Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependents: RZ_A2M_Mbed_samples
persistence.hpp
00001 /*M/////////////////////////////////////////////////////////////////////////////////////// 00002 // 00003 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. 00004 // 00005 // By downloading, copying, installing or using the software you agree to this license. 00006 // If you do not agree to this license, do not download, install, 00007 // copy or use the software. 00008 // 00009 // 00010 // License Agreement 00011 // For Open Source Computer Vision Library 00012 // 00013 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. 00014 // Copyright (C) 2009, Willow Garage Inc., all rights reserved. 00015 // Copyright (C) 2013, OpenCV Foundation, all rights reserved. 00016 // Third party copyrights are property of their respective owners. 00017 // 00018 // Redistribution and use in source and binary forms, with or without modification, 00019 // are permitted provided that the following conditions are met: 00020 // 00021 // * Redistribution's of source code must retain the above copyright notice, 00022 // this list of conditions and the following disclaimer. 00023 // 00024 // * Redistribution's in binary form must reproduce the above copyright notice, 00025 // this list of conditions and the following disclaimer in the documentation 00026 // and/or other materials provided with the distribution. 00027 // 00028 // * The name of the copyright holders may not be used to endorse or promote products 00029 // derived from this software without specific prior written permission. 00030 // 00031 // This software is provided by the copyright holders and contributors "as is" and 00032 // any express or implied warranties, including, but not limited to, the implied 00033 // warranties of merchantability and fitness for a particular purpose are disclaimed. 00034 // In no event shall the Intel Corporation or contributors be liable for any direct, 00035 // indirect, incidental, special, exemplary, or consequential damages 00036 // (including, but not limited to, procurement of substitute goods or services; 00037 // loss of use, data, or profits; or business interruption) however caused 00038 // and on any theory of liability, whether in contract, strict liability, 00039 // or tort (including negligence or otherwise) arising in any way out of 00040 // the use of this software, even if advised of the possibility of such damage. 00041 // 00042 //M*/ 00043 00044 #ifndef OPENCV_CORE_PERSISTENCE_HPP 00045 #define OPENCV_CORE_PERSISTENCE_HPP 00046 00047 #ifndef __cplusplus 00048 # error persistence.hpp header must be compiled as C++ 00049 #endif 00050 00051 //! @addtogroup core_c 00052 //! @{ 00053 00054 /** @brief "black box" representation of the file storage associated with a file on disk. 00055 00056 Several functions that are described below take CvFileStorage\* as inputs and allow the user to 00057 save or to load hierarchical collections that consist of scalar values, standard CXCore objects 00058 (such as matrices, sequences, graphs), and user-defined objects. 00059 00060 OpenCV can read and write data in XML (<http://www.w3c.org/XML>), YAML (<http://www.yaml.org>) or 00061 JSON (<http://www.json.org/>) formats. Below is an example of 3x3 floating-point identity matrix A, 00062 stored in XML and YAML files 00063 using CXCore functions: 00064 XML: 00065 @code{.xml} 00066 <?xml version="1.0"> 00067 <opencv_storage> 00068 <A type_id="opencv-matrix"> 00069 <rows>3</rows> 00070 <cols>3</cols> 00071 <dt>f</dt> 00072 <data>1. 0. 0. 0. 1. 0. 0. 0. 1.</data> 00073 </A> 00074 </opencv_storage> 00075 @endcode 00076 YAML: 00077 @code{.yaml} 00078 %YAML:1.0 00079 A: !!opencv-matrix 00080 rows: 3 00081 cols: 3 00082 dt: f 00083 data: [ 1., 0., 0., 0., 1., 0., 0., 0., 1.] 00084 @endcode 00085 As it can be seen from the examples, XML uses nested tags to represent hierarchy, while YAML uses 00086 indentation for that purpose (similar to the Python programming language). 00087 00088 The same functions can read and write data in both formats; the particular format is determined by 00089 the extension of the opened file, ".xml" for XML files, ".yml" or ".yaml" for YAML and ".json" for 00090 JSON. 00091 */ 00092 typedef struct CvFileStorage CvFileStorage; 00093 typedef struct CvFileNode CvFileNode; 00094 typedef struct CvMat CvMat; 00095 typedef struct CvMatND CvMatND ; 00096 00097 //! @} core_c 00098 00099 #include "opencv2/core/types.hpp" 00100 #include "opencv2/core/mat.hpp" 00101 00102 namespace cv { 00103 00104 /** @addtogroup core_xml 00105 00106 XML/YAML/JSON file storages. {#xml_storage} 00107 ======================= 00108 Writing to a file storage. 00109 -------------------------- 00110 You can store and then restore various OpenCV data structures to/from XML (<http://www.w3c.org/XML>), 00111 YAML (<http://www.yaml.org>) or JSON (<http://www.json.org/>) formats. Also, it is possible store 00112 and load arbitrarily complex data structures, which include OpenCV data structures, as well as 00113 primitive data types (integer and floating-point numbers and text strings) as their elements. 00114 00115 Use the following procedure to write something to XML, YAML or JSON: 00116 -# Create new FileStorage and open it for writing. It can be done with a single call to 00117 FileStorage::FileStorage constructor that takes a filename, or you can use the default constructor 00118 and then call FileStorage::open. Format of the file (XML, YAML or JSON) is determined from the filename 00119 extension (".xml", ".yml"/".yaml" and ".json", respectively) 00120 -# Write all the data you want using the streaming operator `<<`, just like in the case of STL 00121 streams. 