Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependents: RZ_A2M_Mbed_samples
mat.inl.hpp
00001 /*M/////////////////////////////////////////////////////////////////////////////////////// 00002 // 00003 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. 00004 // 00005 // By downloading, copying, installing or using the software you agree to this license. 00006 // If you do not agree to this license, do not download, install, 00007 // copy or use the software. 00008 // 00009 // 00010 // License Agreement 00011 // For Open Source Computer Vision Library 00012 // 00013 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. 00014 // Copyright (C) 2009, Willow Garage Inc., all rights reserved. 00015 // Copyright (C) 2013, OpenCV Foundation, all rights reserved. 00016 // Copyright (C) 2015, Itseez Inc., all rights reserved. 00017 // Third party copyrights are property of their respective owners. 00018 // 00019 // Redistribution and use in source and binary forms, with or without modification, 00020 // are permitted provided that the following conditions are met: 00021 // 00022 // * Redistribution's of source code must retain the above copyright notice, 00023 // this list of conditions and the following disclaimer. 00024 // 00025 // * Redistribution's in binary form must reproduce the above copyright notice, 00026 // this list of conditions and the following disclaimer in the documentation 00027 // and/or other materials provided with the distribution. 00028 // 00029 // * The name of the copyright holders may not be used to endorse or promote products 00030 // derived from this software without specific prior written permission. 00031 // 00032 // This software is provided by the copyright holders and contributors "as is" and 00033 // any express or implied warranties, including, but not limited to, the implied 00034 // warranties of merchantability and fitness for a particular purpose are disclaimed. 00035 // In no event shall the Intel Corporation or contributors be liable for any direct, 00036 // indirect, incidental, special, exemplary, or consequential damages 00037 // (including, but not limited to, procurement of substitute goods or services; 00038 // loss of use, data, or profits; or business interruption) however caused 00039 // and on any theory of liability, whether in contract, strict liability, 00040 // or tort (including negligence or otherwise) arising in any way out of 00041 // the use of this software, even if advised of the possibility of such damage. 00042 // 00043 //M*/ 00044 00045 #ifndef OPENCV_CORE_MATRIX_OPERATIONS_HPP 00046 #define OPENCV_CORE_MATRIX_OPERATIONS_HPP 00047 00048 #ifndef __cplusplus 00049 # error mat.inl.hpp header must be compiled as C++ 00050 #endif 00051 00052 namespace cv 00053 { 00054 00055 //! @cond IGNORED 00056 00057 //////////////////////// Input/Output Arrays //////////////////////// 00058 00059 inline void _InputArray::init(int _flags, const void* _obj) 00060 { flags = _flags; obj = (void*)_obj; } 00061 00062 inline void _InputArray::init(int _flags, const void* _obj, Size _sz) 00063 { flags = _flags; obj = (void*)_obj; sz = _sz; } 00064 00065 inline void* _InputArray::getObj() const { return obj; } 00066 inline int _InputArray::getFlags() const { return flags; } 00067 inline Size _InputArray::getSz() const { return sz; } 00068 00069 inline _InputArray::_InputArray() { init(NONE, 0); } 00070 inline _InputArray::_InputArray(int _flags, void* _obj) { init(_flags, _obj); } 00071 inline _InputArray::_InputArray(const Mat& m) { init(MAT+ACCESS_READ, &m); } 00072 inline _InputArray::_InputArray(const std::vector<Mat>& vec) { init(STD_VECTOR_MAT+ACCESS_READ, &vec); } 00073 inline _InputArray::_InputArray(const UMat& m) { init(UMAT+ACCESS_READ, &m); } 00074 inline _InputArray::_InputArray(const std::vector<UMat>& vec) { init(STD_VECTOR_UMAT+ACCESS_READ, &vec); } 00075 00076 template<typename _Tp> inline 00077 _InputArray::_InputArray(const std::vector<_Tp>& vec) 00078 { init(FIXED_TYPE + STD_VECTOR + DataType<_Tp>::type + ACCESS_READ, &vec); } 00079 00080 inline 00081 _InputArray::_InputArray(const std::vector<bool>& vec) 00082 { init(FIXED_TYPE + STD_BOOL_VECTOR + DataType<bool>::type + ACCESS_READ, &vec); } 00083 00084 template<typename _Tp> inline 00085 _InputArray::_InputArray(const std::vector<std::vector<_Tp> >& vec) 00086 { init(FIXED_TYPE + STD_VECTOR_VECTOR + DataType<_Tp>::type + ACCESS_READ, &vec); } 00087 00088 template<typename _Tp> inline 00089 _InputArray::_InputArray(const std::vector<Mat_<_Tp> >& vec) 00090 { init(FIXED_TYPE + STD_VECTOR_MAT + DataType<_Tp>::type + ACCESS_READ, &vec); } 00091 00092 template<typename _Tp, int m, int n> inline 00093 _InputArray::_InputArray(const Matx<_Tp, m, n>& mtx) 00094 { init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_READ, &mtx, Size(n, m)); } 00095 00096 template<typename _Tp> inline 00097 _InputArray::_InputArray(const _Tp* vec, int n) 00098 { init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_READ, vec, Size(n, 1)); } 00099 00100 template<typename _Tp> inline 00101 _InputArray::_InputArray(const Mat_<_Tp>& m) 00102 { init(FIXED_TYPE + MAT + DataType<_Tp>::type + ACCESS_READ, &m); } 00103 00104 inline _InputArray::_InputArray(const double& val) 00105 { init(FIXED_TYPE + FIXED_SIZE + MATX + CV_64F + ACCESS_READ, &val, Size(1,1)); } 00106 00107 inline _InputArray::_InputArray(const MatExpr& expr) 00108 { init(FIXED_TYPE + FIXED_SIZE + EXPR + ACCESS_READ, &expr); } 00109 00110 inline _InputArray::_InputArray(const cuda::GpuMat& d_mat) 00111 { init(CUDA_GPU_MAT + ACCESS_READ, &d_mat); } 00112 00113 inline _InputArray::_InputArray(const std::vector<cuda::GpuMat>& d_mat) 00114 { init(STD_VECTOR_CUDA_GPU_MAT + ACCESS_READ, &d_mat);} 00115 00116 inline _InputArray::_InputArray(const ogl::Buffer& buf) 00117 { init(OPENGL_BUFFER + ACCESS_READ, &buf); } 00118 00119 inline _InputArray::_InputArray(const cuda::HostMem& cuda_mem) 00120 { init(CUDA_HOST_MEM + ACCESS_READ, &cuda_mem); } 00121 00122 inline _InputArray::~_InputArray() {} 00123 00124 inline Mat _InputArray::getMat(int i) const 00125 { 00126 if( kind() == MAT && i < 0 ) 00127 return *(const Mat*)obj; 00128 return getMat_(i); 00129 } 00130 00131 inline bool _InputArray::isMat() const { return kind() == _InputArray::MAT; } 00132 inline bool _InputArray::isUMat() const { return kind() == _InputArray::UMAT; } 00133 inline bool _InputArray::isMatVector() const { return kind() == _InputArray::STD_VECTOR_MAT; } 00134 inline bool _InputArray::isUMatVector() const { return kind() == _InputArray::STD_VECTOR_UMAT; } 00135 inline bool _InputArray::isMatx() const { return kind() == _InputArray::MATX; } 00136 inline bool _InputArray::isVector() const { return kind() == _InputArray::STD_VECTOR || kind() == _InputArray::STD_BOOL_VECTOR; } 00137 inline bool _InputArray::isGpuMatVector() const { return kind() == _InputArray::STD_VECTOR_CUDA_GPU_MAT; } 00138 00139 //////////////////////////////////////////////////////////////////////////////////////// 00140 00141 inline _OutputArray::_OutputArray() { init(ACCESS_WRITE, 0); } 00142 inline _OutputArray::_OutputArray(int _flags, void* _obj) { init(_flags|ACCESS_WRITE, _obj); } 00143 inline _OutputArray::_OutputArray(Mat& m) { init(MAT+ACCESS_WRITE, &m); } 00144 inline _OutputArray::_OutputArray(std::vector<Mat>& vec) { init(STD_VECTOR_MAT+ACCESS_WRITE, &vec); } 00145 inline _OutputArray::_OutputArray(UMat& m) { init(UMAT+ACCESS_WRITE, &m); } 00146 inline _OutputArray::_OutputArray(std::vector<UMat>& vec) { init(STD_VECTOR_UMAT+ACCESS_WRITE, &vec); } 00147 00148 template<typename _Tp> inline 00149 _OutputArray::_OutputArray(std::vector<_Tp>& vec) 00150 { init(FIXED_TYPE + STD_VECTOR + DataType<_Tp>::type + ACCESS_WRITE, &vec); } 00151 00152 inline 00153 _OutputArray::_OutputArray(std::vector<bool>&) 00154 { CV_Error(Error::StsUnsupportedFormat, "std::vector<bool> cannot be an output array\n"); } 00155 00156 template<typename _Tp> inline 00157 _OutputArray::_OutputArray(std::vector<std::vector<_Tp> >& vec) 00158 { init(FIXED_TYPE + STD_VECTOR_VECTOR + DataType<_Tp>::type + ACCESS_WRITE, &vec); } 00159 00160 template<typename _Tp> inline 00161 _OutputArray::_OutputArray(std::vector<Mat_<_Tp> >& vec) 00162 { init(FIXED_TYPE + STD_VECTOR_MAT + DataType<_Tp>::type + ACCESS_WRITE, &vec); } 00163 00164 template<typename _Tp> inline 00165 _OutputArray::_OutputArray(Mat_<_Tp>& m) 00166 { init(FIXED_TYPE + MAT + DataType<_Tp>::type + ACCESS_WRITE, &m); } 00167 00168 template<typename _Tp, int m, int n> inline 00169 _OutputArray::_OutputArray(Matx<_Tp, m, n>& mtx) 00170 { init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_WRITE, &mtx, Size(n, m)); } 00171 00172 template<typename _Tp> inline 00173 _OutputArray::_OutputArray(_Tp* vec, int n) 00174 { init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_WRITE, vec, Size(n, 1)); } 00175 00176 template<typename _Tp> inline 00177 _OutputArray::_OutputArray(const std::vector<_Tp>& vec) 00178 { init(FIXED_TYPE + FIXED_SIZE + STD_VECTOR + DataType<_Tp>::type + ACCESS_WRITE, &vec); } 00179 00180 template<typename _Tp> inline 00181 _OutputArray::_OutputArray(const std::vector<std::vector<_Tp> >& vec) 00182 { init(FIXED_TYPE + FIXED_SIZE + STD_VECTOR_VECTOR + DataType<_Tp>::type + ACCESS_WRITE, &vec); } 00183 00184 template<typename _Tp> inline 00185 _OutputArray::_OutputArray(const std::vector<Mat_<_Tp> >& vec) 00186 { init(FIXED_TYPE + FIXED_SIZE + STD_VECTOR_MAT + DataType<_Tp>::type + ACCESS_WRITE, &vec); } 00187 00188 template<typename _Tp> inline 00189 _OutputArray::_OutputArray(const Mat_<_Tp>& m) 00190 { init(FIXED_TYPE + FIXED_SIZE + MAT + DataType<_Tp>::type + ACCESS_WRITE, &m); } 00191 00192 template<typename _Tp, int m, int n> inline 00193 _OutputArray::_OutputArray(const Matx<_Tp, m, n>& mtx) 00194 { init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_WRITE, &mtx, Size(n, m)); } 00195 00196 template<typename _Tp> inline 00197 _OutputArray::_OutputArray(const _Tp* vec, int n) 00198 { init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_WRITE, vec, Size(n, 1)); } 00199 00200 inline _OutputArray::_OutputArray(cuda::GpuMat& d_mat) 00201 { init(CUDA_GPU_MAT + ACCESS_WRITE, &d_mat); } 00202 00203 inline _OutputArray::_OutputArray(std::vector<cuda::GpuMat>& d_mat) 00204 { init(STD_VECTOR_CUDA_GPU_MAT + ACCESS_WRITE, &d_mat);} 00205 00206 inline _OutputArray::_OutputArray(ogl::Buffer& buf) 00207 { init(OPENGL_BUFFER + ACCESS_WRITE, &buf); } 00208 00209 inline _OutputArray::_OutputArray(cuda::HostMem& cuda_mem) 00210 { init(CUDA_HOST_MEM + ACCESS_WRITE, &cuda_mem); } 00211 00212 inline _OutputArray::_OutputArray(const Mat& m) 00213 { init(FIXED_TYPE + FIXED_SIZE + MAT + ACCESS_WRITE, &m); } 00214 00215 inline _OutputArray::_OutputArray(const std::vector<Mat>& vec) 00216 { init(FIXED_SIZE + STD_VECTOR_MAT + ACCESS_WRITE, &vec); } 00217 00218 inline _OutputArray::_OutputArray(const UMat& m) 00219 { init(FIXED_TYPE + FIXED_SIZE + UMAT + ACCESS_WRITE, &m); } 00220 00221 inline _OutputArray::_OutputArray(const std::vector<UMat>& vec) 00222 { init(FIXED_SIZE + STD_VECTOR_UMAT + ACCESS_WRITE, &vec); } 00223 00224 inline _OutputArray::_OutputArray(const cuda::GpuMat& d_mat) 00225 { init(FIXED_TYPE + FIXED_SIZE + CUDA_GPU_MAT + ACCESS_WRITE, &d_mat); } 00226 00227 00228 inline _OutputArray::_OutputArray(const ogl::Buffer& buf) 00229 { init(FIXED_TYPE + FIXED_SIZE + OPENGL_BUFFER + ACCESS_WRITE, &buf); } 00230 00231 inline _OutputArray::_OutputArray(const cuda::HostMem& cuda_mem) 00232 { init(FIXED_TYPE + FIXED_SIZE + CUDA_HOST_MEM + ACCESS_WRITE, &cuda_mem); } 00233 00234 /////////////////////////////////////////////////////////////////////////////////////////// 00235 00236 inline _InputOutputArray::_InputOutputArray() { init(ACCESS_RW, 0); } 00237 inline _InputOutputArray::_InputOutputArray(int _flags, void* _obj) { init(_flags|ACCESS_RW, _obj); } 00238 inline _InputOutputArray::_InputOutputArray(Mat& m) { init(MAT+ACCESS_RW, &m); } 00239 inline _InputOutputArray::_InputOutputArray(std::vector<Mat>& vec) { init(STD_VECTOR_MAT+ACCESS_RW, &vec); } 00240 inline _InputOutputArray::_InputOutputArray(UMat& m) { init(UMAT+ACCESS_RW, &m); } 00241 inline _InputOutputArray::_InputOutputArray(std::vector<UMat>& vec) { init(STD_VECTOR_UMAT+ACCESS_RW, &vec); } 00242 00243 template<typename _Tp> inline 00244 _InputOutputArray::_InputOutputArray(std::vector<_Tp>& vec) 00245 { init(FIXED_TYPE + STD_VECTOR + DataType<_Tp>::type + ACCESS_RW, &vec); } 00246 