate = %d \n\r", I2Cstate); | 
| xosuuu | 0:1a6e8ffa801b | 127 | else{ // I2C read or write ok | 
| xosuuu | 0:1a6e8ffa801b | 128 | I2Cstate = 1; | 
| xosuuu | 0:1a6e8ffa801b | 129 | mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0]; // get actual magnetometer value, this depends on scale being set | 
| xosuuu | 0:1a6e8ffa801b | 130 | my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1]; | 
| xosuuu | 0:1a6e8ffa801b | 131 | mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2]; | 
| xosuuu | 0:1a6e8ffa801b | 132 | } | 
| xosuuu | 0:1a6e8ffa801b | 133 | } | 
| xosuuu | 0:1a6e8ffa801b | 134 | |
| xosuuu | 0:1a6e8ffa801b | 135 | Now = t.read_us(); | 
| xosuuu | 0:1a6e8ffa801b | 136 | deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update | 
| xosuuu | 0:1a6e8ffa801b | 137 | lastUpdate = Now; | 
| xosuuu | 0:1a6e8ffa801b | 138 | sum += deltat; | 
| xosuuu | 0:1a6e8ffa801b | 139 | sumCount++; | 
| xosuuu | 0:1a6e8ffa801b | 140 | |
| xosuuu | 0:1a6e8ffa801b | 141 | // Pass gyro rate as rad/s | 
| xosuuu | 0:1a6e8ffa801b | 142 | // mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); | 
| xosuuu | 0:1a6e8ffa801b | 143 | mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); | 
| xosuuu | 0:1a6e8ffa801b | 144 | |
| xosuuu | 0:1a6e8ffa801b | 145 | |
| xosuuu | 0:1a6e8ffa801b | 146 | // Serial print and/or display at 1.5 s rate independent of data rates | 
| xosuuu | 0:1a6e8ffa801b | 147 | delt_t = t.read_ms() - count; | 
| xosuuu | 0:1a6e8ffa801b | 148 | if (delt_t > 1500) { // update LCD once per half-second independent of read rate | 
| xosuuu | 0:1a6e8ffa801b | 149 | pc.printf("ax = %f", 1000*ax); | 
| xosuuu | 0:1a6e8ffa801b | 150 | pc.printf(" ay = %f", 1000*ay); | 
| xosuuu | 0:1a6e8ffa801b | 151 | pc.printf(" az = %f mg\n\r", 1000*az); | 
| xosuuu | 0:1a6e8ffa801b | 152 | pc.printf("gx = %f", gx); | 
| xosuuu | 0:1a6e8ffa801b | 153 | pc.printf(" gy = %f", gy); | 
| xosuuu | 0:1a6e8ffa801b | 154 | pc.printf(" gz = %f deg/s\n\r", gz); | 
| xosuuu | 0:1a6e8ffa801b | 155 | pc.printf("mx = %f", mx); | 
| xosuuu | 0:1a6e8ffa801b | 156 | pc.printf(" my = %f", my); | 
| xosuuu | 0:1a6e8ffa801b | 157 | pc.printf(" mz = %f mG\n\r", mz); | 
| xosuuu | 0:1a6e8ffa801b | 158 | |
| xosuuu | 0:1a6e8ffa801b | 159 | |
| xosuuu | 0:1a6e8ffa801b | 160 | tempCount = mpu9250.readTempData(); // Read the adc values | 
| xosuuu | 0:1a6e8ffa801b | 161 | if (I2Cstate != 0) //error on I2C | 
| xosuuu | 0:1a6e8ffa801b | 162 | pc.printf("I2C error ocurred while reading sensor temp. I2Cstate = %d \n\r", I2Cstate); | 
| xosuuu | 0:1a6e8ffa801b | 163 | else{ // I2C read or write ok | 
| xosuuu | 0:1a6e8ffa801b | 164 | I2Cstate = 1; | 
| xosuuu | 0:1a6e8ffa801b | 165 | temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade | 
| xosuuu | 0:1a6e8ffa801b | 166 | pc.printf(" temperature = %f C\n\r", temperature); | 
| xosuuu | 0:1a6e8ffa801b | 167 | } | 
| xosuuu | 0:1a6e8ffa801b | 168 | pc.printf("q0 = %f\n\r", q[0]); | 