00122 -# Close the file using FileStorage::release. FileStorage destructor also closes the file. 00123 00124 Here is an example: 00125 @code 00126 #include "opencv2/opencv.hpp" 00127 #include <time.h> 00128 00129 using namespace cv; 00130 00131 int main(int, char** argv) 00132 { 00133 FileStorage fs("test.yml", FileStorage::WRITE); 00134 00135 fs << "frameCount" << 5; 00136 time_t rawtime; time(&rawtime); 00137 fs << "calibrationDate" << asctime(localtime(&rawtime)); 00138 Mat cameraMatrix = (Mat_<double>(3,3) << 1000, 0, 320, 0, 1000, 240, 0, 0, 1); 00139 Mat distCoeffs = (Mat_<double>(5,1) << 0.1, 0.01, -0.001, 0, 0); 00140 fs << "cameraMatrix" << cameraMatrix << "distCoeffs" << distCoeffs; 00141 fs << "features" << "["; 00142 for( int i = 0; i < 3; i++ ) 00143 { 00144 int x = rand() % 640; 00145 int y = rand() % 480; 00146 uchar lbp = rand() % 256; 00147 00148 fs << "{:" << "x" << x << "y" << y << "lbp" << "[:"; 00149 for( int j = 0; j < 8; j++ ) 00150 fs << ((lbp >> j) & 1); 00151 fs << "]" << "}"; 00152 } 00153 fs << "]"; 00154 fs.release(); 00155 return 0; 00156 } 00157 @endcode 00158 The sample above stores to XML and integer, text string (calibration date), 2 matrices, and a custom 00159 structure "feature", which includes feature coordinates and LBP (local binary pattern) value. Here 00160 is output of the sample: 00161 @code{.yaml} 00162 %YAML:1.0 00163 frameCount: 5 00164 calibrationDate: "Fri Jun 17 14:09:29 2011\n" 00165 cameraMatrix: !!opencv-matrix 00166 rows: 3 00167 cols: 3 00168 dt: d 00169 data: [ 1000., 0., 320., 0., 1000., 240., 0., 0., 1. ] 00170 distCoeffs: !!opencv-matrix 00171 rows: 5 00172 cols: 1 00173 dt: d 00174 data: [ 1.0000000000000001e-01, 1.0000000000000000e-02, 00175 -1.0000000000000000e-03, 0., 0. ] 00176 features: 00177 - { x:167, y:49, lbp:[ 1, 0, 0, 1, 1, 0, 1, 1 ] } 00178 - { x:298, y:130, lbp:[ 0, 0, 0, 1, 0, 0, 1, 1 ] } 00179 - { x:344, y:158, lbp:[ 1, 1, 0, 0, 0, 0, 1, 0 ] } 00180 @endcode 00181 00182 As an exercise, you can replace ".yml" with ".xml" or ".json" in the sample above and see, how the 00183 corresponding XML file will look like. 00184 00185 Several things can be noted by looking at the sample code and the output: 00186 00187 - The produced YAML (and XML/JSON) consists of heterogeneous collections that can be nested. There are 00188 2 types of collections: named collections (mappings) and unnamed collections (sequences). In mappings 00189 each element has a name and is accessed by name. This is similar to structures and std::map in 00190 C/C++ and dictionaries in Python. In sequences elements do not have names, they are accessed by 00191 indices. This is similar to arrays and std::vector in C/C++ and lists, tuples in Python. 00192 "Heterogeneous" means that elements of each single collection can have different types. 00193 00194 Top-level collection in YAML/XML/JSON is a mapping. Each matrix is stored as a mapping, and the matrix 00195 elements are stored as a sequence. Then, there is a sequence of features, where each feature is 00196 represented a mapping, and lbp value in a nested sequence. 00197 00198 - When you write to a mapping (a structure), you write element name followed by its value. When you 00199 write to a sequence, you simply write the elements one by one. OpenCV data structures (such as 00200 cv::Mat) are written in absolutely the same way as simple C data structures - using `<<` 00201 operator. 00202 00203 - To write a mapping, you first write the special string `{` to the storage, then write the 00204 elements as pairs (`fs << <element_name> << <element_value>`) and then write the closing 00205 `}`. 00206 00207 - To write a sequence, you first write the special string `[`, then write the elements, then 00208 write the closing `]`. 00209 00210 - In YAML/JSON (but not XML), mappings and sequences can be written in a compact Python-like inline 00211 form. In the sample above matrix elements, as well as each feature, including its lbp value, is 00212 stored in such inline form. To store a mapping/sequence in a compact form, put `:` after the 00213 opening character, e.g. use `{:` instead of `{` and `[:` instead of `[`. When the 00214 data is written to XML, those extra `:` are ignored. 00215 00216 Reading data from a file storage. 00217 --------------------------------- 00218 To read the previously written XML, YAML or JSON file, do the following: 00219 -# Open the file storage using FileStorage::FileStorage constructor or FileStorage::open method. 00220 In the current implementation the whole file is parsed and the whole representation of file 00221 storage is built in memory as a hierarchy of file nodes (see FileNode) 00222 00223 -# Read the data you are interested in. Use FileStorage::operator [], FileNode::operator [] 00224 and/or FileNodeIterator. 00225 00226 -# Close the storage using FileStorage::release. 00227 00228 Here is how to read the file created by the code sample above: 00229 @code 00230 FileStorage fs2("test.yml", FileStorage::READ); 00231 00232 // first method: use (type) operator on FileNode. 00233 int frameCount = (int)fs2["frameCount"]; 00234 00235 String date; 00236 // second method: use FileNode::operator >> 00237 fs2["calibrationDate"] >> date; 00238 00239 Mat cameraMatrix2, distCoeffs2; 00240 fs2["cameraMatrix"] >> cameraMatrix2; 00241 fs2["distCoeffs"] >> distCoeffs2; 00242 00243 cout << "frameCount: " << frameCount << endl 00244 << "calibration date: " << date << endl 00245 << "camera matrix: " << cameraMatrix2 << endl 00246 << "distortion coeffs: " << distCoeffs2 << endl; 00247 00248 FileNode features = fs2["features"]; 00249 FileNodeIterator it = features.begin(), it_end = features.end(); 00250 int idx = 0; 00251 std::vector<uchar> lbpval; 00252 00253 // iterate through a sequence using FileNodeIterator 00254 for( ; it != it_end; ++it, idx++ ) 00255 { 00256 cout << "feature #" << idx << ": "; 00257 cout << "x=" << (int)(*it)["x"] << ", y=" << (int)(*it)["y"] << ", lbp: ("; 00258 // you can also easily read numerical arrays using FileNode >> std::vector operator. 00259 (*it)["lbp"] >> lbpval; 00260 for( int i = 0; i < (int)lbpval.size(); i++ ) 00261 cout << " " << (int)lbpval[i]; 00262 cout << ")" << endl; 00263 } 00264 fs2.release(); 00265 @endcode 00266 00267 Format specification {#format_spec} 00268 -------------------- 00269 `([count]{u|c|w|s|i|f|d})`... where the characters correspond to fundamental C++ types: 00270 - `u` 8-bit unsigned number 00271 - `c` 8-bit signed number 00272 - `w` 16-bit unsigned number 00273 - `s` 16-bit signed number 00274 - `i` 32-bit signed number 00275 - `f` single precision floating-point number 00276 - `d` double precision floating-point number 00277 - `r` pointer, 32 lower bits of which are written as a signed integer. The type can be used to 00278 store structures with links between the elements. 