00247 inline _InputOutputArray::_InputOutputArray(std::vector<bool>&) 00248 { CV_Error(Error::StsUnsupportedFormat, "std::vector<bool> cannot be an input/output array\n"); } 00249 00250 template<typename _Tp> inline 00251 _InputOutputArray::_InputOutputArray(std::vector<std::vector<_Tp> >& vec) 00252 { init(FIXED_TYPE + STD_VECTOR_VECTOR + DataType<_Tp>::type + ACCESS_RW, &vec); } 00253 00254 template<typename _Tp> inline 00255 _InputOutputArray::_InputOutputArray(std::vector<Mat_<_Tp> >& vec) 00256 { init(FIXED_TYPE + STD_VECTOR_MAT + DataType<_Tp>::type + ACCESS_RW, &vec); } 00257 00258 template<typename _Tp> inline 00259 _InputOutputArray::_InputOutputArray(Mat_<_Tp>& m) 00260 { init(FIXED_TYPE + MAT + DataType<_Tp>::type + ACCESS_RW, &m); } 00261 00262 template<typename _Tp, int m, int n> inline 00263 _InputOutputArray::_InputOutputArray(Matx<_Tp, m, n>& mtx) 00264 { init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_RW, &mtx, Size(n, m)); } 00265 00266 template<typename _Tp> inline 00267 _InputOutputArray::_InputOutputArray(_Tp* vec, int n) 00268 { init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_RW, vec, Size(n, 1)); } 00269 00270 template<typename _Tp> inline 00271 _InputOutputArray::_InputOutputArray(const std::vector<_Tp>& vec) 00272 { init(FIXED_TYPE + FIXED_SIZE + STD_VECTOR + DataType<_Tp>::type + ACCESS_RW, &vec); } 00273 00274 template<typename _Tp> inline 00275 _InputOutputArray::_InputOutputArray(const std::vector<std::vector<_Tp> >& vec) 00276 { init(FIXED_TYPE + FIXED_SIZE + STD_VECTOR_VECTOR + DataType<_Tp>::type + ACCESS_RW, &vec); } 00277 00278 template<typename _Tp> inline 00279 _InputOutputArray::_InputOutputArray(const std::vector<Mat_<_Tp> >& vec) 00280 { init(FIXED_TYPE + FIXED_SIZE + STD_VECTOR_MAT + DataType<_Tp>::type + ACCESS_RW, &vec); } 00281 00282 template<typename _Tp> inline 00283 _InputOutputArray::_InputOutputArray(const Mat_<_Tp>& m) 00284 { init(FIXED_TYPE + FIXED_SIZE + MAT + DataType<_Tp>::type + ACCESS_RW, &m); } 00285 00286 template<typename _Tp, int m, int n> inline 00287 _InputOutputArray::_InputOutputArray(const Matx<_Tp, m, n>& mtx) 00288 { init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_RW, &mtx, Size(n, m)); } 00289 00290 template<typename _Tp> inline 00291 _InputOutputArray::_InputOutputArray(const _Tp* vec, int n) 00292 { init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_RW, vec, Size(n, 1)); } 00293 00294 inline _InputOutputArray::_InputOutputArray(cuda::GpuMat& d_mat) 00295 { init(CUDA_GPU_MAT + ACCESS_RW, &d_mat); } 00296 00297 inline _InputOutputArray::_InputOutputArray(ogl::Buffer& buf) 00298 { init(OPENGL_BUFFER + ACCESS_RW, &buf); } 00299 00300 inline _InputOutputArray::_InputOutputArray(cuda::HostMem& cuda_mem) 00301 { init(CUDA_HOST_MEM + ACCESS_RW, &cuda_mem); } 00302 00303 inline _InputOutputArray::_InputOutputArray(const Mat& m) 00304 { init(FIXED_TYPE + FIXED_SIZE + MAT + ACCESS_RW, &m); } 00305 00306 inline _InputOutputArray::_InputOutputArray(const std::vector<Mat>& vec) 00307 { init(FIXED_SIZE + STD_VECTOR_MAT + ACCESS_RW, &vec); } 00308 00309 inline _InputOutputArray::_InputOutputArray(const UMat& m) 00310 { init(FIXED_TYPE + FIXED_SIZE + UMAT + ACCESS_RW, &m); } 00311 00312 inline _InputOutputArray::_InputOutputArray(const std::vector<UMat>& vec) 00313 { init(FIXED_SIZE + STD_VECTOR_UMAT + ACCESS_RW, &vec); } 00314 00315 inline _InputOutputArray::_InputOutputArray(const cuda::GpuMat& d_mat) 00316 { init(FIXED_TYPE + FIXED_SIZE + CUDA_GPU_MAT + ACCESS_RW, &d_mat); } 00317 00318 inline _InputOutputArray::_InputOutputArray(const std::vector<cuda::GpuMat>& d_mat) 00319 { init(FIXED_TYPE + FIXED_SIZE + STD_VECTOR_CUDA_GPU_MAT + ACCESS_RW, &d_mat);} 00320 00321 template<> inline _InputOutputArray::_InputOutputArray(std::vector<cuda::GpuMat>& d_mat) 00322 { init(FIXED_TYPE + FIXED_SIZE + STD_VECTOR_CUDA_GPU_MAT + ACCESS_RW, &d_mat);} 00323 00324 inline _InputOutputArray::_InputOutputArray(const ogl::Buffer& buf) 00325 { init(FIXED_TYPE + FIXED_SIZE + OPENGL_BUFFER + ACCESS_RW, &buf); } 00326 00327 inline _InputOutputArray::_InputOutputArray(const cuda::HostMem& cuda_mem) 00328 { init(FIXED_TYPE + FIXED_SIZE + CUDA_HOST_MEM + ACCESS_RW, &cuda_mem); } 00329 00330 //////////////////////////////////////////// Mat ////////////////////////////////////////// 00331 00332 inline 00333 Mat::Mat() 00334 : flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), 00335 datalimit(0), allocator(0), u(0), size(&rows) 00336 {} 00337 00338 inline 00339 Mat::Mat(int _rows, int _cols, int _type) 00340 : flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), 00341 datalimit(0), allocator(0), u(0), size(&rows) 00342 { 00343 create(_rows, _cols, _type); 00344 } 00345 00346 inline 00347 Mat::Mat(int _rows, int _cols, int _type, const Scalar& _s) 00348 : flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), 00349 datalimit(0), allocator(0), u(0), size(&rows) 00350 { 00351 create(_rows, _cols, _type); 00352 *this = _s; 00353 } 00354 00355 inline 00356 Mat::Mat(Size _sz, int _type) 00357 : flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), 00358 datalimit(0), allocator(0), u(0), size(&rows) 00359 { 00360 create( _sz.height, _sz.width, _type ); 00361 } 00362 00363 inline 00364 Mat::Mat(Size _sz, int _type, const Scalar& _s) 00365 : flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), 00366 datalimit(0), allocator(0), u(0), size(&rows) 00367 { 00368 create(_sz.height, _sz.width, _type); 00369 *this = _s; 00370 } 00371 00372 inline 00373 Mat::Mat(int _dims, const int* _sz, int _type) 00374 : flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), 00375 datalimit(0), allocator(0), u(0), size(&rows) 00376 { 00377 create(_dims, _sz, _type); 00378 } 00379 00380 inline 00381 Mat::Mat(int _dims, const int* _sz, int _type, const Scalar& _s) 00382 : flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), 00383 datalimit(0), allocator(0), u(0), size(&rows) 00384 { 00385 create(_dims, _sz, _type); 00386 *this = _s; 00387 } 00388 00389 inline 00390 Mat::Mat(const std::vector<int>& _sz, int _type) 00391 : flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), 00392 datalimit(0), allocator(0), u(0), size(&rows) 00393 { 00394 create(_sz, _type); 00395 } 00396 00397 inline 00398 Mat::Mat(const std::vector<int>& _sz, int _type, const Scalar& _s) 00399 : flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), 00400 datalimit(0), allocator(0), u(0), size(&rows) 00401 { 00402 create(_sz, _type); 00403 *this = _s; 00404 } 00405 00406 inline 00407 Mat::Mat(const Mat& m) 00408 : flags(m.flags), dims(m.dims), rows(m.rows), cols(m.cols), data(m.data), 00409 datastart(m.datastart), dataend(m.dataend), datalimit(m.datalimit), allocator(m.allocator), 00410 u(m.u), size(&rows) 00411 { 00412 if( u ) 00413 CV_XADD(&u->refcount, 1); 00414 if( m.dims <= 2 ) 00415 { 00416 step[0] = m.step[0]; step[1] = m.step[1]; 00417 } 00418 else 00419 { 00420 dims = 0; 00421 copySize(m); 00422 } 00423 } 00424 00425 inline 00426 Mat::Mat(int _rows, int _cols, int _type, void* _data, size_t _step) 00427 : flags(MAGIC_VAL + (_type & TYPE_MASK)), dims(2), rows(_rows), cols(_cols), 00428 data((uchar*)_data), datastart((uchar*)_data), dataend(0), datalimit(0), 00429 allocator(0), u(0), size(&rows) 00430 { 00431 CV_Assert(total() == 0 || data != NULL); 00432 00433 size_t esz = CV_ELEM_SIZE(_type), esz1 = CV_ELEM_SIZE1(_type); 00434 size_t minstep = cols * esz; 00435 if( _step == AUTO_STEP ) 00436 { 00437 _step = minstep; 00438 flags |= CONTINUOUS_FLAG; 00439 } 00440 else 00441 { 00442 if( rows == 1 ) _step = minstep; 00443 CV_DbgAssert( _step >= minstep ); 00444 00445 if (_step % esz1 != 0) 00446 { 00447 CV_Error(Error::BadStep, "Step must be a multiple of esz1"); 00448 } 00449 00450 flags |= _step == minstep ? CONTINUOUS_FLAG : 0; 00451 } 00452 step[0] = _step; 00453 step[1] = esz; 00454 datalimit = datastart + _step * rows; 00455 dataend = datalimit - _step + minstep; 00456 } 00457 00458 inline 00459 Mat::Mat(Size _sz, int _type, void* _data, size_t _step) 00460 : flags(MAGIC_VAL + (_type & TYPE_MASK)), dims(2), rows(_sz.height), cols(_sz.width), 00461 data((uchar*)_data), datastart((uchar*)_data), dataend(0), datalimit(0), 00462 allocator(0), u(0), size(&rows) 00463 { 00464 CV_Assert(total() == 0 || data != NULL); 00465 00466 size_t esz = CV_ELEM_SIZE(_type), esz1 = CV_ELEM_SIZE1(_type); 00467 size_t minstep = cols*esz; 00468 if( _step == AUTO_STEP ) 00469 { 00470 _step = minstep; 00471 flags |= CONTINUOUS_FLAG; 00472 } 00473 else 00474 { 00475 if( rows == 1 ) _step = minstep; 00476 CV_DbgAssert( _step >= minstep ); 00477 00478 if (_step % esz1 != 0) 00479 { 00480 CV_Error(Error::BadStep, "Step must be a multiple of esz1"); 00481 } 00482 00483 flags |= _step == minstep ? CONTINUOUS_FLAG : 0; 00484 } 00485 step[0] = _step; 00486 step[1] = esz; 00487 datalimit = datastart + _step*rows; 00488 dataend = datalimit - _step + minstep; 00489 } 00490 00491 template<typename _Tp> inline 00492 Mat::Mat(const std::vector<_Tp>& vec, bool copyData) 00493 : flags(MAGIC_VAL | DataType<_Tp>::type | CV_MAT_CONT_FLAG), dims(2), rows((int)vec.size()), 00494 cols(1), data(0), datastart(0), dataend(0), allocator(0), u(0), size(&rows) 00495 { 00496 if(vec.empty()) 00497 return; 00498 if( !copyData ) 00499 { 00500 step[0] = step[1] = sizeof(_Tp); 00501 datastart = data = (uchar*)&vec[0]; 00502 datalimit = dataend = datastart + rows * step[0]; 00503 } 00504 else 00505 Mat((int)vec.size(), 1, DataType<_Tp>::type, (uchar*)&vec[0]).copyTo(*this); 00506 } 00507 00508 template<typename _Tp, int n> inline 00509 Mat::Mat(const Vec<_Tp, n>& vec, bool copyData) 00510 : flags(MAGIC_VAL | DataType<_Tp>::type | CV_MAT_CONT_FLAG), dims(2), rows(n), cols(1), data(0), 00511 datastart(0), dataend(0), allocator(0), u(0), size(&rows) 00512 { 00513 if( !copyData ) 00514 { 00515 step[0] = step[1] = sizeof(_Tp); 00516 datastart = data = (uchar*)vec.val; 00517 datalimit = dataend = datastart + rows * step[0]; 00518 } 00519 else 00520 Mat(n, 1, DataType<_Tp>::type, (void*)vec.val).copyTo(*this); 00521 } 00522 00523 00524 template<typename _Tp, int m, int n> inline 00525 Mat::Mat(const Matx<_Tp,m,n>& M, bool copyData) 00526 : flags(MAGIC_VAL | DataType<_Tp>::type | CV_MAT_CONT_FLAG), dims(2), rows(m), cols(n), data(0), 00527 datastart(0), dataend(0), allocator(0), u(0), size(&rows) 00528 { 00529 if( !copyData ) 00530 { 00531 step[0] = cols * sizeof(_Tp); 00532 step[1] = sizeof(_Tp); 00533 datastart = data = (uchar*)M.val; 00534 datalimit = dataend = datastart + rows * step[0]; 00535 } 00536 else 00537 Mat(m, n, DataType<_Tp>::type, (uchar*)M.val).copyTo(*this); 00538 } 00539 00540 template<typename _Tp> inline 00541 Mat::Mat(const Point_<_Tp>& pt, bool copyData) 00542 : flags(MAGIC_VAL | DataType<_Tp>::type | CV_MAT_CONT_FLAG), dims(2), rows(2), cols(1), data(0), 00543 datastart(0), dataend(0), allocator(0), u(0), size(&rows) 00544 { 00545 if( !copyData ) 00546 { 00547 step[0] = step[1] = sizeof(_Tp); 00548 datastart = data = (uchar*)&pt.x; 00549 datalimit = dataend = datastart + rows * step[0]; 00550 } 00551 else 00552 { 00553 create(2, 1, DataType<_Tp>::type); 00554 ((_Tp*)data)[0] = pt.x; 00555 ((_Tp*)data)[1] = pt.y; 00556 } 00557 } 00558 00559 template<typename _Tp> inline 00560 Mat::Mat(const Point3_<_Tp>& pt, bool copyData) 00561 : flags(MAGIC_VAL | DataType<_Tp>::type | CV_MAT_CONT_FLAG), dims(2), rows(3), cols(1), data(0), 00562 datastart(0), dataend(0), allocator(0), u(0), size(&rows) 00563 { 00564 if( !copyData ) 00565 { 00566 step[0] = step[1] = sizeof(_Tp); 00567 datastart = data = (uchar*)&pt.x; 00568 datalimit = dataend = datastart + rows * step[0]; 00569 } 00570 else 00571 { 00572 create(3, 1, DataType<_Tp>::type); 00573 ((_Tp*)data)[0] = pt.x; 00574 ((_Tp*)data)[1] = pt.y; 00575 ((_Tp*)data)[2] = pt.z; 00576 } 00577 } 00578 00579 template<typename _Tp> inline 00580 Mat::Mat(const MatCommaInitializer_<_Tp>& commaInitializer) 00581 : flags(MAGIC_VAL | DataType<_Tp>::type | CV_MAT_CONT_FLAG), dims(0), rows(0), cols(0), data(0), 00582 datastart(0), dataend(0), allocator(0), u(0), size(&rows) 00583 { 00584 *this = commaInitializer.operator Mat_<_Tp>(); 00585 } 00586 00587 inline 00588 Mat::~Mat() 00589 { 00590 release(); 00591 if( step.p != step.buf ) 00592 fastFree(step.p); 00593 } 00594 00595 inline 00596 Mat& Mat::operator = (const Mat& m) 00597 { 00598 if( this != &m ) 00599 { 00600 if( m.u ) 00601 CV_XADD(&m.u->refcount, 1); 00602 release(); 00603 flags = m.flags; 00604 if( dims <= 2 && m.dims <= 2 ) 00605 { 00606 dims = m.dims; 00607 rows = m.rows; 00608 cols = m.cols; 00609 step[0] = m.step[0]; 00610 step[1] = m.step[1]; 00611 } 00612 else 00613 copySize(m); 00614 data = m.data; 00615 datastart = m.datastart; 00616 dataend = m.dataend; 00617 datalimit = m.datalimit; 00618 allocator = m.allocator; 00619 u = m.u; 00620 } 00621 return *this; 00622 } 00623 00624 inline 00625 Mat Mat::row(int y) const 00626 { 00627 return Mat(*this, Range(y, y + 1), Range::all()); 00628 } 00629 00630 inline 00631 Mat Mat::col(int x) const 00632 { 00633 return Mat(*this, Range::all(), Range(x, x + 1)); 00634 } 00635 00636 inline 00637 Mat Mat::rowRange(int startrow, int endrow) const 00638 { 00639 return Mat(*this, Range(startrow, endrow), Range::all()); 00640 } 00641 00642 inline 00643 Mat Mat::rowRange(const Range& r) const 00644 { 00645 return Mat(*this, r, Range::all()); 00646 } 00647 00648 inline 00649 Mat Mat::colRange(int startcol, int endcol) const 00650 { 00651 return Mat(*this, Range::all(), Range(startcol, endcol)); 00652 } 00653 00654 inline 00655 Mat Mat::colRange(const Range& r) const 00656 { 00657 return Mat(*this, Range::all(), r); 00658 } 00659 00660 inline 00661 Mat Mat::clone() const 00662 { 00663 Mat m; 00664 copyTo(m); 00665 return m; 00666 } 00667 00668 inline 00669 void Mat::assignTo( Mat& m, int _type ) const 00670 { 00671 if( _type < 0 ) 00672 m = *this; 00673 else 00674 convertTo(m, _type); 00675 } 00676 00677 inline 00678 void Mat::create(int _rows, int _cols, int _type) 00679 { 00680 _type &= TYPE_MASK; 00681 if( dims <= 2 && rows == _rows && cols == _cols && type() == _type && data ) 00682 return; 00683 int sz[] = {_rows, _cols}; 00684 create(2, sz, _type); 00685 } 00686 00687 inline 00688 void Mat::create(Size _sz, int _type) 00689 { 00690 create(_sz.height, _sz.width, _type); 00691 } 00692 00693 inline 00694 void Mat::addref() 00695 { 00696 if( u ) 00697 CV_XADD(&u->refcount, 1); 00698 } 00699 00700 inline 00701 void Mat::release() 00702 { 00703 if( u && CV_XADD(&u->refcount, -1) == 1 ) 00704 deallocate(); 00705 u = NULL; 00706 datastart = dataend = datalimit = data = 0; 00707 for(int i = 0; i < dims; i++) 00708 size.p[i] = 0; 00709 #ifdef _DEBUG 00710 flags = MAGIC_VAL; 00711 dims = rows = cols = 0; 00712 if(step.p != step.buf) 00713 { 00714 fastFree(step.p); 00715 step.p = step.buf; 00716 size.p = &rows; 00717 } 00718 #endif 00719 } 00720 00721 inline 00722 Mat Mat::operator()( Range _rowRange, Range _colRange ) const 00723 { 00724 return Mat(*this, _rowRange, _colRange); 00725 } 00726 00727 inline 00728 Mat Mat::operator()( const Rect& roi ) const 00729 { 00730 return Mat(*this, roi); 00731 } 00732 00733 inline 00734 Mat Mat::operator()(const Range* ranges) const 00735 { 00736 return Mat(*this, ranges); 00737 } 00738 00739 inline 00740 Mat Mat::operator()(const std::vector<Range>& ranges) const 00741 { 00742 return Mat(*this, ranges); 00743 } 00744 00745 inline 00746 bool Mat::isContinuous() const 00747 { 00748 return (flags & CONTINUOUS_FLAG) != 0; 00749 } 00750 00751 inline 00752 bool Mat::isSubmatrix() const 00753 { 00754 return (flags & SUBMATRIX_FLAG) != 0; 00755 } 00756 00757 inline 00758 size_t Mat::elemSize() const 00759 { 00760 return dims > 0 ? step.p[dims - 1] : 0; 00761 } 00762 00763 inline 00764 size_t Mat::elemSize1() const 00765 { 00766 return CV_ELEM_SIZE1(flags ); 00767 } 00768 00769 inline 00770 int Mat::type() const 00771 { 00772 return CV_MAT_TYPE(flags ); 00773 } 00774 00775 inline 00776 int Mat::depth() const 00777 { 00778 return CV_MAT_DEPTH(flags ); 00779 } 00780 00781 inline 00782 int Mat::channels() const 00783 { 00784 return CV_MAT_CN(flags ); 00785 } 00786 00787 inline 00788 size_t Mat::step1(int i) const 00789 { 00790 return step.p[i] / elemSize1(); 00791 } 00792 00793 inline 00794 bool Mat::empty() const 00795 { 00796 return data == 0 || total() == 0; 00797 } 00798 00799 inline 00800 size_t Mat::total() const 00801 { 00802 if( dims <= 2 ) 00803 return (size_t)rows * cols; 00804 size_t p = 1; 00805 for( int i = 0; i < dims; i++ ) 00806 p *= size[i]; 00807 return p; 00808 } 00809 00810 inline 00811 uchar* Mat::ptr(int y) 00812 { 00813 CV_DbgAssert( y == 0 || (data && dims >= 1 && (unsigned)y < (unsigned)size.p[0]) ); 00814 return data + step.p[0] * y; 00815 } 00816 00817 inline 00818 const uchar* Mat::ptr(int y) const 00819 { 00820 CV_DbgAssert( y == 0 || (data && dims >= 1 && (unsigned)y < (unsigned)size.p[0]) ); 00821 return data + step.p[0] * y; 00822 } 00823 00824 template<typename _Tp> inline 00825 _Tp* Mat::ptr(int y) 00826 { 00827 CV_DbgAssert( y == 0 || (data && dims >= 1 && (unsigned)y < (unsigned)size.p[0]) ); 00828 return (_Tp*)(data + step.p[0] * y); 00829 } 00830 00831 template<typename _Tp> inline 00832 const _Tp* Mat::ptr(int y) const 00833 { 00834 CV_DbgAssert( y == 0 || (data && dims >= 1 && data && (unsigned)y < (unsigned)size.p[0]) ); 00835 return (const _Tp*)(data + step.p[0] * y); 00836 } 00837 00838 inline 00839 uchar* Mat::ptr(int i0, int i1) 00840 { 00841 CV_DbgAssert(dims >= 2); 00842 CV_DbgAssert(data); 00843 CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); 00844 CV_DbgAssert((unsigned)i1 < (unsigned)size.p[1]); 00845 return data + i0 * step.p[0] + i1 * step.p[1]; 00846 } 00847 00848 inline 00849 const uchar* Mat::ptr(int i0, int i1) const 00850 { 00851 CV_DbgAssert(dims >= 2); 00852 CV_DbgAssert(data); 00853 CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); 00854 CV_DbgAssert((unsigned)i1 < (unsigned)size.p[1]); 00855 return data + i0 * step.p[0] + i1 * step.p[1]; 00856 } 00857 00858 template<typename _Tp> inline 00859 _Tp* Mat::ptr(int i0, int i1) 00860 { 00861 CV_DbgAssert(dims >= 2); 00862 CV_DbgAssert(data); 00863 CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); 00864 CV_DbgAssert((unsigned)i1 < (unsigned)size.p[1]); 00865 return (_Tp*)(data + i0 * step.p[0] + i1 * step.p[1]); 00866 } 00867 00868 template<typename _Tp> inline 00869 const _Tp* Mat::ptr(int i0, int i1) const 00870 { 00871 CV_DbgAssert(dims >= 2); 00872 CV_DbgAssert(data); 00873 CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); 00874 CV_DbgAssert((unsigned)i1 < (unsigned)size.p[1]); 00875 return (const _Tp*)(data + i0 * step.p[0] + i1 * step.p[1]); 00876 } 00877 00878 inline 00879 uchar* Mat::ptr(int i0, int i1, int i2) 00880 { 00881 CV_DbgAssert(dims >= 3); 00882 CV_DbgAssert(data); 00883 CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); 00884 CV_DbgAssert((unsigned)i1 < (unsigned)size.p[1]); 00885 CV_DbgAssert((unsigned)i2 < (unsigned)size.p[2]); 00886 return data + i0 * step.p[0] + i1 * step.p[1] + i2 * step.p[2]; 00887 } 00888 00889 inline 00890 const uchar* Mat::ptr(int i0, int i1, int i2) const 00891 { 00892 CV_DbgAssert(dims >= 3); 00893 CV_DbgAssert(data); 00894 CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); 00895 CV_DbgAssert((unsigned)i1 < (unsigned)size.p[1]); 00896 CV_DbgAssert((unsigned)i2 < (unsigned)size.p[2]); 00897 return data + i0 * step.p[0] + i1 * step.p[1] + i2 * step.p[2]; 00898 } 00899 00900 template<typename _Tp> inline 00901 _Tp* Mat::ptr(int i0, int i1, int i2) 00902 { 00903 CV_DbgAssert(dims >= 3); 00904 CV_DbgAssert(data); 00905 CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); 00906 CV_DbgAssert((unsigned)i1 < (unsigned)size.p[1]); 00907 CV_DbgAssert((unsigned)i2 < (unsigned)size.p[2]); 00908 return (_Tp*)(data + i0 * step.p[0] + i1 * step.p[1] + i2 * step.p[2]); 00909 } 00910 00911 template<typename _Tp> inline 00912 const _Tp* Mat::ptr(int i0, int i1, int i2) const 00913 { 00914 CV_DbgAssert(dims >= 3); 00915 CV_DbgAssert(data); 00916 CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); 00917 CV_DbgAssert((unsigned)i1 < (unsigned)size.p[1]); 00918 CV_DbgAssert((unsigned)i2 < (unsigned)size.p[2]); 00919 return (const _Tp*)(data + i0 * step.p[0] + i1 * step.p[1] + i2 * step.p[2]); 00920 } 00921 00922 inline 00923 uchar* Mat::ptr(const int* idx) 00924 { 00925 int i, d = dims; 00926 uchar* p = data; 00927 CV_DbgAssert( d >= 1 && p ); 00928 for( i = 0; i < d; i++ ) 00929 { 00930 CV_DbgAssert( (unsigned)idx[i] < (unsigned)size.p[i] ); 00931 p += idx[i] * step.p[i]; 00932 } 00933 return p; 00934 } 00935 00936 inline 00937 const uchar* Mat::ptr(const int* idx) const 00938 { 00939 int i, d = dims; 00940 uchar* p = data; 00941 CV_DbgAssert( d >= 1 && p ); 00942 for( i = 0; i < d; i++ ) 00943 { 00944 CV_DbgAssert( (unsigned)idx[i] < (unsigned)size.p[i] ); 00945 p += idx[i] * step.p[i]; 00946 } 00947 return p; 00948 } 00949 00950 template<typename _Tp> inline 00951 _Tp& Mat::at(int i0, int i1) 00952 { 00953 CV_DbgAssert(dims <= 2); 00954 CV_DbgAssert(data); 00955 CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); 00956 CV_DbgAssert((unsigned)(i1 * DataType<_Tp>::channels) < (unsigned)(size.p[1] * channels())); 00957 CV_DbgAssert(CV_ELEM_SIZE1(DataType<_Tp>::depth) == elemSize1()); 00958 return ((_Tp*)(data + step.p[0] * i0))[i1]; 00959 } 00960 00961 template<typename _Tp> inline 00962 const _Tp& Mat::at(int i0, int i1) const 00963 { 00964 CV_DbgAssert(dims <= 2); 00965 CV_DbgAssert(data); 00966 CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); 00967 CV_DbgAssert((unsigned)(i1 * DataType<_Tp>::channels) < (unsigned)(size.p[1] * channels())); 00968 CV_DbgAssert(CV_ELEM_SIZE1(DataType<_Tp>::depth) == elemSize1()); 00969 return ((const _Tp*)(data + step.p[0] * i0))[i1]; 00970 } 00971 00972 template<typename _Tp> inline 00973 _Tp& Mat::at(Point pt) 00974 { 00975 CV_DbgAssert(dims <= 2); 00976 CV_DbgAssert(data); 00977 CV_DbgAssert((unsigned)pt.y < (unsigned)size.p[0]); 00978 CV_DbgAssert((unsigned)(pt.x * DataType<_Tp>::channels) < (unsigned)(size.p[1] * channels())); 00979 CV_DbgAssert(CV_ELEM_SIZE1(DataType<_Tp>::depth) == elemSize1()); 00980 return ((_Tp*)(data + step.p[0] * pt.y))[pt.x]; 00981 } 00982 00983 template<typename _Tp> inline 00984 const _Tp& Mat::at(Point pt) const 00985 { 00986 CV_DbgAssert(dims <= 2); 00987 CV_DbgAssert(data); 00988 CV_DbgAssert((unsigned)pt.y < (unsigned)size.p[0]); 00989 CV_DbgAssert((unsigned)(pt.x * DataType<_Tp>::channels) < (unsigned)(size.p[1] * channels())); 00990 CV_DbgAssert(CV_ELEM_SIZE1(DataType<_Tp>::depth) == elemSize1()); 00991 return ((const _Tp*)(data + step.p[0] * pt.y))[pt.x]; 00992 } 00993 00994 template<typename _Tp> inline 00995 _Tp& Mat::at(int i0) 00996 { 00997 CV_DbgAssert(dims <= 2); 00998 CV_DbgAssert(data); 00999 CV_DbgAssert((unsigned)i0 < (unsigned)(size.p[0] * size.p[1])); 01000 CV_DbgAssert(elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type)); 01001 if( isContinuous() || size.p[0] == 1 ) 01002 return ((_Tp*)data)[i0]; 01003 if( size.p[1] == 1 ) 01004 return *(_Tp*)(data + step.p[0] * i0); 01005 int i = i0 / cols, j = i0 - i * cols; 01006 return ((_Tp*)(data + step.p[0] * i))[j]; 01007 } 01008 01009 template<typename _Tp> inline 01010 const _Tp& Mat::at(int i0) const 01011 { 01012 CV_DbgAssert(dims <= 2); 01013 CV_DbgAssert(data); 01014 CV_DbgAssert((unsigned)i0 < (unsigned)(size.p[0] * size.p[1])); 01015 CV_DbgAssert(elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type)); 01016 if( isContinuous() || size.p[0] == 1 ) 01017 return ((const _Tp*)data)[i0]; 01018 if( size.p[1] == 1 ) 01019 return *(const _Tp*)(data + step.p[0] * i0); 01020 int i = i0 / cols, j = i0 - i * cols; 01021 return ((const _Tp*)(data + step.p[0] * i))[j]; 01022 } 01023 01024 template<typename _Tp> inline 01025 _Tp& Mat::at(int i0, int i1, int i2) 01026 { 01027 CV_DbgAssert( elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) ); 01028 return *(_Tp*)ptr(i0, i1, i2); 01029 } 01030 01031 template<typename _Tp> inline 01032 const _Tp& Mat::at(int i0, int i1, int i2) const 01033 { 01034 CV_DbgAssert( elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) ); 01035 return *(const _Tp*)ptr(i0, i1, i2); 01036 } 01037 01038 template<typename _Tp> inline 01039 _Tp& Mat::at(const int* idx) 01040 { 01041 CV_DbgAssert( elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) ); 01042 return *(_Tp*)ptr(idx); 01043 } 01044 01045 template<typename _Tp> inline 01046 const _Tp& Mat::at(const int* idx) const 01047 { 01048 CV_DbgAssert( elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) ); 01049 return *(const _Tp*)ptr(idx); 01050 } 01051 01052 template<typename _Tp, int n> inline 01053 _Tp& Mat::at(const Vec<int, n>& idx) 01054 { 01055 CV_DbgAssert( elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) ); 01056 return *(_Tp*)ptr(idx.val); 01057 } 01058 01059 