| xosuuu | 0:1a6e8ffa801b | 169 | pc.printf("q1 = %f\n\r", q[1]); | 
| xosuuu | 0:1a6e8ffa801b | 170 | pc.printf("q2 = %f\n\r", q[2]); | 
| xosuuu | 0:1a6e8ffa801b | 171 | pc.printf("q3 = %f\n\r", q[3]); | 
| xosuuu | 0:1a6e8ffa801b | 172 | |
| xosuuu | 0:1a6e8ffa801b | 173 | |
| xosuuu | 0:1a6e8ffa801b | 174 | |
| xosuuu | 0:1a6e8ffa801b | 175 | |
| xosuuu | 0:1a6e8ffa801b | 176 | // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation. | 
| xosuuu | 0:1a6e8ffa801b | 177 | // In this coordinate system, the positive z-axis is down toward Earth. | 
| xosuuu | 0:1a6e8ffa801b | 178 | // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise. | 
| xosuuu | 0:1a6e8ffa801b | 179 | // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative. | 
| xosuuu | 0:1a6e8ffa801b | 180 | // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll. | 
| xosuuu | 0:1a6e8ffa801b | 181 | // These arise from the definition of the homogeneous rotation matrix constructed from quaternions. | 
| xosuuu | 0:1a6e8ffa801b | 182 | // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be | 
| xosuuu | 0:1a6e8ffa801b | 183 | // applied in the correct order which for this configuration is yaw, pitch, and then roll. | 
| xosuuu | 0:1a6e8ffa801b | 184 | // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links. | 
| xosuuu | 0:1a6e8ffa801b | 185 | |
| xosuuu | 0:1a6e8ffa801b | 186 | yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]); | 
| xosuuu | 0:1a6e8ffa801b | 187 | pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2])); | 
| xosuuu | 0:1a6e8ffa801b | 188 | roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]); | 
| xosuuu | 0:1a6e8ffa801b | 189 | pitch *= 180.0f / PI; | 
| xosuuu | 0:1a6e8ffa801b | 190 | yaw *= 180.0f / PI; | 
| xosuuu | 0:1a6e8ffa801b | 191 | yaw -= 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04 | 
| xosuuu | 0:1a6e8ffa801b | 192 | roll *= 180.0f / PI; | 
| xosuuu | 0:1a6e8ffa801b | 193 | |
| xosuuu | 0:1a6e8ffa801b | 194 | /* | 
| xosuuu | 0:1a6e8ffa801b | 195 | pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll); | 
| xosuuu | 0:1a6e8ffa801b | 196 | pc.printf("average rate = %f\n\r", (float) sumCount/sum); | 
| xosuuu | 0:1a6e8ffa801b | 197 | */ | 
| xosuuu | 0:1a6e8ffa801b | 198 | |
| xosuuu | 0:1a6e8ffa801b | 199 | |
| xosuuu | 0:1a6e8ffa801b | 200 | myled= !myled; | 
| xosuuu | 0:1a6e8ffa801b | 201 | count = t.read_ms(); | 
| xosuuu | 0:1a6e8ffa801b | 202 | |
| xosuuu | 0:1a6e8ffa801b | 203 | if(count > 1<<21) { | 
| xosuuu | 0:1a6e8ffa801b | 204 | t.start(); // start the timer over again if ~30 minutes has passed | 
| xosuuu | 0:1a6e8ffa801b | 205 | count = 0; | 
| xosuuu | 0:1a6e8ffa801b | 206 | deltat= 0; | 
| xosuuu | 0:1a6e8ffa801b | 207 | lastUpdate = t.read_us(); | 
| xosuuu | 0:1a6e8ffa801b | 208 | } | 
| xosuuu | 0:1a6e8ffa801b | 209 | sum = 0; | 
| xosuuu | 0:1a6e8ffa801b | 210 | sumCount = 0; | 
| xosuuu | 0:1a6e8ffa801b | 211 | } | 
| xosuuu | 0:1a6e8ffa801b | 212 | } | 
| xosuuu | 0:1a6e8ffa801b | 213 | } |