00279 00280 `count` is the optional counter of values of a given type. For example, `2if` means that each array 00281 element is a structure of 2 integers, followed by a single-precision floating-point number. The 00282 equivalent notations of the above specification are `iif`, `2i1f` and so forth. Other examples: `u` 00283 means that the array consists of bytes, and `2d` means the array consists of pairs of doubles. 00284 00285 @see @ref filestorage.cpp 00286 */ 00287 00288 //! @{ 00289 00290 /** @example filestorage.cpp 00291 A complete example using the FileStorage interface 00292 */ 00293 00294 ////////////////////////// XML & YAML I/O ////////////////////////// 00295 00296 class CV_EXPORTS FileNode; 00297 class CV_EXPORTS FileNodeIterator; 00298 00299 /** @brief XML/YAML/JSON file storage class that encapsulates all the information necessary for writing or 00300 reading data to/from a file. 00301 */ 00302 class CV_EXPORTS_W FileStorage 00303 { 00304 public: 00305 //! file storage mode 00306 enum Mode 00307 { 00308 READ = 0, //!< value, open the file for reading 00309 WRITE = 1, //!< value, open the file for writing 00310 APPEND = 2, //!< value, open the file for appending 00311 MEMORY = 4, //!< flag, read data from source or write data to the internal buffer (which is 00312 //!< returned by FileStorage::release) 00313 FORMAT_MASK = (7<<3), //!< mask for format flags 00314 FORMAT_AUTO = 0, //!< flag, auto format 00315 FORMAT_XML = (1<<3), //!< flag, XML format 00316 FORMAT_YAML = (2<<3), //!< flag, YAML format 00317 FORMAT_JSON = (3<<3), //!< flag, JSON format 00318 00319 BASE64 = 64, //!< flag, write rawdata in Base64 by default. (consider using WRITE_BASE64) 00320 WRITE_BASE64 = BASE64 | WRITE, //!< flag, enable both WRITE and BASE64 00321 }; 00322 enum 00323 { 00324 UNDEFINED = 0, 00325 VALUE_EXPECTED = 1, 00326 NAME_EXPECTED = 2, 00327 INSIDE_MAP = 4 00328 }; 00329 00330 /** @brief The constructors. 00331 00332 The full constructor opens the file. Alternatively you can use the default constructor and then 00333 call FileStorage::open. 00334 */ 00335 CV_WRAP FileStorage(); 00336 00337 /** @overload 00338 @param source Name of the file to open or the text string to read the data from. Extension of the 00339 file (.xml, .yml/.yaml, or .json) determines its format (XML, YAML or JSON respectively). Also you can 00340 append .gz to work with compressed files, for example myHugeMatrix.xml.gz. If both FileStorage::WRITE 00341 and FileStorage::MEMORY flags are specified, source is used just to specify the output file format (e.g. 00342 mydata.xml, .yml etc.). 00343 @param flags Mode of operation. See FileStorage::Mode 00344 @param encoding Encoding of the file. Note that UTF-16 XML encoding is not supported currently and 00345 you should use 8-bit encoding instead of it. 00346 */ 00347 CV_WRAP FileStorage(const String& source, int flags, const String& encoding=String()); 00348 00349 /** @overload */ 00350 FileStorage(CvFileStorage* fs, bool owning=true); 00351 00352 //! the destructor. calls release() 00353 virtual ~FileStorage(); 00354 00355 /** @brief Opens a file. 00356 00357 See description of parameters in FileStorage::FileStorage. The method calls FileStorage::release 00358 before opening the file. 00359 @param filename Name of the file to open or the text string to read the data from. 00360 Extension of the file (.xml, .yml/.yaml or .json) determines its format (XML, YAML or JSON 00361 respectively). Also you can append .gz to work with compressed files, for example myHugeMatrix.xml.gz. If both 00362 FileStorage::WRITE and FileStorage::MEMORY flags are specified, source is used just to specify 00363 the output file format (e.g. mydata.xml, .yml etc.). A file name can also contain parameters. 00364 You can use this format, "*?base64" (e.g. "file.json?base64" (case sensitive)), as an alternative to 00365 FileStorage::BASE64 flag. 00366 @param flags Mode of operation. One of FileStorage::Mode 00367 @param encoding Encoding of the file. Note that UTF-16 XML encoding is not supported currently and 00368 you should use 8-bit encoding instead of it. 00369 */ 00370 CV_WRAP virtual bool open(const String& filename, int flags, const String& encoding=String()); 00371 00372 /** @brief Checks whether the file is opened. 00373 00374 @returns true if the object is associated with the current file and false otherwise. It is a 00375 good practice to call this method after you tried to open a file. 00376 */ 00377 CV_WRAP virtual bool isOpened() const; 00378 00379 /** @brief Closes the file and releases all the memory buffers. 00380 00381 Call this method after all I/O operations with the storage are finished. 00382 */ 00383 CV_WRAP virtual void release(); 00384 00385 /** @brief Closes the file and releases all the memory buffers. 00386 00387 Call this method after all I/O operations with the storage are finished. If the storage was 00388 opened for writing data and FileStorage::WRITE was specified 00389 */ 00390 CV_WRAP virtual String releaseAndGetString(); 00391 00392 /** @brief Returns the first element of the top-level mapping. 00393 @returns The first element of the top-level mapping. 00394 */ 00395 CV_WRAP FileNode getFirstTopLevelNode() const; 00396 00397 /** @brief Returns the top-level mapping 00398 @param streamidx Zero-based index of the stream. In most cases there is only one stream in the file. 00399 However, YAML supports multiple streams and so there can be several. 00400 @returns The top-level mapping. 00401 */ 00402 CV_WRAP FileNode root(int streamidx=0) const; 00403 00404 /** @brief Returns the specified element of the top-level mapping. 00405 @param nodename Name of the file node. 00406 @returns Node with the given name. 00407 */ 00408 FileNode operator[](const String& nodename) const; 00409 00410 /** @overload */ 00411 CV_WRAP_AS(getNode) FileNode operator[](const char* nodename) const; 00412 00413 /** @brief Returns the obsolete C FileStorage structure. 00414 @returns Pointer to the underlying C FileStorage structure 00415 */ 00416 CvFileStorage* operator *() { return fs.get(); } 00417 00418 /** @overload */ 00419 const CvFileStorage* operator *() const { return fs.get(); } 00420 00421 /** @brief Writes multiple numbers. 00422 00423 Writes one or more numbers of the specified format to the currently written structure. Usually it is 00424 more convenient to use operator `<<` instead of this method. 