template<typename _Tp, int n> inline 01060 const _Tp& Mat::at(const Vec<int, n>& idx) const 01061 { 01062 CV_DbgAssert( elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) ); 01063 return *(const _Tp*)ptr(idx.val); 01064 } 01065 01066 template<typename _Tp> inline 01067 MatConstIterator_<_Tp> Mat::begin() const 01068 { 01069 CV_DbgAssert( elemSize() == sizeof(_Tp) ); 01070 return MatConstIterator_<_Tp>((const Mat_<_Tp>*)this); 01071 } 01072 01073 template<typename _Tp> inline 01074 MatConstIterator_<_Tp> Mat::end() const 01075 { 01076 CV_DbgAssert( elemSize() == sizeof(_Tp) ); 01077 MatConstIterator_<_Tp> it((const Mat_<_Tp>*)this); 01078 it += total(); 01079 return it; 01080 } 01081 01082 template<typename _Tp> inline 01083 MatIterator_<_Tp> Mat::begin() 01084 { 01085 CV_DbgAssert( elemSize() == sizeof(_Tp) ); 01086 return MatIterator_<_Tp>((Mat_<_Tp>*)this); 01087 } 01088 01089 template<typename _Tp> inline 01090 MatIterator_<_Tp> Mat::end() 01091 { 01092 CV_DbgAssert( elemSize() == sizeof(_Tp) ); 01093 MatIterator_<_Tp> it((Mat_<_Tp>*)this); 01094 it += total(); 01095 return it; 01096 } 01097 01098 template<typename _Tp, typename Functor> inline 01099 void Mat::forEach(const Functor& operation) { 01100 this->forEach_impl<_Tp>(operation); 01101 } 01102 01103 template<typename _Tp, typename Functor> inline 01104 void Mat::forEach(const Functor& operation) const { 01105 // call as not const 01106 (const_cast<Mat*>(this))->forEach<const _Tp>(operation); 01107 } 01108 01109 template<typename _Tp> inline 01110 Mat::operator std::vector<_Tp>() const 01111 { 01112 std::vector<_Tp> v; 01113 copyTo(v); 01114 return v; 01115 } 01116 01117 template<typename _Tp, int n> inline 01118 Mat::operator Vec<_Tp, n>() const 01119 { 01120 CV_Assert( data && dims <= 2 && (rows == 1 || cols == 1) && 01121 rows + cols - 1 == n && channels() == 1 ); 01122 01123 if( isContinuous() && type() == DataType<_Tp>::type ) 01124 return Vec<_Tp, n>((_Tp*)data); 01125 Vec<_Tp, n> v; 01126 Mat tmp(rows, cols, DataType<_Tp>::type, v.val); 01127 convertTo(tmp, tmp.type()); 01128 return v; 01129 } 01130 01131 template<typename _Tp, int m, int n> inline 01132 Mat::operator Matx<_Tp, m, n>() const 01133 { 01134 CV_Assert( data && dims <= 2 && rows == m && cols == n && channels() == 1 ); 01135 01136 if( isContinuous() && type() == DataType<_Tp>::type ) 01137 return Matx<_Tp, m, n>((_Tp*)data); 01138 Matx<_Tp, m, n> mtx; 01139 Mat tmp(rows, cols, DataType<_Tp>::type, mtx.val); 01140 convertTo(tmp, tmp.type()); 01141 return mtx; 01142 } 01143 01144 template<typename _Tp> inline 01145 void Mat::push_back(const _Tp& elem) 01146 { 01147 if( !data ) 01148 { 01149 *this = Mat(1, 1, DataType<_Tp>::type, (void*)&elem).clone(); 01150 return; 01151 } 01152 CV_Assert(DataType<_Tp>::type == type() && cols == 1 01153 /* && dims == 2 (cols == 1 implies dims == 2) */); 01154 const uchar* tmp = dataend + step[0]; 01155 if( !isSubmatrix() && isContinuous() && tmp <= datalimit ) 01156 { 01157 *(_Tp*)(data + (size.p[0]++) * step.p[0]) = elem; 01158 dataend = tmp; 01159 } 01160 else 01161 push_back_(&elem); 01162 } 01163 01164 template<typename _Tp> inline 01165 void Mat::push_back(const Mat_<_Tp>& m) 01166 { 01167 push_back((const Mat&)m); 01168 } 01169 01170 template<> inline 01171 void Mat::push_back(const MatExpr& expr) 01172 { 01173 push_back(static_cast<Mat>(expr)); 01174 } 01175 01176 #ifdef CV_CXX_MOVE_SEMANTICS 01177 01178 inline 01179 Mat::Mat(Mat&& m) 01180 : flags(m.flags), dims(m.dims), rows(m.rows), cols(m.cols), data(m.data), 01181 datastart(m.datastart), dataend(m.dataend), datalimit(m.datalimit), allocator(m.allocator), 01182 u(m.u), size(&rows) 01183 { 01184 if (m.dims <= 2) // move new step/size info 01185 { 01186 step[0] = m.step[0]; 01187 step[1] = m.step[1]; 01188 } 01189 else 01190 { 01191 CV_DbgAssert(m.step.p != m.step.buf); 01192 step.p = m.step.p; 01193 size.p = m.size.p; 01194 m.step.p = m.step.buf; 01195 m.size.p = &m.rows; 01196 } 01197 m.flags = MAGIC_VAL; m.dims = m.rows = m.cols = 0; 01198 m.data = NULL; m.datastart = NULL; m.dataend = NULL; m.datalimit = NULL; 01199 m.allocator = NULL; 01200 m.u = NULL; 01201 } 01202 01203 inline 01204 Mat& Mat::operator = (Mat&& m) 01205 { 01206 if (this == &m) 01207 return *this; 01208 01209 release(); 01210 flags = m.flags; dims = m.dims; rows = m.rows; cols = m.cols; data = m.data; 01211 datastart = m.datastart; dataend = m.dataend; datalimit = m.datalimit; allocator = m.allocator; 01212 u = m.u; 01213 if (step.p != step.buf) // release self step/size 01214 { 01215 fastFree(step.p); 01216 step.p = step.buf; 01217 size.p = &rows; 01218 } 01219 if (m.dims <= 2) // move new step/size info 01220 { 01221 step[0] = m.step[0]; 01222 step[1] = m.step[1]; 01223 } 01224 else 01225 { 01226 CV_DbgAssert(m.step.p != m.step.buf); 01227 step.p = m.step.p; 01228 size.p = m.size.p; 01229 m.step.p = m.step.buf; 01230 m.size.p = &m.rows; 01231 } 01232 m.flags = MAGIC_VAL; m.dims = m.rows = m.cols = 0; 01233 m.data = NULL; m.datastart = NULL; m.dataend = NULL; m.datalimit = NULL; 01234 m.allocator = NULL; 01235 m.u = NULL; 01236 return *this; 01237 } 01238 01239 #endif 01240 01241 01242 ///////////////////////////// MatSize //////////////////////////// 01243 01244 inline 01245 MatSize::MatSize(int* _p) 01246 : p(_p) {} 01247 01248 inline 01249 Size MatSize::operator()() const 01250 { 01251 CV_DbgAssert(p[-1] <= 2); 01252 return Size(p[1], p[0]); 01253 } 01254 01255 inline 01256 const int& MatSize::operator[](int i) const 01257 { 01258 return p[i]; 01259 } 01260 01261 inline 01262 int& MatSize::operator[](int i) 01263 { 01264 return p[i]; 01265 } 01266 01267 inline 01268 MatSize::operator const int*() const 01269 { 01270 return p; 01271 } 01272 01273 inline 01274 bool MatSize::operator == (const MatSize& sz) const 01275 { 01276 int d = p[-1]; 01277 int dsz = sz.p[-1]; 01278 if( d != dsz ) 01279 return false; 01280 if( d == 2 ) 01281 return p[0] == sz.p[0] && p[1] == sz.p[1]; 01282 01283 for( int i = 0; i < d; i++ ) 01284 if( p[i] != sz.p[i] ) 01285 return false; 01286 return true; 01287 } 01288 01289 inline 01290 bool MatSize::operator != (const MatSize& sz) const 01291 { 01292 return !(*this == sz); 01293 } 01294 01295 01296 01297 ///////////////////////////// MatStep //////////////////////////// 01298 01299 inline 01300 MatStep::MatStep() 01301 { 01302 p = buf; p[0] = p[1] = 0; 01303 } 01304 01305 inline 01306 MatStep::MatStep(size_t s) 01307 { 01308 p = buf; p[0] = s; p[1] = 0; 01309 } 01310 01311 inline 01312 const size_t& MatStep::operator[](int i) const 01313 { 01314 return p[i]; 01315 } 01316 01317 inline 01318 size_t& MatStep::operator[](int i) 01319 { 01320 return p[i]; 01321 } 01322 01323 inline MatStep::operator size_t() const 01324 { 01325 CV_DbgAssert( p == buf ); 01326 return buf[0]; 01327 } 01328 01329 inline MatStep& MatStep::operator = (size_t s) 01330 { 01331 CV_DbgAssert( p == buf ); 01332 buf[0] = s; 01333 return *this; 01334 } 01335 01336 01337 01338 ////////////////////////////// Mat_<_Tp> //////////////////////////// 01339 01340 template<typename _Tp> inline 01341 Mat_<_Tp>::Mat_() 01342 : Mat() 01343 { 01344 flags = (flags & ~CV_MAT_TYPE_MASK) | DataType<_Tp>::type; 01345 } 01346 01347 template<typename _Tp> inline 01348 Mat_<_Tp>::Mat_(int _rows, int _cols) 01349 : Mat(_rows, _cols, DataType<_Tp>::type) 01350 { 01351 } 01352 01353 template<typename _Tp> inline 01354 Mat_<_Tp>::Mat_(int _rows, int _cols, const _Tp& value) 01355 : Mat(_rows, _cols, DataType<_Tp>::type) 01356 { 01357 *this = value; 01358 } 01359 01360 template<typename _Tp> inline 01361 Mat_<_Tp>::Mat_(Size _sz) 01362 : Mat(_sz.height, _sz.width, DataType<_Tp>::type) 01363 {} 01364 01365 template<typename _Tp> inline 01366 Mat_<_Tp>::Mat_(Size _sz, const _Tp& value) 01367 : Mat(_sz.height, _sz.width, DataType<_Tp>::type) 01368 { 01369 *this = value; 01370 } 01371 01372 template<typename _Tp> inline 01373 Mat_<_Tp>::Mat_(int _dims, const int* _sz) 01374 : Mat(_dims, _sz, DataType<_Tp>::type) 01375 {} 01376 01377 template<typename _Tp> inline 01378 Mat_<_Tp>::Mat_(int _dims, const int* _sz, const _Tp& _s) 01379 : Mat(_dims, _sz, DataType<_Tp>::type, Scalar(_s)) 01380 {} 01381 01382 template<typename _Tp> inline 01383 Mat_<_Tp>::Mat_(int _dims, const int* _sz, _Tp* _data, const size_t* _steps) 01384 : Mat(_dims, _sz, DataType<_Tp>::type, _data, _steps) 01385 {} 01386 01387 template<typename _Tp> inline 01388 Mat_<_Tp>::Mat_(const Mat_<_Tp>& m, const Range* ranges) 01389 : Mat(m, ranges) 01390 {} 01391 01392 template<typename _Tp> inline 01393 Mat_<_Tp>::Mat_(const Mat_<_Tp>& m, const std::vector<Range>& ranges) 01394 : Mat(m, ranges) 01395 {} 01396 01397 template<typename _Tp> inline 01398 Mat_<_Tp>::Mat_(const Mat& m) 01399 : Mat() 01400 { 01401 flags = (flags & ~CV_MAT_TYPE_MASK) | DataType<_Tp>::type; 01402 *this = m; 01403 } 01404 01405 template<typename _Tp> inline 01406 Mat_<_Tp>::Mat_(const Mat_& m) 01407 : Mat(m) 01408 {} 01409 01410 template<typename _Tp> inline 01411 Mat_<_Tp>::Mat_(int _rows, int _cols, _Tp* _data, size_t steps) 01412 : Mat(_rows, _cols, DataType<_Tp>::type, _data, steps) 01413 {} 01414 01415 template<typename _Tp> inline 01416 Mat_<_Tp>::Mat_(const Mat_& m, const Range& _rowRange, const Range& _colRange) 01417 : Mat(m, _rowRange, _colRange) 01418 {} 01419 01420 template<typename _Tp> inline 01421 Mat_<_Tp>::Mat_(const Mat_& m, const Rect& roi) 01422 : Mat(m, roi) 01423 {} 01424 01425 template<typename _Tp> template<int n> inline 01426 Mat_<_Tp>::Mat_(const Vec<typename DataType<_Tp>::channel_type, n>& vec, bool copyData) 01427 : Mat(n / DataType<_Tp>::channels, 1, DataType<_Tp>::type, (void*)&vec) 01428 { 01429 CV_Assert(n%DataType<_Tp>::channels == 0); 01430 if( copyData ) 01431 *this = clone(); 01432 } 01433 01434 template<typename _Tp> template<int m, int n> inline 01435 Mat_<_Tp>::Mat_(const Matx<typename DataType<_Tp>::channel_type, m, n>& M, bool copyData) 01436 : Mat(m, n / DataType<_Tp>::channels, DataType<_Tp>::type, (void*)&M) 01437 { 01438 CV_Assert(n % DataType<_Tp>::channels == 0); 01439 if( copyData ) 01440 *this = clone(); 01441 } 01442 01443 template<typename _Tp> inline 01444 Mat_<_Tp>::Mat_(const Point_<typename DataType<_Tp>::channel_type>& pt, bool copyData) 01445 : Mat(2 / DataType<_Tp>::channels, 1, DataType<_Tp>::type, (void*)&pt) 01446 { 01447 CV_Assert(2 % DataType<_Tp>::channels == 0); 01448 if( copyData ) 01449 *this = clone(); 01450 } 01451 01452 template<typename _Tp> inline 01453 Mat_<_Tp>::Mat_(const Point3_<typename DataType<_Tp>::channel_type>& pt, bool copyData) 01454 : Mat(3 / DataType<_Tp>::channels, 1, DataType<_Tp>::type, (void*)&pt) 01455 { 01456 CV_Assert(3 % DataType<_Tp>::channels == 0); 01457 if( copyData ) 01458 *this = clone(); 01459 } 01460 01461 template<typename _Tp> inline 01462 Mat_<_Tp>::Mat_(const MatCommaInitializer_<_Tp>& commaInitializer) 01463 : Mat(commaInitializer) 01464 {} 01465 01466 template<typename _Tp> inline 01467 Mat_<_Tp>::Mat_(const std::vector<_Tp>& vec, bool copyData) 01468 : Mat(vec, copyData) 01469 {} 01470 01471 template<typename _Tp> inline 01472 Mat_<_Tp>& Mat_<_Tp>::operator = (const Mat& m) 01473 { 01474 if( DataType<_Tp>::type == m.type() ) 01475 { 01476 Mat::operator = (m); 01477 return *this; 01478 } 01479 if( DataType<_Tp>::depth == m.depth() ) 01480 { 01481 return (*this = m.reshape(DataType<_Tp>::channels, m.dims, 0)); 01482 } 01483 CV_DbgAssert(DataType<_Tp>::channels == m.channels()); 01484 m.convertTo(*this, type()); 01485 return *this; 01486 } 01487 01488 template<typename _Tp> inline 01489 Mat_<_Tp>& Mat_<_Tp>::operator = (const Mat_& m) 01490 { 01491 Mat::operator=(m); 01492 return *this; 01493 } 01494 01495 template<typename _Tp> inline 01496 Mat_<_Tp>& Mat_<_Tp>::operator = (const _Tp& s) 01497 { 01498 typedef typename DataType<_Tp>::vec_type VT; 01499 Mat::operator=(Scalar((const VT&)s)); 01500 return *this; 01501 } 01502 01503 template<typename _Tp> inline 01504 void Mat_<_Tp>::create(int _rows, int _cols) 01505 { 01506 Mat::create(_rows, _cols, DataType<_Tp>::type); 01507 } 01508 01509 template<typename _Tp> inline 01510 void Mat_<_Tp>::create(Size _sz) 01511 { 01512 Mat::create(_sz, DataType<_Tp>::type); 01513 } 01514 01515 template<typename _Tp> inline 01516 void Mat_<_Tp>::create(int _dims, const int* _sz) 01517 { 01518 Mat::create(_dims, _sz, DataType<_Tp>::type); 01519 } 01520 01521 template<typename _Tp> inline 01522 Mat_<_Tp> Mat_<_Tp>::cross(const Mat_& m) const 01523 { 01524 return Mat_<_Tp>(Mat::cross(m)); 01525 } 01526 01527 template<typename _Tp> template<typename T2> inline 01528 Mat_<_Tp>::operator Mat_<T2>() const 01529 { 01530 return Mat_<T2>(*this); 01531 } 01532 01533 template<typename _Tp> inline 01534 Mat_<_Tp> Mat_<_Tp>::row(int y) const 01535 { 01536 return Mat_(*this, Range(y, y+1), Range::all()); 01537 } 01538 01539 template<typename _Tp> inline 01540 Mat_<_Tp> Mat_<_Tp>::col(int x) const 01541 { 01542 return Mat_(*this, Range::all(), Range(x, x+1)); 01543 } 01544 01545 template<typename _Tp> inline 01546 Mat_<_Tp> Mat_<_Tp>::diag(int d) const 01547 { 01548 return Mat_(Mat::diag(d)); 01549 } 01550 01551 template<typename _Tp> inline 01552 Mat_<_Tp> Mat_<_Tp>::clone() const 01553 { 01554 return Mat_(Mat::clone()); 01555 } 01556 01557 template<typename _Tp> inline 01558 size_t Mat_<_Tp>::elemSize() const 01559 { 01560 CV_DbgAssert( Mat::elemSize() == sizeof(_Tp) ); 01561 return sizeof(_Tp); 01562 } 01563 01564 template<typename _Tp> inline 01565 size_t Mat_<_Tp>::elemSize1() const 01566 { 01567 CV_DbgAssert( Mat::elemSize1() == sizeof(_Tp) / DataType<_Tp>::channels ); 01568 return sizeof(_Tp) / DataType<_Tp>::channels; 01569 } 01570 01571 template<typename _Tp> inline 01572 int Mat_<_Tp>::type() const 01573 { 01574 CV_DbgAssert( Mat::type() == DataType<_Tp>::type ); 01575 return DataType<_Tp>::type; 01576 } 01577 01578 template<typename _Tp> inline 01579 int Mat_<_Tp>::depth() const 01580 { 01581 CV_DbgAssert( Mat::depth() == DataType<_Tp>::depth ); 01582 return DataType<_Tp>::depth; 01583 } 01584 01585 template<typename _Tp> inline 01586 int Mat_<_Tp>::channels() const 01587 { 01588 CV_DbgAssert( Mat::channels() == DataType<_Tp>::channels ); 01589 return DataType<_Tp>::channels; 01590 } 01591 01592 template<typename _Tp> inline 01593 size_t Mat_<_Tp>::stepT(int i) const 01594 { 01595 return step.p[i] / elemSize(); 01596 } 01597 01598 template<typename _Tp> inline 01599 size_t Mat_<_Tp>::step1(int i) const 01600 { 01601 return step.p[i] / elemSize1(); 01602 } 01603 01604 template<typename _Tp> inline 01605 Mat_<_Tp>& Mat_<_Tp>::adjustROI( int dtop, int dbottom, int dleft, int dright ) 01606 { 01607 return (Mat_<_Tp>&)(Mat::adjustROI(dtop, dbottom, dleft, dright)); 01608 } 01609 01610 template<typename _Tp> inline 01611 Mat_<_Tp> Mat_<_Tp>::operator()( const Range& _rowRange, const Range& _colRange ) const 01612 { 01613 return Mat_<_Tp>(*this, _rowRange, _colRange); 01614 } 01615 01616 template<typename _Tp> inline 01617 Mat_<_Tp> Mat_<_Tp>::operator()( const Rect& roi ) const 01618 { 01619 return Mat_<_Tp>(*this, roi); 01620 } 01621 01622 template<typename _Tp> inline 01623 Mat_<_Tp> Mat_<_Tp>::operator()( const Range* ranges ) const 01624 { 01625 return Mat_<_Tp>(*this, ranges); 01626 } 01627 01628 template<typename _Tp> inline 01629 Mat_<_Tp> Mat_<_Tp>::operator()(const std::vector<Range>& ranges) const 01630 { 01631 return Mat_<_Tp>(*this, ranges); 01632 } 01633 01634 template<typename _Tp> inline 01635 _Tp* Mat_<_Tp>::operator [](int y) 01636 { 01637 CV_DbgAssert( 0 <= y && y < rows ); 01638 return (_Tp*)(data + y*step.p[0]); 01639 } 01640 01641 template<typename _Tp> inline 01642 const _Tp* Mat_<_Tp>::operator [](int y) const 01643 { 01644 CV_DbgAssert( 0 <= y && y < rows ); 01645 return (const _Tp*)(data + y*step.p[0]); 01646 } 01647 01648 template<typename _Tp> inline 01649 _Tp& Mat_<_Tp>::operator ()(int i0, int i1) 01650 { 01651 CV_DbgAssert(dims <= 2); 01652 CV_DbgAssert(data); 01653 CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); 01654 CV_DbgAssert((unsigned)i1 < (unsigned)size.p[1]); 01655 CV_DbgAssert(type() == DataType<_Tp>::type); 01656 return ((_Tp*)(data + step.p[0] * i0))[i1]; 01657 } 01658 01659 template<typename _Tp> inline 01660 const _Tp& Mat_<_Tp>::operator ()(int i0, int i1) const 01661 { 01662 CV_DbgAssert(dims <= 2); 01663 CV_DbgAssert(data); 01664 CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); 01665 CV_DbgAssert((unsigned)i1 < (unsigned)size.p[1]); 01666 CV_DbgAssert(type() == DataType<_Tp>::type); 01667 return ((const _Tp*)(data + step.p[0] * i0))[i1]; 01668 } 01669 01670 template<typename _Tp> inline 01671 _Tp& Mat_<_Tp>::operator ()(Point pt) 01672 { 01673 CV_DbgAssert(dims <= 2); 01674 CV_DbgAssert(data); 01675 CV_DbgAssert((unsigned)pt.y < (unsigned)size.p[0]); 01676 CV_DbgAssert((unsigned)pt.x < (unsigned)size.p[1]); 01677 CV_DbgAssert(type() == DataType<_Tp>::type); 01678 return ((_Tp*)(data + step.p[0] * pt.y))[pt.x]; 01679 } 01680 01681 template<typename _Tp> inline 01682 const _Tp& Mat_<_Tp>::operator ()(Point pt) const 01683 { 01684 CV_DbgAssert(dims <= 2); 01685 CV_DbgAssert(data); 01686 CV_DbgAssert((unsigned)pt.y < (unsigned)size.p[0]); 01687 CV_DbgAssert((unsigned)pt.x < (unsigned)size.p[1]); 01688 CV_DbgAssert(type() == DataType<_Tp>::type); 01689 return ((const _Tp*)(data + step.p[0] * pt.y))[pt.x]; 01690 } 01691 01692 template<typename _Tp> inline 01693 _Tp& Mat_<_Tp>::operator ()(const int* idx) 01694 { 01695 return Mat::at<_Tp>(idx); 01696 } 01697 01698 template<typename _Tp> inline 01699 const _Tp& Mat_<_Tp>::operator ()(const int* idx) const 01700 { 01701 return Mat::at<_Tp>(idx); 01702 } 01703 01704 template<typename _Tp> template<int n> inline 01705 _Tp& Mat_<_Tp>::operator ()(const Vec<int, n>& idx) 01706 { 01707 return Mat::at<_Tp>(idx); 01708 } 01709 01710 template<typename _Tp> template<int n> inline 01711 const _Tp& Mat_<_Tp>::operator ()(const Vec<int, n>& idx) const 01712 { 01713 return Mat::at<_Tp>(idx); 01714 } 01715 01716 template<typename _Tp> inline 01717 _Tp& Mat_<_Tp>::operator ()(int i0) 01718 { 01719 return this->at<_Tp>(i0); 01720 } 01721 01722 template<typename _Tp> inline 01723 const _Tp& Mat_<_Tp>::operator ()(int i0) const 01724 { 01725 return this->at<_Tp>(i0); 01726 } 01727 01728 template<typename _Tp> inline 01729 _Tp& Mat_<_Tp>::operator ()(int i0, int i1, int i2) 01730 { 01731 return this->at<_Tp>(i0, i1, i2); 01732 } 01733 01734 template<typename _Tp> inline 01735 const _Tp& Mat_<_Tp>::operator ()(int i0, int i1, int i2) const 01736 { 01737 return this->at<_Tp>(i0, i1, i2); 01738 } 01739 01740 template<typename _Tp> inline 01741 Mat_<_Tp>::operator std::vector<_Tp>() const 01742 { 01743 std::vector<_Tp> v; 01744 copyTo(v); 01745 return v; 01746 } 01747 01748 template<typename _Tp> template<int n> inline 01749 Mat_<_Tp>::operator Vec<typename DataType<_Tp>::channel_type, n>() const 01750 { 01751 CV_Assert(n % DataType<_Tp>::channels == 0); 01752 01753 #if defined _MSC_VER 01754 const Mat* pMat = (const Mat*)this; // workaround for MSVS <= 2012 compiler bugs (but GCC 4.6 dislikes this workaround) 01755 return pMat->operator Vec<typename DataType<_Tp>::channel_type, n>(); 01756 #else 01757 return this->Mat::operator Vec<typename DataType<_Tp>::channel_type, n>(); 01758 #endif 01759 } 01760 01761 template<typename _Tp> template<int m, int n> inline 01762 Mat_<_Tp>::operator Matx<typename DataType<_Tp>::channel_type, m, n>() const 01763 { 01764 CV_Assert(n % DataType<_Tp>::channels == 0); 01765 01766 #if defined _MSC_VER 01767 const Mat* pMat = (const Mat*)this; // workaround for MSVS <= 2012 compiler bugs (but GCC 4.6 dislikes this workaround) 01768 Matx<typename DataType<_Tp>::channel_type, m, n> res = pMat->operator Matx<typename DataType<_Tp>::channel_type, m, n>(); 01769 return res; 01770 #else 01771 Matx<typename DataType<_Tp>::channel_type, m, n> res = this->Mat::operator Matx<typename DataType<_Tp>::channel_type, m, n>(); 01772 return res; 01773 #endif 01774 } 01775 01776 template<typename _Tp> inline 01777 MatConstIterator_<_Tp> Mat_<_Tp>::begin() const 01778 { 01779 return Mat::begin<_Tp>(); 01780 } 01781 01782 template<typename _Tp> inline 01783 MatConstIterator_<_Tp> Mat_<_Tp>::end() const 01784 { 01785 return Mat::end<_Tp>(); 01786 } 01787 01788 template<typename _Tp> inline 01789 MatIterator_<_Tp> Mat_<_Tp>::begin() 01790 { 01791 return Mat::begin<_Tp>(); 01792 } 01793 01794 template<typename _Tp> inline 01795 MatIterator_<_Tp> Mat_<_Tp>::end() 01796 { 01797 return Mat::end<_Tp>(); 01798 } 01799 01800 template<typename _Tp> template<typename Functor> inline 01801 void Mat_<_Tp>::forEach(const Functor& operation) { 01802 Mat::forEach<_Tp, Functor>(operation); 01803 } 01804 01805 template<typename _Tp> template<typename Functor> inline 01806 void Mat_<_Tp>::forEach(const Functor& operation) const { 01807 Mat::forEach<_Tp, Functor>(operation); 01808 } 01809 01810 #ifdef CV_CXX_MOVE_SEMANTICS 01811 01812 template<typename _Tp> inline 01813 Mat_<_Tp>::Mat_(Mat_&& m) 01814 : Mat(m) 01815 { 01816 } 01817 01818 template<typename _Tp> inline 01819 Mat_<_Tp>& Mat_<_Tp>::operator = (Mat_&& m) 01820 { 01821 Mat::operator = (m); 01822 return *this; 01823 } 01824 01825 template<typename _Tp> inline 01826 Mat_<_Tp>::Mat_(Mat&& m) 01827 : Mat() 01828 { 01829 flags = (flags & ~CV_MAT_TYPE_MASK) | DataType<_Tp>::type; 01830 *this = m; 01831 } 01832 01833 template<typename _Tp> inline 01834 Mat_<_Tp>& Mat_<_Tp>::operator = (Mat&& m) 01835 { 01836 if( DataType<_Tp>::type == m.type() ) 01837 { 01838 Mat::operator = ((Mat&&)m); 01839 return *this; 01840 } 01841 if( DataType<_Tp>::depth == m.depth() ) 01842 { 01843 Mat::operator = ((Mat&&)m.reshape(DataType<_Tp>::channels, m.dims, 0)); 01844 return *this; 01845 } 01846 CV_DbgAssert(DataType<_Tp>::channels == m.channels()); 01847 m.convertTo(*this, type()); 01848 return *this; 01849 } 01850 01851 template<typename _Tp> inline 01852 Mat_<_Tp>::Mat_(MatExpr&& e) 01853 : Mat() 01854 { 01855 flags = (flags & ~CV_MAT_TYPE_MASK) | DataType<_Tp>::type; 01856 *this = Mat(e); 01857 } 01858 01859 #endif 01860 01861 ///////////////////////////// SparseMat ///////////////////////////// 01862 01863 inline 01864 SparseMat::SparseMat() 01865 : flags(MAGIC_VAL), hdr(0) 01866 {} 01867 01868 inline 01869 SparseMat::SparseMat(int _dims, const int* _sizes, int _type) 01870 : flags(MAGIC_VAL), hdr(0) 01871 { 01872 create(_dims, _sizes, _type); 01873 } 01874 01875 inline 01876 SparseMat::SparseMat(const SparseMat& m) 01877 : flags(m.flags), hdr(m.hdr) 01878 { 01879 addref(); 01880 } 01881 01882 inline 01883 SparseMat::~SparseMat() 01884 { 01885 release(); 01886 } 01887 01888 inline 01889 SparseMat& SparseMat::operator = (const SparseMat& m) 01890 { 01891 if( this != &m ) 01892 { 01893 if( m.hdr ) 01894 CV_XADD(&m.hdr->refcount, 1); 01895 release(); 01896 flags = m.flags; 01897 hdr = m.hdr; 01898 } 01899 return *this; 01900 } 01901 01902 inline 01903 SparseMat& SparseMat::operator = (const Mat& m) 01904 { 01905 return (*this = SparseMat(m)); 01906 } 01907 01908 inline 01909 SparseMat SparseMat::clone() const 01910 { 01911 SparseMat temp; 01912 this->copyTo(temp); 01913 return temp; 01914 } 01915 01916 inline 01917 void SparseMat::assignTo( SparseMat& m, int _type ) const 01918 { 01919 if( _type < 0 ) 01920 m = *this; 01921 else 01922 convertTo(m, _type); 01923 } 01924 01925 inline 01926 void SparseMat::addref() 01927 { 01928 if( hdr ) 01929 CV_XADD(&hdr->refcount, 1); 01930 } 01931 01932 inline 01933 void SparseMat::release() 01934 { 01935 if( hdr && CV_XADD(&hdr->refcount, -1) == 1 ) 01936 delete hdr; 01937 hdr = 0; 01938 } 01939 01940 inline 01941 size_t SparseMat::elemSize() const 01942 { 01943 return CV_ELEM_SIZE(flags); 01944 } 01945 01946 inline 01947 size_t SparseMat::elemSize1() const 01948 { 01949 return CV_ELEM_SIZE1(flags); 01950 } 01951 01952 inline 01953 int SparseMat::type() const 01954 { 01955 return CV_MAT_TYPE(flags); 01956 } 01957 01958 inline 01959 int SparseMat::depth() const 01960 { 01961 return CV_MAT_DEPTH(flags); 01962 } 01963 01964 inline 01965 int SparseMat::channels() const 01966 { 01967 return CV_MAT_CN(flags); 01968 } 01969 01970 inline 01971 const int* SparseMat::size() const 01972 { 01973 return hdr ? hdr->size : 0; 01974 } 01975 01976 inline 01977 int SparseMat::size(int i) const 01978 { 01979 if( hdr ) 01980 { 01981 CV_DbgAssert((unsigned)i < (unsigned)hdr->dims); 01982 return hdr->size[i]; 01983 } 01984 return 0; 01985 } 01986 01987 inline 01988 int SparseMat::dims() const 01989 { 01990 return hdr ? hdr->dims : 0; 01991 } 01992 01993 inline 01994 size_t SparseMat::nzcount() const 01995 { 01996 return hdr ? hdr->nodeCount : 0; 01997 } 01998 01999 inline 02000 size_t SparseMat::hash(int i0) const 02001 { 02002 return (size_t)i0; 02003 } 02004 02005 inline 02006 size_t SparseMat::hash(int i0, int i1) const 02007 { 02008 return (size_t)(unsigned)i0 * HASH_SCALE + (unsigned)i1; 02009 } 