00425 @param fmt Specification of each array element, see @ref format_spec "format specification" 00426 @param vec Pointer to the written array. 00427 @param len Number of the uchar elements to write. 00428 */ 00429 void writeRaw( const String& fmt, const uchar* vec, size_t len ); 00430 00431 /** @brief Writes the registered C structure (CvMat, CvMatND, CvSeq). 00432 @param name Name of the written object. 00433 @param obj Pointer to the object. 00434 @see ocvWrite for details. 00435 */ 00436 void writeObj( const String& name, const void* obj ); 00437 00438 /** 00439 * @brief Simplified writing API to use with bindings. 00440 * @param name Name of the written object 00441 * @param val Value of the written object 00442 */ 00443 CV_WRAP void write(const String& name, double val); 00444 /// @overload 00445 CV_WRAP void write(const String& name, const String& val); 00446 /// @overload 00447 CV_WRAP void write(const String& name, InputArray val); 00448 00449 /** @brief Writes a comment. 00450 00451 The function writes a comment into file storage. The comments are skipped when the storage is read. 00452 @param comment The written comment, single-line or multi-line 00453 @param append If true, the function tries to put the comment at the end of current line. 00454 Else if the comment is multi-line, or if it does not fit at the end of the current 00455 line, the comment starts a new line. 00456 */ 00457 CV_WRAP void writeComment(const String& comment, bool append = false); 00458 00459 /** @brief Returns the normalized object name for the specified name of a file. 00460 @param filename Name of a file 00461 @returns The normalized object name. 00462 */ 00463 static String getDefaultObjectName(const String& filename); 00464 00465 Ptr<CvFileStorage> fs; //!< the underlying C FileStorage structure 00466 String elname; //!< the currently written element 00467 std::vector<char> structs; //!< the stack of written structures 00468 int state; //!< the writer state 00469 }; 00470 00471 template<> CV_EXPORTS void DefaultDeleter<CvFileStorage>::operator ()(CvFileStorage* obj) const; 00472 00473 /** @brief File Storage Node class. 00474 00475 The node is used to store each and every element of the file storage opened for reading. When 00476 XML/YAML file is read, it is first parsed and stored in the memory as a hierarchical collection of 00477 nodes. Each node can be a “leaf” that is contain a single number or a string, or be a collection of 00478 other nodes. There can be named collections (mappings) where each element has a name and it is 00479 accessed by a name, and ordered collections (sequences) where elements do not have names but rather 00480 accessed by index. Type of the file node can be determined using FileNode::type method. 00481 00482 Note that file nodes are only used for navigating file storages opened for reading. When a file 00483 storage is opened for writing, no data is stored in memory after it is written. 00484 */ 00485 class CV_EXPORTS_W_SIMPLE FileNode 00486 { 00487 public: 00488 //! type of the file storage node 00489 enum Type 00490 { 00491 NONE = 0, //!< empty node 00492 INT = 1, //!< an integer 00493 REAL = 2, //!< floating-point number 00494 FLOAT = REAL, //!< synonym or REAL 00495 STR = 3, //!< text string in UTF-8 encoding 00496 STRING = STR, //!< synonym for STR 00497 REF = 4, //!< integer of size size_t. Typically used for storing complex dynamic structures where some elements reference the others 00498 SEQ = 5, //!< sequence 00499 MAP = 6, //!< mapping 00500 TYPE_MASK = 7, 00501 FLOW = 8, //!< compact representation of a sequence or mapping. Used only by YAML writer 00502 USER = 16, //!< a registered object (e.g. a matrix) 00503 EMPTY = 32, //!< empty structure (sequence or mapping) 00504 NAMED = 64 //!< the node has a name (i.e. it is element of a mapping) 00505 }; 00506 /** @brief The constructors. 00507 00508 These constructors are used to create a default file node, construct it from obsolete structures or 00509 from the another file node. 00510 */ 00511 CV_WRAP FileNode(); 00512 00513 /** @overload 00514 @param fs Pointer to the obsolete file storage structure. 00515 @param node File node to be used as initialization for the created file node. 00516 */ 00517 FileNode(const CvFileStorage* fs, const CvFileNode* node); 00518 00519 /** @overload 00520 @param node File node to be used as initialization for the created file node. 00521 */ 00522 FileNode(const FileNode& node); 00523 00524 /** @brief Returns element of a mapping node or a sequence node. 00525 @param nodename Name of an element in the mapping node. 00526 @returns Returns the element with the given identifier. 00527 */ 00528 FileNode operator[](const String& nodename) const; 00529 00530 /** @overload 00531 @param nodename Name of an element in the mapping node. 00532 */ 00533 CV_WRAP_AS(getNode) FileNode operator[](const char* nodename) const; 00534 00535 /** @overload 00536 @param i Index of an element in the sequence node. 00537 */ 00538 CV_WRAP_AS(at) FileNode operator[](int i) const; 00539 00540 /** @brief Returns type of the node. 00541 @returns Type of the node. See FileNode::Type 00542 */ 00543 CV_WRAP int type() const; 00544 00545 //! returns true if the node is empty 00546 CV_WRAP bool empty() const; 00547 //! returns true if the node is a "none" object 00548 CV_WRAP bool isNone() const; 00549 //! returns true if the node is a sequence 00550 CV_WRAP bool isSeq() const; 00551 //! returns true if the node is a mapping 00552 CV_WRAP bool isMap() const; 00553 //! returns true if the node is an integer 00554 CV_WRAP bool isInt() const; 00555 //! returns true if the node is a floating-point number 00556 CV_WRAP bool isReal() const; 00557 //! returns true if the node is a text string 00558 CV_WRAP bool isString() const; 00559 //! returns true if the node has a name 00560 CV_WRAP bool isNamed() const; 00561 //! returns the node name or an empty string if the node is nameless 00562 CV_WRAP String name() const; 00563 //! returns the number of elements in the node, if it is a sequence or mapping, or 1 otherwise. 00564 CV_WRAP size_t size() const; 00565 //! returns the node content as an integer. If the node stores floating-point number, it is rounded. 00566 operator int() const; 00567 //! returns the node content as float 00568 operator float() const; 00569 //! returns the node content as double 00570 operator double() const; 00571 //! returns the node content as text string 00572 operator String() const; 00573 #ifndef OPENCV_NOSTL 00574 operator std::string() const; 00575 #endif 00576 00577 //! returns pointer to the underlying file node 00578 CvFileNode* operator *(); 00579 //! returns pointer to the underlying file node 00580 const CvFileNode* operator* () const; 00581 00582 //! returns iterator pointing to the first node element 00583 FileNodeIterator begin() const; 00584 //! returns iterator pointing to the element following the last node element 00585 FileNodeIterator end() const; 00586 00587 /** @brief Reads node elements to the buffer with the specified format. 00588 00589 Usually it is more convenient to use operator `>>` instead of this method. 00590 @param fmt Specification of each array element. See @ref format_spec "format specification" 00591 @param vec Pointer to the destination array. 00592 @param len Number of elements to read. If it is greater than number of remaining elements then all 00593 of them will be read. 00594 */ 00595 void readRaw( const String& fmt, uchar* vec, size_t len ) const; 00596 00597 //! reads the registered object and returns pointer to it 00598 void* readObj() const; 00599 00600 //! Simplified reading API to use with bindings. 00601 CV_WRAP double real() const; 00602 //! Simplified reading API to use with bindings. 00603 CV_WRAP String string() const; 00604 //! Simplified reading API to use with bindings. 00605 CV_WRAP Mat mat() const; 00606 00607 // do not use wrapper pointer classes for better efficiency 00608 const CvFileStorage* fs; 00609 const CvFileNode* node; 00610 }; 00611 00612 00613 /** @brief used to iterate through sequences and mappings. 00614 00615 A standard STL notation, with node.begin(), node.end() denoting the beginning and the end of a 00616 sequence, stored in node. See the data reading sample in the beginning of the section. 00617 */ 00618 class CV_EXPORTS FileNodeIterator 00619 { 00620 public: 00621 /** @brief The constructors. 00622 00623 These constructors are used to create a default iterator, set it to specific element in a file node 00624 or construct it from another iterator. 00625 */ 00626 FileNodeIterator(); 00627 00628 /** @overload 00629 @param fs File storage for the iterator. 00630 @param node File node for the iterator. 00631 @param ofs Index of the element in the node. The created iterator will point to this element. 00632 */ 00633 FileNodeIterator(const CvFileStorage* fs, const CvFileNode* node, size_t ofs=0); 00634 00635 /** @overload 00636 @param it Iterator to be used as initialization for the created iterator. 00637 */ 00638 FileNodeIterator(const FileNodeIterator& it); 00639 00640 //! returns the currently observed element 00641 FileNode operator *() const; 00642 //! accesses the currently observed element methods 00643 FileNode operator ->() const; 00644 00645 //! moves iterator to the next node 00646 FileNodeIterator& operator ++ (); 00647 //! moves iterator to the next node 00648 FileNodeIterator operator ++ (int); 00649 //! moves iterator to the previous node 00650 FileNodeIterator& operator -- (); 00651 //! moves iterator to the previous node 00652 FileNodeIterator operator -- (int); 00653 //! moves iterator forward by the specified offset (possibly negative) 00654 FileNodeIterator& operator += (int ofs); 00655 //! moves iterator backward by the specified offset (possibly negative) 00656 FileNodeIterator& operator -= (int ofs); 00657 00658 /** @brief Reads node elements to the buffer with the specified format. 00659 00660 Usually it is more convenient to use operator `>>` instead of this method. 00661 @param fmt Specification of each array element. See @ref format_spec "format specification" 00662 @param vec Pointer to the destination array. 00663 @param maxCount Number of elements to read. If it is greater than number of remaining elements then 00664 all of them will be read. 00665 */ 00666 FileNodeIterator& readRaw( const String& fmt, uchar* vec, 00667 size_t maxCount=(size_t)INT_MAX ); 00668 00669 struct SeqReader 00670 { 00671 int header_size; 00672 void* seq; /* sequence, beign read; CvSeq */ 00673 void* block; /* current block; CvSeqBlock */ 00674 schar* ptr; /* pointer to element be read next */ 00675 schar* block_min; /* pointer to the beginning of block */ 00676 schar* block_max; /* pointer to the end of block */ 00677 int delta_index;/* = seq->first->start_index */ 00678 schar* prev_elem; /* pointer to previous element */ 00679 }; 00680 00681 const CvFileStorage* fs; 00682 const CvFileNode* container; 00683 SeqReader reader; 00684 size_t remaining; 00685 }; 00686 00687 //! @} core_xml 00688 00689 /////////////////// XML & YAML I/O implementation ////////////////// 00690 00691 //! @relates cv::FileStorage 00692 //! @{ 00693 00694 CV_EXPORTS void write( FileStorage& fs, const String& name, int value ); 00695 CV_EXPORTS void write( FileStorage& fs, const String& name, float value ); 00696 CV_EXPORTS void write( FileStorage& fs, const String& name, double value ); 00697 CV_EXPORTS void write( FileStorage& fs, const String& name, const String& value ); 00698 CV_EXPORTS void write( FileStorage& fs, const String& name, const Mat& value ); 00699 CV_EXPORTS void write( FileStorage& fs, const String& name, const SparseMat& value ); 00700 CV_EXPORTS void write( FileStorage& fs, const String& name, const std::vector<KeyPoint>& value); 00701 CV_EXPORTS void write( FileStorage& fs, const String& name, const std::vector<DMatch>& value); 00702 00703 CV_EXPORTS void writeScalar( FileStorage& fs, int value ); 00704 CV_EXPORTS void writeScalar( FileStorage& fs, float value ); 00705 CV_EXPORTS void writeScalar( FileStorage& fs, double value ); 00706 CV_EXPORTS void writeScalar( FileStorage& fs, const String& value ); 00707 00708 //! @} 00709 00710 //! @relates cv::FileNode 00711 //! @{ 00712 00713 CV_EXPORTS void read(const FileNode& node, int& value, int default_value); 00714 CV_EXPORTS void read(const FileNode& node, float& value, float default_value); 00715 CV_EXPORTS void read(const FileNode& node, double& value, double default_value); 00716 CV_EXPORTS void read(const FileNode& node, String& value, const String& default_value); 00717 CV_EXPORTS void read(const FileNode& node, Mat& mat, const Mat& default_mat = Mat() ); 00718 