02010 02011 inline 02012 size_t SparseMat::hash(int i0, int i1, int i2) const 02013 { 02014 return ((size_t)(unsigned)i0 * HASH_SCALE + (unsigned)i1) * HASH_SCALE + (unsigned)i2; 02015 } 02016 02017 inline 02018 size_t SparseMat::hash(const int* idx) const 02019 { 02020 size_t h = (unsigned)idx[0]; 02021 if( !hdr ) 02022 return 0; 02023 int d = hdr->dims; 02024 for(int i = 1; i < d; i++ ) 02025 h = h * HASH_SCALE + (unsigned)idx[i]; 02026 return h; 02027 } 02028 02029 template<typename _Tp> inline 02030 _Tp& SparseMat::ref(int i0, size_t* hashval) 02031 { 02032 return *(_Tp*)((SparseMat*)this)->ptr(i0, true, hashval); 02033 } 02034 02035 template<typename _Tp> inline 02036 _Tp& SparseMat::ref(int i0, int i1, size_t* hashval) 02037 { 02038 return *(_Tp*)((SparseMat*)this)->ptr(i0, i1, true, hashval); 02039 } 02040 02041 template<typename _Tp> inline 02042 _Tp& SparseMat::ref(int i0, int i1, int i2, size_t* hashval) 02043 { 02044 return *(_Tp*)((SparseMat*)this)->ptr(i0, i1, i2, true, hashval); 02045 } 02046 02047 template<typename _Tp> inline 02048 _Tp& SparseMat::ref(const int* idx, size_t* hashval) 02049 { 02050 return *(_Tp*)((SparseMat*)this)->ptr(idx, true, hashval); 02051 } 02052 02053 template<typename _Tp> inline 02054 _Tp SparseMat::value(int i0, size_t* hashval) const 02055 { 02056 const _Tp* p = (const _Tp*)((SparseMat*)this)->ptr(i0, false, hashval); 02057 return p ? *p : _Tp(); 02058 } 02059 02060 template<typename _Tp> inline 02061 _Tp SparseMat::value(int i0, int i1, size_t* hashval) const 02062 { 02063 const _Tp* p = (const _Tp*)((SparseMat*)this)->ptr(i0, i1, false, hashval); 02064 return p ? *p : _Tp(); 02065 } 02066 02067 template<typename _Tp> inline 02068 _Tp SparseMat::value(int i0, int i1, int i2, size_t* hashval) const 02069 { 02070 const _Tp* p = (const _Tp*)((SparseMat*)this)->ptr(i0, i1, i2, false, hashval); 02071 return p ? *p : _Tp(); 02072 } 02073 02074 template<typename _Tp> inline 02075 _Tp SparseMat::value(const int* idx, size_t* hashval) const 02076 { 02077 const _Tp* p = (const _Tp*)((SparseMat*)this)->ptr(idx, false, hashval); 02078 return p ? *p : _Tp(); 02079 } 02080 02081 template<typename _Tp> inline 02082 const _Tp* SparseMat::find(int i0, size_t* hashval) const 02083 { 02084 return (const _Tp*)((SparseMat*)this)->ptr(i0, false, hashval); 02085 } 02086 02087 template<typename _Tp> inline 02088 const _Tp* SparseMat::find(int i0, int i1, size_t* hashval) const 02089 { 02090 return (const _Tp*)((SparseMat*)this)->ptr(i0, i1, false, hashval); 02091 } 02092 02093 template<typename _Tp> inline 02094 const _Tp* SparseMat::find(int i0, int i1, int i2, size_t* hashval) const 02095 { 02096 return (const _Tp*)((SparseMat*)this)->ptr(i0, i1, i2, false, hashval); 02097 } 02098 02099 template<typename _Tp> inline 02100 const _Tp* SparseMat::find(const int* idx, size_t* hashval) const 02101 { 02102 return (const _Tp*)((SparseMat*)this)->ptr(idx, false, hashval); 02103 } 02104 02105 template<typename _Tp> inline 02106 _Tp& SparseMat::value(Node* n) 02107 { 02108 return *(_Tp*)((uchar*)n + hdr->valueOffset); 02109 } 02110 02111 template<typename _Tp> inline 02112 const _Tp& SparseMat::value(const Node* n) const 02113 { 02114 return *(const _Tp*)((const uchar*)n + hdr->valueOffset); 02115 } 02116 02117 inline 02118 SparseMat::Node* SparseMat::node(size_t nidx) 02119 { 02120 return (Node*)(void*)&hdr->pool[nidx]; 02121 } 02122 02123 inline 02124 const SparseMat::Node* SparseMat::node(size_t nidx) const 02125 { 02126 return (const Node*)(const void*)&hdr->pool[nidx]; 02127 } 02128 02129 inline 02130 SparseMatIterator SparseMat::begin() 02131 { 02132 return SparseMatIterator(this); 02133 } 02134 02135 inline 02136 SparseMatConstIterator SparseMat::begin() const 02137 { 02138 return SparseMatConstIterator(this); 02139 } 02140 02141 inline 02142 SparseMatIterator SparseMat::end() 02143 { 02144 SparseMatIterator it(this); 02145 it.seekEnd(); 02146 return it; 02147 } 02148 02149 inline 02150 SparseMatConstIterator SparseMat::end() const 02151 { 02152 SparseMatConstIterator it(this); 02153 it.seekEnd(); 02154 return it; 02155 } 02156 02157 template<typename _Tp> inline 02158 SparseMatIterator_<_Tp> SparseMat::begin() 02159 { 02160 return SparseMatIterator_<_Tp>(this); 02161 } 02162 02163 template<typename _Tp> inline 02164 SparseMatConstIterator_<_Tp> SparseMat::begin() const 02165 { 02166 return SparseMatConstIterator_<_Tp>(this); 02167 } 02168 02169 template<typename _Tp> inline 02170 SparseMatIterator_<_Tp> SparseMat::end() 02171 { 02172 SparseMatIterator_<_Tp> it(this); 02173 it.seekEnd(); 02174 return it; 02175 } 02176 02177 template<typename _Tp> inline 02178 SparseMatConstIterator_<_Tp> SparseMat::end() const 02179 { 02180 SparseMatConstIterator_<_Tp> it(this); 02181 it.seekEnd(); 02182 return it; 02183 } 02184 02185 02186 02187 ///////////////////////////// SparseMat_ //////////////////////////// 02188 02189 template<typename _Tp> inline 02190 SparseMat_<_Tp>::SparseMat_() 02191 { 02192 flags = MAGIC_VAL | DataType<_Tp>::type; 02193 } 02194 02195 template<typename _Tp> inline 02196 SparseMat_<_Tp>::SparseMat_(int _dims, const int* _sizes) 02197 : SparseMat(_dims, _sizes, DataType<_Tp>::type) 02198 {} 02199 02200 template<typename _Tp> inline 02201 SparseMat_<_Tp>::SparseMat_(const SparseMat& m) 02202 { 02203 if( m.type() == DataType<_Tp>::type ) 02204 *this = (const SparseMat_<_Tp>&)m; 02205 else 02206 m.convertTo(*this, DataType<_Tp>::type); 02207 } 02208 02209 template<typename _Tp> inline 02210 SparseMat_<_Tp>::SparseMat_(const SparseMat_<_Tp>& m) 02211 { 02212 this->flags = m.flags; 02213 this->hdr = m.hdr; 02214 if( this->hdr ) 02215 CV_XADD(&this->hdr->refcount, 1); 02216 } 02217 02218 template<typename _Tp> inline 02219 SparseMat_<_Tp>::SparseMat_(const Mat& m) 02220 { 02221 SparseMat sm(m); 02222 *this = sm; 02223 } 02224 02225 template<typename _Tp> inline 02226 SparseMat_<_Tp>& SparseMat_<_Tp>::operator = (const SparseMat_<_Tp>& m) 02227 { 02228 if( this != &m ) 02229 { 02230 if( m.hdr ) CV_XADD(&m.hdr->refcount, 1); 02231 release(); 02232 flags = m.flags; 02233 hdr = m.hdr; 02234 } 02235 return *this; 02236 } 02237 02238 template<typename _Tp> inline 02239 SparseMat_<_Tp>& SparseMat_<_Tp>::operator = (const SparseMat& m) 02240 { 02241 if( m.type() == DataType<_Tp>::type ) 02242 return (*this = (const SparseMat_<_Tp>&)m); 02243 m.convertTo(*this, DataType<_Tp>::type); 02244 return *this; 02245 } 02246 02247 template<typename _Tp> inline 02248 SparseMat_<_Tp>& SparseMat_<_Tp>::operator = (const Mat& m) 02249 { 02250 return (*this = SparseMat(m)); 02251 } 02252 02253 template<typename _Tp> inline 02254 SparseMat_<_Tp> SparseMat_<_Tp>::clone() const 02255 { 02256 SparseMat_<_Tp> m; 02257 this->copyTo(m); 02258 return m; 02259 } 02260 02261 template<typename _Tp> inline 02262 void SparseMat_<_Tp>::create(int _dims, const int* _sizes) 02263 { 02264 SparseMat::create(_dims, _sizes, DataType<_Tp>::type); 02265 } 02266 02267 template<typename _Tp> inline 02268 int SparseMat_<_Tp>::type() const 02269 { 02270 return DataType<_Tp>::type; 02271 } 02272 02273 template<typename _Tp> inline 02274 int SparseMat_<_Tp>::depth() const 02275 { 02276 return DataType<_Tp>::depth; 02277 } 02278 02279 template<typename _Tp> inline 02280 int SparseMat_<_Tp>::channels() const 02281 { 02282 return DataType<_Tp>::channels; 02283 } 02284 02285 template<typename _Tp> inline 02286 _Tp& SparseMat_<_Tp>::ref(int i0, size_t* hashval) 02287 { 02288 return SparseMat::ref<_Tp>(i0, hashval); 02289 } 02290 02291 template<typename _Tp> inline 02292 _Tp SparseMat_<_Tp>::operator()(int i0, size_t* hashval) const 02293 { 02294 return SparseMat::value<_Tp>(i0, hashval); 02295 } 02296 02297 template<typename _Tp> inline 02298 _Tp& SparseMat_<_Tp>::ref(int i0, int i1, size_t* hashval) 02299 { 02300 return SparseMat::ref<_Tp>(i0, i1, hashval); 02301 } 02302 02303 template<typename _Tp> inline 02304 _Tp SparseMat_<_Tp>::operator()(int i0, int i1, size_t* hashval) const 02305 { 02306 return SparseMat::value<_Tp>(i0, i1, hashval); 02307 } 02308 02309 template<typename _Tp> inline 02310 _Tp& SparseMat_<_Tp>::ref(int i0, int i1, int i2, size_t* hashval) 02311 { 02312 return SparseMat::ref<_Tp>(i0, i1, i2, hashval); 02313 } 02314 02315 template<typename _Tp> inline 02316 _Tp SparseMat_<_Tp>::operator()(int i0, int i1, int i2, size_t* hashval) const 02317 { 02318 return SparseMat::value<_Tp>(i0, i1, i2, hashval); 02319 } 02320 02321 template<typename _Tp> inline 02322 _Tp& SparseMat_<_Tp>::ref(const int* idx, size_t* hashval) 02323 { 02324 return SparseMat::ref<_Tp>(idx, hashval); 02325 } 02326 02327 template<typename _Tp> inline 02328 _Tp SparseMat_<_Tp>::operator()(const int* idx, size_t* hashval) const 02329 { 02330 return SparseMat::value<_Tp>(idx, hashval); 02331 } 02332 02333 template<typename _Tp> inline 02334 SparseMatIterator_<_Tp> SparseMat_<_Tp>::begin() 02335 { 02336 return SparseMatIterator_<_Tp>(this); 02337 } 02338 02339 template<typename _Tp> inline 02340 SparseMatConstIterator_<_Tp> SparseMat_<_Tp>::begin() const 02341 { 02342 return SparseMatConstIterator_<_Tp>(this); 02343 } 02344 02345 template<typename _Tp> inline 02346 SparseMatIterator_<_Tp> SparseMat_<_Tp>::end() 02347 { 02348 SparseMatIterator_<_Tp> it(this); 02349 it.seekEnd(); 02350 return it; 02351 } 02352 02353 template<typename _Tp> inline 02354 SparseMatConstIterator_<_Tp> SparseMat_<_Tp>::end() const 02355 { 02356 SparseMatConstIterator_<_Tp> it(this); 02357 it.seekEnd(); 02358 return it; 02359 } 02360 02361 02362 02363 ////////////////////////// MatConstIterator ///////////////////////// 02364 02365 inline 02366 MatConstIterator::MatConstIterator() 02367 : m(0), elemSize(0), ptr(0), sliceStart(0), sliceEnd(0) 02368 {} 02369 02370 inline 02371 MatConstIterator::MatConstIterator(const Mat* _m) 02372 : m(_m), elemSize(_m->elemSize()), ptr(0), sliceStart(0), sliceEnd(0) 02373 { 02374 if( m && m->isContinuous() ) 02375 { 02376 sliceStart = m->ptr(); 02377 sliceEnd = sliceStart + m->total()*elemSize; 02378 } 02379 seek((const int*)0); 02380 } 02381 02382 inline 02383 MatConstIterator::MatConstIterator(const Mat* _m, int _row, int _col) 02384 : m(_m), elemSize(_m->elemSize()), ptr(0), sliceStart(0), sliceEnd(0) 02385 { 02386 CV_Assert(m && m->dims <= 2); 02387 if( m->isContinuous() ) 02388 { 02389 sliceStart = m->ptr(); 02390 sliceEnd = sliceStart + m->total()*elemSize; 02391 } 02392 int idx[] = {_row, _col}; 02393 seek(idx); 02394 } 02395 02396 inline 02397 MatConstIterator::MatConstIterator(const Mat* _m, Point _pt) 02398 : m(_m), elemSize(_m->elemSize()), ptr(0), sliceStart(0), sliceEnd(0) 02399 { 02400 CV_Assert(m && m->dims <= 2); 02401 if( m->isContinuous() ) 02402 { 02403 sliceStart = m->ptr(); 02404 sliceEnd = sliceStart + m->total()*elemSize; 02405 } 02406 int idx[] = {_pt.y, _pt.x}; 02407 seek(idx); 02408 } 02409 02410 inline 02411 MatConstIterator::MatConstIterator(const MatConstIterator& it) 02412 : m(it.m), elemSize(it.elemSize), ptr(it.ptr), sliceStart(it.sliceStart), sliceEnd(it.sliceEnd) 02413 {} 02414 02415 inline 02416 MatConstIterator& MatConstIterator::operator = (const MatConstIterator& it ) 02417 { 02418 m = it.m; elemSize = it.elemSize; ptr = it.ptr; 02419 sliceStart = it.sliceStart; sliceEnd = it.sliceEnd; 02420 return *this; 02421 } 02422 02423 inline 02424 const uchar* MatConstIterator::operator *() const 02425 { 02426 return ptr; 02427 } 02428 02429 inline MatConstIterator& MatConstIterator::operator += (ptrdiff_t ofs) 02430 { 02431 if( !m || ofs == 0 ) 02432 return *this; 02433 ptrdiff_t ofsb = ofs*elemSize; 02434 ptr += ofsb; 02435 if( ptr < sliceStart || sliceEnd <= ptr ) 02436 { 02437 ptr -= ofsb; 02438 seek(ofs, true); 02439 } 02440 return *this; 02441 } 02442 02443 inline 02444 MatConstIterator& MatConstIterator::operator -= (ptrdiff_t ofs) 02445 { 02446 return (*this += -ofs); 02447 } 02448 02449 inline 02450 MatConstIterator& MatConstIterator::operator --() 02451 { 02452 if( m && (ptr -= elemSize) < sliceStart ) 02453 { 02454 ptr += elemSize; 02455 seek(-1, true); 02456 } 02457 return *this; 02458 } 02459 02460 inline 02461 MatConstIterator MatConstIterator::operator --(int) 02462 { 02463 MatConstIterator b = *this; 02464 *this += -1; 02465 return b; 02466 } 02467 02468 inline 02469 MatConstIterator& MatConstIterator::operator ++() 02470 { 02471 if( m && (ptr += elemSize) >= sliceEnd ) 02472 { 02473 ptr -= elemSize; 02474 seek(1, true); 02475 } 02476 return *this; 02477 } 02478 02479 inline MatConstIterator MatConstIterator::operator ++(int) 02480 { 02481 MatConstIterator b = *this; 02482 *this += 1; 02483 return b; 02484 } 02485 02486 02487 static inline 02488 bool operator == (const MatConstIterator& a, const MatConstIterator& b) 02489 { 02490 return a.m == b.m && a.ptr == b.ptr; 02491 } 02492 02493 static inline 02494 bool operator != (const MatConstIterator& a, const MatConstIterator& b) 02495 { 02496 return !