CV_EXPORTS void read(const FileNode& node, SparseMat& mat, const SparseMat& default_mat = SparseMat() ); 00719 CV_EXPORTS void read(const FileNode& node, std::vector<KeyPoint>& keypoints); 00720 CV_EXPORTS void read(const FileNode& node, std::vector<DMatch>& matches); 00721 00722 template<typename _Tp> static inline void read(const FileNode& node, Point_<_Tp>& value, const Point_<_Tp>& default_value) 00723 { 00724 std::vector<_Tp> temp; FileNodeIterator it = node.begin(); it >> temp; 00725 value = temp.size() != 2 ? default_value : Point_<_Tp>(saturate_cast<_Tp>(temp[0]), saturate_cast<_Tp>(temp[1])); 00726 } 00727 00728 template<typename _Tp> static inline void read(const FileNode& node, Point3_<_Tp>& value, const Point3_<_Tp>& default_value) 00729 { 00730 std::vector<_Tp> temp; FileNodeIterator it = node.begin(); it >> temp; 00731 value = temp.size() != 3 ? default_value : Point3_<_Tp>(saturate_cast<_Tp>(temp[0]), saturate_cast<_Tp>(temp[1]), 00732 saturate_cast<_Tp>(temp[2])); 00733 } 00734 00735 template<typename _Tp> static inline void read(const FileNode& node, Size_<_Tp>& value, const Size_<_Tp>& default_value) 00736 { 00737 std::vector<_Tp> temp; FileNodeIterator it = node.begin(); it >> temp; 00738 value = temp.size() != 2 ? default_value : Size_<_Tp>(saturate_cast<_Tp>(temp[0]), saturate_cast<_Tp>(temp[1])); 00739 } 00740 00741 template<typename _Tp> static inline void read(const FileNode& node, Complex<_Tp>& value, const Complex<_Tp>& default_value) 00742 { 00743 std::vector<_Tp> temp; FileNodeIterator it = node.begin(); it >> temp; 00744 value = temp.size() != 2 ? default_value : Complex<_Tp>(saturate_cast<_Tp>(temp[0]), saturate_cast<_Tp>(temp[1])); 00745 } 00746 00747 template<typename _Tp> static inline void read(const FileNode& node, Rect_<_Tp>& value, const Rect_<_Tp>& default_value) 00748 { 00749 std::vector<_Tp> temp; FileNodeIterator it = node.begin(); it >> temp; 00750 value = temp.size() != 4 ? default_value : Rect_<_Tp>(saturate_cast<_Tp>(temp[0]), saturate_cast<_Tp>(temp[1]), 00751 saturate_cast<_Tp>(temp[2]), saturate_cast<_Tp>(temp[3])); 00752 } 00753 00754 template<typename _Tp, int cn> static inline void read(const FileNode& node, Vec<_Tp, cn>& value, const Vec<_Tp, cn>& default_value) 00755 { 00756 std::vector<_Tp> temp; FileNodeIterator it = node.begin(); it >> temp; 00757 value = temp.size() != cn ? default_value : Vec<_Tp, cn>(&temp[0]); 00758 } 00759 00760 template<typename _Tp> static inline void read(const FileNode& node, Scalar_<_Tp>& value, const Scalar_<_Tp>& default_value) 00761 { 00762 std::vector<_Tp> temp; FileNodeIterator it = node.begin(); it >> temp; 00763 value = temp.size() != 4 ? default_value : Scalar_<_Tp>(saturate_cast<_Tp>(temp[0]), saturate_cast<_Tp>(temp[1]), 00764 saturate_cast<_Tp>(temp[2]), saturate_cast<_Tp>(temp[3])); 00765 } 00766 00767 static inline void read(const FileNode& node, Range& value, const Range& default_value) 00768 { 00769 Point2i temp(value.start, value.end); const Point2i default_temp = Point2i(default_value.start, default_value.end); 00770 read(node, temp, default_temp); 00771 value.start = temp.x; value.end = temp.y; 00772 } 00773 00774 //! @} 00775 00776 /** @brief Writes string to a file storage. 00777 @relates cv::FileStorage 00778 */ 00779 CV_EXPORTS FileStorage& operator << (FileStorage& fs, const String& str); 00780 00781 //! @cond IGNORED 00782 00783 namespace internal 00784 { 00785 class CV_EXPORTS WriteStructContext 00786 { 00787 public: 00788 WriteStructContext(FileStorage& _fs, const String& name, int flags, const String& typeName = String()); 00789 ~WriteStructContext(); 00790 private: 00791 FileStorage* fs; 00792 }; 00793 00794 template<typename _Tp, int numflag> class VecWriterProxy 00795 { 00796 public: 00797 VecWriterProxy( FileStorage* _fs ) : fs(_fs) {} 00798 void operator()(const std::vector<_Tp>& vec) const 00799 { 00800 size_t count = vec.size(); 00801 for (size_t i = 0; i < count; i++) 00802 write(*fs, vec[i]); 00803 } 00804 private: 00805 FileStorage* fs; 00806 }; 00807 00808 template<typename _Tp> class VecWriterProxy<_Tp, 1> 00809 { 00810 public: 00811 VecWriterProxy( FileStorage* _fs ) : fs(_fs) {} 00812 void operator()(const std::vector<_Tp>& vec) const 00813 { 00814 int _fmt = DataType<_Tp>::fmt; 00815 char fmt[] = { (char)((_fmt >> 8) + '1'), (char)_fmt, '\0' }; 00816 fs->writeRaw(fmt, !vec.empty() ? (uchar*)&vec[0] : 0, vec.size() * sizeof(_Tp)); 00817 } 00818 private: 00819 FileStorage* fs; 00820 }; 00821 00822 template<typename _Tp, int numflag> class VecReaderProxy 00823 { 00824 public: 00825 VecReaderProxy( FileNodeIterator* _it ) : it(_it) {} 00826 void operator()(std::vector<_Tp>& vec, size_t count) const 00827 { 00828 count = std::min(count, it->remaining); 00829 vec.resize(count); 00830 for (size_t i = 0; i < count; i++, ++(*it)) 00831 read(**it, vec[i], _Tp()); 00832 } 00833 private: 00834 FileNodeIterator* it; 00835 }; 00836 00837 template<typename _Tp> class VecReaderProxy<_Tp, 1> 00838 { 00839 public: 00840 VecReaderProxy( FileNodeIterator* _it ) : it(_it) {} 00841 void operator()(std::vector<_Tp>& vec, size_t count) const 00842 { 00843 size_t remaining = it->remaining; 00844 size_t cn = DataType<_Tp>::channels; 00845 int _fmt = DataType<_Tp>::fmt; 00846 char fmt[] = { (char)((_fmt >> 8)+'1'), (char)_fmt, '\0' }; 00847 size_t remaining1 = remaining / cn; 00848 count = count < remaining1 ? count : remaining1; 00849 vec.resize(count); 00850 it->readRaw(fmt, !vec.empty() ? (uchar*)&vec[0] : 0, count*sizeof(_Tp)); 00851 } 00852 private: 00853 FileNodeIterator* it; 00854 }; 00855 00856 } // internal 00857 00858 //! @endcond 00859 00860 //! @relates cv::FileStorage 00861 //! @{ 00862 00863 template<typename _Tp> static inline 00864 void write(FileStorage& fs, const _Tp& value) 00865 { 00866 write(fs, String(), value); 00867 } 00868 00869 template<> inline 00870 void write( FileStorage& fs, const int& value ) 00871 { 00872 writeScalar(fs, value); 00873 } 00874 00875 template<> inline 00876 void write( FileStorage& fs, const float& value ) 00877 { 00878 writeScalar(fs, value); 00879 } 00880 00881 template<> inline 00882 void write( FileStorage& fs, const double& value ) 00883 { 00884 writeScalar(fs, value); 00885 } 00886 00887 template<> inline 00888 void write( FileStorage& fs, const String& value ) 00889 { 00890 writeScalar(fs, value); 00891 } 00892 00893 template<typename _Tp> static inline 00894 void write(FileStorage& fs, const Point_<_Tp>& pt ) 00895 { 00896 write(fs, pt.x); 00897 write(fs, pt.y); 00898 } 00899 00900 template<typename _Tp> static inline 00901 void write(FileStorage& fs, const Point3_<_Tp>& pt ) 00902 { 00903 write(fs, pt.x); 00904 write(fs, pt.y); 00905 write(fs, pt.z); 00906 } 00907 00908 template<typename _Tp> static inline 00909 void write(FileStorage& fs, const Size_<_Tp>& sz ) 00910 { 00911 write(fs, sz.width); 00912 write(fs, sz.height); 00913 } 00914 00915 template<typename _Tp> static inline 00916 void write(FileStorage& fs, const Complex<_Tp>& c ) 00917 { 00918 write(fs, c.re); 00919 write(fs, c.im); 00920 } 00921 00922 template<typename _Tp> static inline 00923 void write(FileStorage& fs, const Rect_<_Tp>& r ) 00924 { 00925 write(fs, r.x); 00926 write(fs, r.y); 00927 write(fs, r.width); 00928 write(fs, r.height); 00929 } 00930 00931 template<typename _Tp, int cn> static inline 00932 void write(FileStorage& fs, const Vec<_Tp, cn>& v ) 00933 { 00934 for(int i = 0; i < cn; i++) 00935 write(fs, v.val[i]); 00936 } 00937 00938 template<typename _Tp> static inline 00939 void write(FileStorage& fs, const Scalar_<_Tp>& s ) 00940 { 00941 write(fs, s.val[0]); 00942 write(fs, s.val[1]); 00943 write(fs, s.val[2]); 00944 write(fs, s.val[3]); 00945 } 00946 00947 static inline 00948 void write(FileStorage& fs, const Range& r ) 00949 { 00950 write(fs, r.start); 00951 write(fs, r.end); 00952 } 00953 00954 template<typename _Tp> static inline 00955 void write( FileStorage& fs, const std::vector<_Tp>& vec ) 00956 { 00957 cv::internal::VecWriterProxy<_Tp, DataType<_Tp>::fmt != 0> w(&fs); 00958 w(vec); 00959 } 00960 00961 template<typename _Tp> static inline 00962 void write(FileStorage& fs, const String& name, const Point_<_Tp>& pt ) 00963 { 00964 cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW); 00965 write(fs, pt); 00966 } 00967 00968 template<typename _Tp> static inline 00969 void write(FileStorage& fs, const String& name, const Point3_<_Tp>& pt ) 00970 { 00971 cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW); 00972 write(fs, pt); 00973 } 00974 00975 template<typename _Tp> static inline 00976 void write(FileStorage& fs, const String& name, const Size_<_Tp>& sz ) 00977 { 00978 cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW); 00979 write(fs, sz); 00980 } 00981 00982 template<typename _Tp> static inline 00983 void write(FileStorage& fs, const String& name, const Complex<_Tp>& c ) 00984 { 00985 cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW); 00986 write(fs, c); 00987 } 00988 00989 template<typename _Tp> static inline 00990 void write(FileStorage& fs, const String& name, const Rect_<_Tp>& r ) 00991 { 00992 cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW); 00993 write(fs, r); 00994 } 00995 00996 template<typename _Tp, int cn> static inline 00997 void write(FileStorage& fs, const String& name, const Vec<_Tp, cn>& v ) 00998 { 00999 cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW); 01000 write(fs, v); 01001 } 01002 01003 template<typename _Tp> static inline 01004 void write(FileStorage& fs, const String& name, const Scalar_<_Tp>& s ) 01005 { 01006 cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW); 01007 write(fs, s); 01008 } 01009 01010 static inline 01011 void write(FileStorage& fs, const String& name, const Range& r ) 01012 { 01013 cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW); 01014 write(fs, r); 01015 } 01016 01017 template<typename _Tp> static inline 01018 void write( FileStorage& fs, const String& name, const std::vector<_Tp>& vec ) 01019 { 01020 cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+(DataType<_Tp>::fmt != 0 ? FileNode::FLOW : 0)); 01021 write(fs, vec); 01022 } 01023 01024 template<typename _Tp> static inline 01025 void write( FileStorage& fs, const String& name, const std::vector< std::vector<_Tp> >& vec ) 01026 { 01027 cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ); 01028 for(size_t i = 0; i < vec.size(); i++) 01029 { 01030 cv::internal::WriteStructContext ws_(fs, name, FileNode::SEQ+(DataType<_Tp>::fmt != 0 ? FileNode::FLOW : 0)); 01031 write(fs, vec[i]); 01032 } 01033 } 01034 01035 //! @} FileStorage 01036 01037 //! @relates cv::FileNode 01038 //! @{ 01039 01040 static inline 01041 void read(const FileNode& node, bool& value, bool default_value) 01042 { 01043 int temp; 01044 read(node, temp, (int)default_value); 01045 value = temp != 0; 01046 } 01047 01048 static inline 01049 void read(const FileNode& node, uchar& value, uchar default_value) 01050 { 01051 int temp; 01052 read(node, temp, (int)default_value); 01053 value = saturate_cast<uchar>(temp); 01054 } 01055 01056 static inline 01057 void read(const FileNode& node, schar& value, schar default_value) 01058 { 01059 int temp; 01060 read(node, temp, (int)default_value); 01061 value = saturate_cast<schar>(temp); 01062 } 01063 01064 static inline 01065 void read(const FileNode& node, ushort& value, ushort default_value) 01066 { 01067 int temp; 01068 read(node, temp, (int)default_value); 01069 value = saturate_cast<ushort>(temp); 01070 } 01071 01072 static inline 01073 void read(const FileNode& node, short& value, short default_value) 01074 { 01075 int temp; 01076 read(node, temp, (int)default_value); 01077 value = saturate_cast<short>(temp); 01078 } 01079 01080 template<typename _Tp> static inline 01081 void read( FileNodeIterator& it, std::vector<_Tp>& vec, size_t maxCount = (size_t)INT_MAX ) 01082 { 01083 cv::internal::VecReaderProxy<_Tp, DataType<_Tp>::fmt != 0> r(&it); 01084 r(vec, maxCount); 01085 } 01086 01087 template<typename _Tp> static inline 01088 void read( const FileNode& node, std::vector<_Tp>& vec, const std::vector<_Tp>& default_value = std::vector<_Tp>() ) 01089 { 01090 if(!node.node) 01091 vec = default_value; 01092 else 01093 { 01094 FileNodeIterator it = node.begin(); 01095 read( it, vec ); 01096 } 01097 } 01098 01099 //! @} FileNode 01100 01101 //! @relates cv::FileStorage 01102 //! @{ 01103 01104 /** @brief Writes data to a file storage. 