(a == b); 02497 } 02498 02499 static inline 02500 bool operator < (const MatConstIterator& a, const MatConstIterator& b) 02501 { 02502 return a.ptr < b.ptr; 02503 } 02504 02505 static inline 02506 bool operator > (const MatConstIterator& a, const MatConstIterator& b) 02507 { 02508 return a.ptr > b.ptr; 02509 } 02510 02511 static inline 02512 bool operator <= (const MatConstIterator& a, const MatConstIterator& b) 02513 { 02514 return a.ptr <= b.ptr; 02515 } 02516 02517 static inline 02518 bool operator >= (const MatConstIterator& a, const MatConstIterator& b) 02519 { 02520 return a.ptr >= b.ptr; 02521 } 02522 02523 static inline 02524 ptrdiff_t operator - (const MatConstIterator& b, const MatConstIterator& a) 02525 { 02526 if( a.m != b.m ) 02527 return ((size_t)(-1) >> 1); 02528 if( a.sliceEnd == b.sliceEnd ) 02529 return (b.ptr - a.ptr)/static_cast<ptrdiff_t>(b.elemSize); 02530 02531 return b.lpos() - a.lpos(); 02532 } 02533 02534 static inline 02535 MatConstIterator operator + (const MatConstIterator& a, ptrdiff_t ofs) 02536 { 02537 MatConstIterator b = a; 02538 return b += ofs; 02539 } 02540 02541 static inline 02542 MatConstIterator operator + (ptrdiff_t ofs, const MatConstIterator& a) 02543 { 02544 MatConstIterator b = a; 02545 return b += ofs; 02546 } 02547 02548 static inline 02549 MatConstIterator operator - (const MatConstIterator& a, ptrdiff_t ofs) 02550 { 02551 MatConstIterator b = a; 02552 return b += -ofs; 02553 } 02554 02555 02556 inline 02557 const uchar* MatConstIterator::operator [](ptrdiff_t i) const 02558 { 02559 return *(*this + i); 02560 } 02561 02562 02563 02564 ///////////////////////// MatConstIterator_ ///////////////////////// 02565 02566 template<typename _Tp> inline 02567 MatConstIterator_<_Tp>::MatConstIterator_() 02568 {} 02569 02570 template<typename _Tp> inline 02571 MatConstIterator_<_Tp>::MatConstIterator_(const Mat_<_Tp>* _m) 02572 : MatConstIterator(_m) 02573 {} 02574 02575 template<typename _Tp> inline 02576 MatConstIterator_<_Tp>::MatConstIterator_(const Mat_<_Tp>* _m, int _row, int _col) 02577 : MatConstIterator(_m, _row, _col) 02578 {} 02579 02580 template<typename _Tp> inline 02581 MatConstIterator_<_Tp>::MatConstIterator_(const Mat_<_Tp>* _m, Point _pt) 02582 : MatConstIterator(_m, _pt) 02583 {} 02584 02585 template<typename _Tp> inline 02586 MatConstIterator_<_Tp>::MatConstIterator_(const MatConstIterator_& it) 02587 : MatConstIterator(it) 02588 {} 02589 02590 template<typename _Tp> inline 02591 MatConstIterator_<_Tp>& MatConstIterator_<_Tp>::operator = (const MatConstIterator_& it ) 02592 { 02593 MatConstIterator::operator = (it); 02594 return *this; 02595 } 02596 02597 template<typename _Tp> inline 02598 const _Tp& MatConstIterator_<_Tp>::operator *() const 02599 { 02600 return *(_Tp*)(this->ptr); 02601 } 02602 02603 template<typename _Tp> inline 02604 MatConstIterator_<_Tp>& MatConstIterator_<_Tp>::operator += (ptrdiff_t ofs) 02605 { 02606 MatConstIterator::operator += (ofs); 02607 return *this; 02608 } 02609 02610 template<typename _Tp> inline 02611 MatConstIterator_<_Tp>& MatConstIterator_<_Tp>::operator -= (ptrdiff_t ofs) 02612 { 02613 return (*this += -ofs); 02614 } 02615 02616 template<typename _Tp> inline 02617 MatConstIterator_<_Tp>& MatConstIterator_<_Tp>::operator --() 02618 { 02619 MatConstIterator::operator --(); 02620 return *this; 02621 } 02622 02623 template<typename _Tp> inline 02624 MatConstIterator_<_Tp> MatConstIterator_<_Tp>::operator --(int) 02625 { 02626 MatConstIterator_ b = *this; 02627 MatConstIterator::operator --(); 02628 return b; 02629 } 02630 02631 template<typename _Tp> inline 02632 MatConstIterator_<_Tp>& MatConstIterator_<_Tp>::operator ++() 02633 { 02634 MatConstIterator::operator ++(); 02635 return *this; 02636 } 02637 02638 template<typename _Tp> inline 02639 MatConstIterator_<_Tp> MatConstIterator_<_Tp>::operator ++(int) 02640 { 02641 MatConstIterator_ b = *this; 02642 MatConstIterator::operator ++(); 02643 return b; 02644 } 02645 02646 02647 template<typename _Tp> inline 02648 Point MatConstIterator_<_Tp>::pos() const 02649 { 02650 if( !m ) 02651 return Point(); 02652 CV_DbgAssert( m->dims <= 2 ); 02653 if( m->isContinuous() ) 02654 { 02655 ptrdiff_t ofs = (const _Tp*)ptr - (const _Tp*)m->data; 02656 int y = (int)(ofs / m->cols); 02657 int x = (int)(ofs - (ptrdiff_t)y * m->cols); 02658 return Point(x, y); 02659 } 02660 else 02661 { 02662 ptrdiff_t ofs = (uchar*)ptr - m->data; 02663 int y = (int)(ofs / m->step); 02664 int x = (int)((ofs - y * m->step)/sizeof(_Tp)); 02665 return Point(x, y); 02666 } 02667 } 02668 02669 02670 template<typename _Tp> static inline 02671 bool operator == (const MatConstIterator_<_Tp>& a, const MatConstIterator_<_Tp>& b) 02672 { 02673 return a.m == b.m && a.ptr == b.ptr; 02674 } 02675 02676 template<typename _Tp> static inline 02677 bool operator != (const MatConstIterator_<_Tp>& a, const MatConstIterator_<_Tp>& b) 02678 { 02679 return a.m != b.m || a.ptr != b.ptr; 02680 } 02681 02682 template<typename _Tp> static inline 02683 MatConstIterator_<_Tp> operator + (const MatConstIterator_<_Tp>& a, ptrdiff_t ofs) 02684 { 02685 MatConstIterator t = (const MatConstIterator&)a + ofs; 02686 return (MatConstIterator_<_Tp>&)t; 02687 } 02688 02689 template<typename _Tp> static inline 02690 MatConstIterator_<_Tp> operator + (ptrdiff_t ofs, const MatConstIterator_<_Tp>& a) 02691 { 02692 MatConstIterator t = (const MatConstIterator&)a + ofs; 02693 return (MatConstIterator_<_Tp>&)t; 02694 } 02695 02696 template<typename _Tp> static inline 02697 MatConstIterator_<_Tp> operator - (const MatConstIterator_<_Tp>& a, ptrdiff_t ofs) 02698 { 02699 MatConstIterator t = (const MatConstIterator&)a - ofs; 02700 return (MatConstIterator_<_Tp>&)t; 02701 } 02702 02703 template<typename _Tp> inline 02704 const _Tp& MatConstIterator_<_Tp>::operator [](ptrdiff_t i) const 02705 { 02706 return *(_Tp*)MatConstIterator::operator [](i); 02707 } 02708 02709 02710 02711 //////////////////////////// MatIterator_ /////////////////////////// 02712 02713 template<typename _Tp> inline 02714 MatIterator_<_Tp>::MatIterator_() 02715 : MatConstIterator_<_Tp>() 02716 {} 02717 02718 template<typename _Tp> inline 02719 MatIterator_<_Tp>::MatIterator_(Mat_<_Tp>* _m) 02720 : MatConstIterator_<_Tp>(_m) 02721 {} 02722 02723 template<typename _Tp> inline 02724 MatIterator_<_Tp>::MatIterator_(Mat_<_Tp>* _m, int _row, int _col) 02725 : MatConstIterator_<_Tp>(_m, _row, _col) 02726 {} 02727 02728 template<typename _Tp> inline 02729 MatIterator_<_Tp>::MatIterator_(Mat_<_Tp>* _m, Point _pt) 02730 : MatConstIterator_<_Tp>(_m, _pt) 02731 {} 02732 02733 template<typename _Tp> inline 02734 MatIterator_<_Tp>::MatIterator_(Mat_<_Tp>* _m, const int* _idx) 02735 : MatConstIterator_<_Tp>(_m, _idx) 02736 {} 02737 02738 template<typename _Tp> inline 02739 MatIterator_<_Tp>::MatIterator_(const MatIterator_& it) 02740 : MatConstIterator_<_Tp>(it) 02741 {} 02742 02743 template<typename _Tp> inline 02744 MatIterator_<_Tp>& MatIterator_<_Tp>::operator = (const MatIterator_<_Tp>& it ) 02745 { 02746 MatConstIterator::operator = (it); 02747 return *this; 02748 } 02749 02750 template<typename _Tp> inline 02751 _Tp& MatIterator_<_Tp>::operator *() const 02752 { 02753 return *(_Tp*)(this->ptr); 02754 } 02755 02756 template<typename _Tp> inline 02757 MatIterator_<_Tp>& MatIterator_<_Tp>::operator += (ptrdiff_t ofs) 02758 { 02759 MatConstIterator::operator += (ofs); 02760 return *this; 02761 } 02762 02763 template<typename _Tp> inline 02764 MatIterator_<_Tp>& MatIterator_<_Tp>::operator -= (ptrdiff_t ofs) 02765 { 02766 MatConstIterator::operator += (-ofs); 02767 return *this; 02768 } 02769 02770 template<typename _Tp> inline 02771 MatIterator_<_Tp>& MatIterator_<_Tp>::operator --() 02772 { 02773 MatConstIterator::operator --(); 02774 return *this; 02775 } 02776 02777 template<typename _Tp> inline 02778 MatIterator_<_Tp> MatIterator_<_Tp>::operator --(int) 02779 { 02780 MatIterator_ b = *this; 02781 MatConstIterator::operator --(); 02782 return b; 02783 } 02784 02785 template<typename _Tp> inline 02786 MatIterator_<_Tp>& MatIterator_<_Tp>::operator ++() 02787 { 02788 MatConstIterator::operator ++(); 02789 return *this; 02790 } 02791 02792 template<typename _Tp> inline 02793 MatIterator_<_Tp> MatIterator_<_Tp>::operator ++(int) 02794 { 02795 MatIterator_ b = *this; 02796 MatConstIterator::operator ++(); 02797 return b; 02798 } 02799 02800 template<typename _Tp> inline 02801 _Tp& MatIterator_<_Tp>::operator [](ptrdiff_t i) const 02802 { 02803 return *(*this + i); 02804 } 02805 02806 02807 template<typename _Tp> static inline 02808 bool operator == (const MatIterator_<_Tp>& a, const MatIterator_<_Tp>& b) 02809 { 02810 return a.m == b.m && a.ptr == b.ptr; 02811 } 02812 02813 template<typename _Tp> static inline 02814 bool operator != (const MatIterator_<_Tp>& a, const MatIterator_<_Tp>& b) 02815 { 02816 return a.m != b.m || a.ptr != b.ptr; 02817 } 02818 02819 template<typename _Tp> static inline 02820 MatIterator_<_Tp> operator + (const MatIterator_<_Tp>& a, ptrdiff_t ofs) 02821 { 02822 MatConstIterator t = (const MatConstIterator&)a + ofs; 02823 return (MatIterator_<_Tp>&)t; 02824 } 02825 02826 template<typename _Tp> static inline 02827 MatIterator_<_Tp> operator + (ptrdiff_t ofs, const MatIterator_<_Tp>& a) 02828 { 02829 MatConstIterator t = (const MatConstIterator&)a + ofs; 02830 return (MatIterator_<_Tp>&)t; 02831 } 02832 02833 template<typename _Tp> static inline 02834 MatIterator_<_Tp> operator - (const MatIterator_<_Tp>& a, ptrdiff_t ofs) 02835 { 02836 MatConstIterator t = (const MatConstIterator&)a - ofs; 02837 return (MatIterator_<_Tp>&)t; 02838 } 02839 02840 02841 02842 /////////////////////// SparseMatConstIterator ////////////////////// 02843 02844 inline 02845 SparseMatConstIterator::SparseMatConstIterator() 02846 : m(0), hashidx(0), ptr(0) 02847 {} 02848 02849 inline 02850 SparseMatConstIterator::SparseMatConstIterator(const SparseMatConstIterator& it) 02851 : m(it.m), hashidx(it.hashidx), ptr(it.ptr) 02852 {} 02853 02854 inline SparseMatConstIterator& SparseMatConstIterator::operator = (const SparseMatConstIterator& it) 02855 { 02856 if( this != &it ) 02857 { 02858 m = it.m; 02859 hashidx = it.hashidx; 02860 ptr = it.ptr; 02861 } 02862 return *this; 02863 } 02864 02865 template<typename _Tp> inline 02866 const _Tp& SparseMatConstIterator::value() const 02867 { 02868 return *(const _Tp*)ptr; 02869 } 02870 02871 inline 02872 const SparseMat::Node* SparseMatConstIterator::node() const 02873 { 02874 return (ptr && m && m->hdr) ? (const SparseMat::Node*)(const void*)(ptr - m->hdr->valueOffset) : 0; 02875 } 02876 02877 inline 02878 SparseMatConstIterator SparseMatConstIterator::operator ++(int) 02879 { 02880 SparseMatConstIterator it = *this; 02881 ++*this; 02882 return it; 02883 } 02884 02885 inline 02886 void SparseMatConstIterator::seekEnd() 02887 { 02888 if( m && m->hdr ) 02889 { 02890 hashidx = m->hdr->hashtab.size(); 02891 ptr = 0; 02892 } 02893 } 02894 02895 02896 static inline 02897 bool operator == (const SparseMatConstIterator& it1, const SparseMatConstIterator& it2) 02898 { 02899 return it1.m == it2.m && it1.ptr == it2.ptr; 02900 } 02901 02902 static inline 02903 bool operator != (const SparseMatConstIterator& it1, const SparseMatConstIterator& it2) 02904 { 02905 return !