01105 */ 01106 template<typename _Tp> static inline 01107 FileStorage& operator << (FileStorage& fs, const _Tp& value) 01108 { 01109 if( !fs.isOpened() ) 01110 return fs; 01111 if( fs.state == FileStorage::NAME_EXPECTED + FileStorage::INSIDE_MAP ) 01112 CV_Error( Error::StsError, "No element name has been given" ); 01113 write( fs, fs.elname, value ); 01114 if( fs.state & FileStorage::INSIDE_MAP ) 01115 fs.state = FileStorage::NAME_EXPECTED + FileStorage::INSIDE_MAP; 01116 return fs; 01117 } 01118 01119 /** @brief Writes data to a file storage. 01120 */ 01121 static inline 01122 FileStorage& operator << (FileStorage& fs, const char* str) 01123 { 01124 return (fs << String(str)); 01125 } 01126 01127 /** @brief Writes data to a file storage. 01128 */ 01129 static inline 01130 FileStorage& operator << (FileStorage& fs, char* value) 01131 { 01132 return (fs << String(value)); 01133 } 01134 01135 //! @} FileStorage 01136 01137 //! @relates cv::FileNodeIterator 01138 //! @{ 01139 01140 /** @brief Reads data from a file storage. 01141 */ 01142 template<typename _Tp> static inline 01143 FileNodeIterator& operator >> (FileNodeIterator& it, _Tp& value) 01144 { 01145 read( *it, value, _Tp()); 01146 return ++it; 01147 } 01148 01149 /** @brief Reads data from a file storage. 01150 */ 01151 template<typename _Tp> static inline 01152 FileNodeIterator& operator >> (FileNodeIterator& it, std::vector<_Tp>& vec) 01153 { 01154 cv::internal::VecReaderProxy<_Tp, DataType<_Tp>::fmt != 0> r(&it); 01155 r(vec, (size_t)INT_MAX); 01156 return it; 01157 } 01158 01159 //! @} FileNodeIterator 01160 01161 //! @relates cv::FileNode 01162 //! @{ 01163 01164 /** @brief Reads data from a file storage. 01165 */ 01166 template<typename _Tp> static inline 01167 void operator >> (const FileNode& n, _Tp& value) 01168 { 01169 read( n, value, _Tp()); 01170 } 01171 01172 /** @brief Reads data from a file storage. 01173 */ 01174 template<typename _Tp> static inline 01175 void operator >> (const FileNode& n, std::vector<_Tp>& vec) 01176 { 01177 FileNodeIterator it = n.begin(); 01178 it >> vec; 01179 } 01180 01181 /** @brief Reads KeyPoint from a file storage. 01182 */ 01183 //It needs special handling because it contains two types of fields, int & float. 01184 static inline 01185 void operator >> (const FileNode& n, std::vector<KeyPoint>& vec) 01186 { 01187 read(n, vec); 01188 } 01189 /** @brief Reads DMatch from a file storage. 01190 */ 01191 //It needs special handling because it contains two types of fields, int & float. 01192 static inline 01193 void operator >> (const FileNode& n, std::vector<DMatch>& vec) 01194 { 01195 read(n, vec); 01196 } 01197 01198 //! @} FileNode 01199 01200 //! @relates cv::FileNodeIterator 01201 //! @{ 01202 01203 static inline 01204 bool operator == (const FileNodeIterator& it1, const FileNodeIterator& it2) 01205 { 01206 return it1.fs == it2.fs && it1.container == it2.container && 01207 it1.reader.ptr == it2.reader.ptr && it1.remaining == it2.remaining; 01208 } 01209 01210 static inline 01211 bool operator != (const FileNodeIterator& it1, const FileNodeIterator& it2) 01212 { 01213 return !(it1 == it2); 01214 } 01215 01216 static inline 01217 ptrdiff_t operator - (const FileNodeIterator& it1, const FileNodeIterator& it2) 01218 { 01219 return it2.remaining - it1.remaining; 01220 } 01221 01222 static inline 01223 bool operator < (const FileNodeIterator& it1, const FileNodeIterator& it2) 01224 { 01225 return it1.remaining > it2.remaining; 01226 } 01227 01228 //! @} FileNodeIterator 01229 01230 //! @cond IGNORED 01231 01232 inline FileNode FileStorage::getFirstTopLevelNode() const { FileNode r = root(); FileNodeIterator it = r.begin(); return it != r.end() ? *it : FileNode(); } 01233 inline FileNode::FileNode() : fs(0), node(0) {} 01234 inline FileNode::FileNode(const CvFileStorage* _fs, const CvFileNode* _node) : fs(_fs), node(_node) {} 01235 inline FileNode::FileNode(const FileNode& _node) : fs(_node.fs), node(_node.node) {} 01236 inline bool FileNode::empty() const { return node == 0; } 01237 inline bool FileNode::isNone() const { return type() == NONE; } 01238 inline bool FileNode::isSeq() const { return type() == SEQ; } 01239 inline bool FileNode::isMap() const { return type() == MAP; } 01240 inline bool FileNode::isInt() const { return type() == INT; } 01241 inline bool FileNode::isReal() const { return type() == REAL; } 01242 inline bool FileNode::isString() const { return type() == STR; } 01243 inline CvFileNode* FileNode::operator *() { return (CvFileNode*)node; } 01244 inline const CvFileNode* FileNode::operator* () const { return node; } 01245 inline FileNode::operator int() const { int value; read(*this, value, 0); return value; } 01246 inline FileNode::operator float() const { float value; read(*this, value, 0.f); return value; } 01247 inline FileNode::operator double() const { double value; read(*this, value, 0.); return value; } 01248 inline FileNode::operator String() const { String value; read(*this, value, value); return value; } 01249 inline double FileNode::real() const { return double(*this); } 01250 inline String FileNode::string() const { return String(*this); } 01251 inline Mat FileNode::mat() const { Mat value; read(*this, value, value); return value; } 01252 inline FileNodeIterator FileNode::begin() const { return FileNodeIterator(fs, node); } 01253 inline FileNodeIterator FileNode::end() const { return FileNodeIterator(fs, node, size()); } 01254 inline void FileNode::readRaw( const String& fmt, uchar* vec, size_t len ) const { begin().readRaw( fmt, vec, len ); } 01255 inline FileNode FileNodeIterator::operator *() const { return FileNode(fs, (const CvFileNode*)(const void*)reader.ptr); } 01256 inline FileNode FileNodeIterator::operator ->() const { return FileNode(fs, (const CvFileNode*)(const void*)reader.ptr); } 01257 inline String::String(const FileNode& fn): cstr_(0), len_(0) { read(fn, *this, *this); } 01258 01259 //! @endcond 01260 01261 01262 CV_EXPORTS void cvStartWriteRawData_Base64(::CvFileStorage * fs, const char* name, int len, const char* dt); 01263 01264 CV_EXPORTS void cvWriteRawData_Base64(::CvFileStorage * fs, const void* _data, int len); 01265 01266 CV_EXPORTS void cvEndWriteRawData_Base64(::CvFileStorage * fs); 01267 01268 CV_EXPORTS void cvWriteMat_Base64(::CvFileStorage* fs, const char* name, const ::CvMat* mat); 01269 01270 CV_EXPORTS void cvWriteMatND_Base64(::CvFileStorage* fs, const char* name, const ::CvMatND * mat); 01271 01272 } // cv 01273 01274 #endif // OPENCV_CORE_PERSISTENCE_HPP
Generated on Tue Jul 12 2022 18:20:19 by