(it1 == it2); 02906 } 02907 02908 02909 02910 ///////////////////////// SparseMatIterator ///////////////////////// 02911 02912 inline 02913 SparseMatIterator::SparseMatIterator() 02914 {} 02915 02916 inline 02917 SparseMatIterator::SparseMatIterator(SparseMat* _m) 02918 : SparseMatConstIterator(_m) 02919 {} 02920 02921 inline 02922 SparseMatIterator::SparseMatIterator(const SparseMatIterator& it) 02923 : SparseMatConstIterator(it) 02924 {} 02925 02926 inline 02927 SparseMatIterator& SparseMatIterator::operator = (const SparseMatIterator& it) 02928 { 02929 (SparseMatConstIterator&)*this = it; 02930 return *this; 02931 } 02932 02933 template<typename _Tp> inline 02934 _Tp& SparseMatIterator::value() const 02935 { 02936 return *(_Tp*)ptr; 02937 } 02938 02939 inline 02940 SparseMat::Node* SparseMatIterator::node() const 02941 { 02942 return (SparseMat::Node*)SparseMatConstIterator::node(); 02943 } 02944 02945 inline 02946 SparseMatIterator& SparseMatIterator::operator ++() 02947 { 02948 SparseMatConstIterator::operator ++(); 02949 return *this; 02950 } 02951 02952 inline 02953 SparseMatIterator SparseMatIterator::operator ++(int) 02954 { 02955 SparseMatIterator it = *this; 02956 ++*this; 02957 return it; 02958 } 02959 02960 02961 02962 ////////////////////// SparseMatConstIterator_ ////////////////////// 02963 02964 template<typename _Tp> inline 02965 SparseMatConstIterator_<_Tp>::SparseMatConstIterator_() 02966 {} 02967 02968 template<typename _Tp> inline 02969 SparseMatConstIterator_<_Tp>::SparseMatConstIterator_(const SparseMat_<_Tp>* _m) 02970 : SparseMatConstIterator(_m) 02971 {} 02972 02973 template<typename _Tp> inline 02974 SparseMatConstIterator_<_Tp>::SparseMatConstIterator_(const SparseMat* _m) 02975 : SparseMatConstIterator(_m) 02976 { 02977 CV_Assert( _m->type() == DataType<_Tp>::type ); 02978 } 02979 02980 template<typename _Tp> inline 02981 SparseMatConstIterator_<_Tp>::SparseMatConstIterator_(const SparseMatConstIterator_<_Tp>& it) 02982 : SparseMatConstIterator(it) 02983 {} 02984 02985 template<typename _Tp> inline 02986 SparseMatConstIterator_<_Tp>& SparseMatConstIterator_<_Tp>::operator = (const SparseMatConstIterator_<_Tp>& it) 02987 { 02988 return reinterpret_cast<SparseMatConstIterator_<_Tp>&> 02989 (*reinterpret_cast<SparseMatConstIterator*>(this) = 02990 reinterpret_cast<const SparseMatConstIterator&>(it)); 02991 } 02992 02993 template<typename _Tp> inline 02994 const _Tp& SparseMatConstIterator_<_Tp>::operator *() const 02995 { 02996 return *(const _Tp*)this->ptr; 02997 } 02998 02999 template<typename _Tp> inline 03000 SparseMatConstIterator_<_Tp>& SparseMatConstIterator_<_Tp>::operator ++() 03001 { 03002 SparseMatConstIterator::operator ++(); 03003 return *this; 03004 } 03005 03006 template<typename _Tp> inline 03007 SparseMatConstIterator_<_Tp> SparseMatConstIterator_<_Tp>::operator ++(int) 03008 { 03009 SparseMatConstIterator_<_Tp> it = *this; 03010 SparseMatConstIterator::operator ++(); 03011 return it; 03012 } 03013 03014 03015 03016 ///////////////////////// SparseMatIterator_ //////////////////////// 03017 03018 template<typename _Tp> inline 03019 SparseMatIterator_<_Tp>::SparseMatIterator_() 03020 {} 03021 03022 template<typename _Tp> inline 03023 SparseMatIterator_<_Tp>::SparseMatIterator_(SparseMat_<_Tp>* _m) 03024 : SparseMatConstIterator_<_Tp>(_m) 03025 {} 03026 03027 template<typename _Tp> inline 03028 SparseMatIterator_<_Tp>::SparseMatIterator_(SparseMat* _m) 03029 : SparseMatConstIterator_<_Tp>(_m) 03030 {} 03031 03032 template<typename _Tp> inline 03033 SparseMatIterator_<_Tp>::SparseMatIterator_(const SparseMatIterator_<_Tp>& it) 03034 : SparseMatConstIterator_<_Tp>(it) 03035 {} 03036 03037 template<typename _Tp> inline 03038 SparseMatIterator_<_Tp>& SparseMatIterator_<_Tp>::operator = (const SparseMatIterator_<_Tp>& it) 03039 { 03040 return reinterpret_cast<SparseMatIterator_<_Tp>&> 03041 (*reinterpret_cast<SparseMatConstIterator*>(this) = 03042 reinterpret_cast<const SparseMatConstIterator&>(it)); 03043 } 03044 03045 template<typename _Tp> inline 03046 _Tp& SparseMatIterator_<_Tp>::operator *() const 03047 { 03048 return *(_Tp*)this->ptr; 03049 } 03050 03051 template<typename _Tp> inline 03052 SparseMatIterator_<_Tp>& SparseMatIterator_<_Tp>::operator ++() 03053 { 03054 SparseMatConstIterator::operator ++(); 03055 return *this; 03056 } 03057 03058 template<typename _Tp> inline 03059 SparseMatIterator_<_Tp> SparseMatIterator_<_Tp>::operator ++(int) 03060 { 03061 SparseMatIterator_<_Tp> it = *this; 03062 SparseMatConstIterator::operator ++(); 03063 return it; 03064 } 03065 03066 03067 03068 //////////////////////// MatCommaInitializer_ /////////////////////// 03069 03070 template<typename _Tp> inline 03071 MatCommaInitializer_<_Tp>::MatCommaInitializer_(Mat_<_Tp>* _m) 03072 : it(_m) 03073 {} 03074 03075 template<typename _Tp> template<typename T2> inline 03076 MatCommaInitializer_<_Tp>& MatCommaInitializer_<_Tp>::operator , (T2 v) 03077 { 03078 CV_DbgAssert( this->it < ((const Mat_<_Tp>*)this->it.m)->end() ); 03079 *this->it = _Tp(v); 03080 ++this->it; 03081 return *this; 03082 } 03083 03084 template<typename _Tp> inline 03085 MatCommaInitializer_<_Tp>::operator Mat_<_Tp>() const 03086 { 03087 CV_DbgAssert( this->it == ((const Mat_<_Tp>*)this->it.m)->end() ); 03088 return Mat_<_Tp>(*this->it.m); 03089 } 03090 03091 03092 template<typename _Tp, typename T2> static inline 03093 MatCommaInitializer_<_Tp> operator << (const Mat_<_Tp>& m, T2 val) 03094 { 03095 MatCommaInitializer_<_Tp> commaInitializer((Mat_<_Tp>*)&m); 03096 return (commaInitializer, val); 03097 } 03098 03099 03100 03101 ///////////////////////// Matrix Expressions //////////////////////// 03102 03103 inline 03104 Mat& Mat::operator = (const MatExpr& e) 03105 { 03106 e.op->assign(e, *this); 03107 return *this; 03108 } 03109 03110 template<typename _Tp> inline 03111 Mat_<_Tp>::Mat_(const MatExpr& e) 03112 { 03113 e.op->assign(e, *this, DataType<_Tp>::type); 03114 } 03115 03116 template<typename _Tp> inline 03117 Mat_<_Tp>& Mat_<_Tp>::operator = (const MatExpr& e) 03118 { 03119 e.op->assign(e, *this, DataType<_Tp>::type); 03120 return *this; 03121 } 03122 03123 template<typename _Tp> inline 03124 MatExpr Mat_<_Tp>::zeros(int rows, int cols) 03125 { 03126 return Mat::zeros(rows, cols, DataType<_Tp>::type); 03127 } 03128 03129 template<typename _Tp> inline 03130 MatExpr Mat_<_Tp>::zeros(Size sz) 03131 { 03132 return Mat::zeros(sz, DataType<_Tp>::type); 03133 } 03134 03135 template<typename _Tp> inline 03136 MatExpr Mat_<_Tp>::ones(int rows, int cols) 03137 { 03138 return Mat::ones(rows, cols, DataType<_Tp>::type); 03139 } 03140 03141 template<typename _Tp> inline 03142 MatExpr Mat_<_Tp>::ones(Size sz) 03143 { 03144 return Mat::ones(sz, DataType<_Tp>::type); 03145 } 03146 03147 template<typename _Tp> inline 03148 MatExpr Mat_<_Tp>::eye(int rows, int cols) 03149 { 03150 return Mat::eye(rows, cols, DataType<_Tp>::type); 03151 } 03152 03153 template<typename _Tp> inline 03154 MatExpr Mat_<_Tp>::eye(Size sz) 03155 { 03156 return Mat::eye(sz, DataType<_Tp>::type); 03157 } 03158 03159 inline 03160 MatExpr::MatExpr() 03161 : op(0), flags(0), a(Mat()), b(Mat()), c(Mat()), alpha(0), beta(0), s() 03162 {} 03163 03164 inline 03165 MatExpr::MatExpr(const MatOp* _op, int _flags, const Mat& _a, const Mat& _b, 03166 const Mat& _c, double _alpha, double _beta, const Scalar& _s) 03167 : op(_op), flags(_flags), a(_a), b(_b), c(_c), alpha(_alpha), beta(_beta), s(_s) 03168 {} 03169 03170 inline 03171 MatExpr::operator Mat() const 03172 { 03173 Mat m; 03174 op->assign(*this, m); 03175 return m; 03176 } 03177 03178 template<typename _Tp> inline 03179 MatExpr::operator Mat_<_Tp>() const 03180 { 03181 Mat_<_Tp> m; 03182 op->assign(*this, m, DataType<_Tp>::type); 03183 return m; 03184 } 03185 03186 03187 template<typename _Tp> static inline 03188 MatExpr min(const Mat_<_Tp>& a, const Mat_<_Tp>& b) 03189 { 03190 return cv::min((const Mat&)a, (const Mat&)b); 03191 } 03192 03193 template<typename _Tp> static inline 03194 MatExpr min(const Mat_<_Tp>& a, double s) 03195 { 03196 return cv::min((const Mat&)a, s); 03197 } 03198 03199 template<typename _Tp> static inline 03200 MatExpr min(double s, const Mat_<_Tp>& a) 03201 { 03202 return cv::min((const Mat&)a, s); 03203 } 03204 03205 template<typename _Tp> static inline 03206 MatExpr max(const Mat_<_Tp>& a, const Mat_<_Tp>& b) 03207 { 03208 return cv::max((const Mat&)a, (const Mat&)b); 03209 } 03210 03211 template<typename _Tp> static inline 03212 MatExpr max(const Mat_<_Tp>& a, double s) 03213 { 03214 return cv::max((const Mat&)a, s); 03215 } 03216 03217 template<typename _Tp> static inline 03218 MatExpr max(double s, const Mat_<_Tp>& a) 03219 { 03220 return cv::max((const Mat&)a, s); 03221 } 03222 03223 template<typename _Tp> static inline 03224 MatExpr abs(const Mat_<_Tp>& m) 03225 { 03226 return cv::abs((const Mat&)m); 03227 } 03228 03229 03230 static inline 03231 Mat& operator += (Mat& a, const MatExpr& b) 03232 { 03233 b.op->augAssignAdd(b, a); 03234 return a; 03235 } 03236 03237 static inline 03238 const Mat& operator += (const Mat& a, const MatExpr& b) 03239 { 03240 b.op->augAssignAdd(b, (Mat&)a); 03241 return a; 03242 } 03243 03244 template<typename _Tp> static inline 03245 Mat_<_Tp>& operator += (Mat_<_Tp>& a, const MatExpr& b) 03246 { 03247 b.op->augAssignAdd(b, a); 03248 return a; 03249 } 03250 03251 template<typename _Tp> static inline 03252 const Mat_<_Tp>& operator += (const Mat_<_Tp>& a, const MatExpr& b) 03253 { 03254 b.op->augAssignAdd(b, (Mat&)a); 03255 return a; 03256 } 03257 03258 static inline 03259 Mat& operator -= (Mat& a, const MatExpr& b) 03260 { 03261 b.op->augAssignSubtract(b, a); 03262 return a; 03263 } 03264 03265 static inline 03266 const Mat& operator -= (const Mat& a, const MatExpr& b) 03267 { 03268 b.op->augAssignSubtract(b, (Mat&)a); 03269 return a; 03270 } 03271 03272 template<typename _Tp> static inline 03273 Mat_<_Tp>& operator -= (Mat_<_Tp>& a, const MatExpr& b) 03274 { 03275 b.op->augAssignSubtract(b, a); 03276 return a; 03277 } 03278 03279 template<typename _Tp> static inline 03280 const Mat_<_Tp>& operator -= (const Mat_<_Tp>& a, const MatExpr& b) 03281 { 03282 b.op->augAssignSubtract(b, (Mat&)a); 03283 return a; 03284 } 03285 03286 static inline 03287 Mat& operator *= (Mat& a, const MatExpr& b) 03288 { 03289 b.op->augAssignMultiply(b, a); 03290 return a; 03291 } 03292 03293 static inline 03294 const Mat& operator *= (const Mat& a, const MatExpr& b) 03295 { 03296 b.op->augAssignMultiply(b, (Mat&)a); 03297 return a; 03298 } 03299 03300 template<typename _Tp> static inline 03301 Mat_<_Tp>& operator *= (Mat_<_Tp>& a, const MatExpr& b) 03302 { 03303 b.op->augAssignMultiply(b, a); 03304 return a; 03305 } 03306 03307 template<typename _Tp> static inline 03308 const Mat_<_Tp>& operator *= (const Mat_<_Tp>& a, const MatExpr& b) 03309 { 03310 b.op->augAssignMultiply(b, (Mat&)a); 03311 return a; 03312 } 03313 03314 static inline 03315 Mat& operator /= (Mat& a, const MatExpr& b) 03316 { 03317 b.op->augAssignDivide(b, a); 03318 return a; 03319 } 03320 03321 static inline 03322 const Mat& operator /= (const Mat& a, const MatExpr& b) 03323 { 03324 b.op->augAssignDivide(b, (Mat&)a); 03325 return a; 03326 } 03327 03328 template<typename _Tp> static inline 03329 Mat_<_Tp>& operator /= (Mat_<_Tp>& a, const MatExpr& b) 03330 { 03331 b.op->augAssignDivide(b, a); 03332 return a; 03333 } 03334 03335 template<typename _Tp> static inline 03336 const Mat_<_Tp>& operator /= (const Mat_<_Tp>& a, const MatExpr& b) 03337 { 03338 b.op->augAssignDivide(b, (Mat&)a); 03339 return a; 03340 } 03341 03342 03343 //////////////////////////////// UMat //////////////////////////////// 03344 03345 inline 03346 UMat::UMat(UMatUsageFlags _usageFlags) 03347 : flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows) 03348 {} 03349 03350 inline 03351 UMat::UMat(int _rows, int _cols, int _type, UMatUsageFlags _usageFlags) 03352 : flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows) 03353 { 03354 create(_rows, _cols, _type); 03355 } 03356 03357 inline 03358 UMat::UMat(int _rows, int _cols, int _type, const Scalar& _s, UMatUsageFlags _usageFlags) 03359 : flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows) 03360 { 03361 create(_rows, _cols, _type); 03362 *this = _s; 03363 } 03364 03365 inline 03366 UMat::UMat(Size _sz, int _type, UMatUsageFlags _usageFlags) 03367 : flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows) 03368 { 03369 create( _sz.height, _sz.width, _type ); 03370 } 03371 03372 inline 03373 UMat::UMat(Size _sz, int _type, const Scalar& _s, UMatUsageFlags _usageFlags) 03374 : flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows) 03375 { 03376 create(_sz.height, _sz.width, _type); 03377 *this = _s; 03378 } 03379 03380 inline 03381 UMat::UMat(int _dims, const int* _sz, int _type, UMatUsageFlags _usageFlags) 03382 : flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows) 03383 { 03384 create(_dims, _sz, _type); 03385 } 03386 03387 inline 03388 UMat::UMat(int _dims, const int* _sz, int _type, const Scalar& _s, UMatUsageFlags _usageFlags) 03389 : flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows) 03390 { 03391 create(_dims, _sz, _type); 03392 *this = _s; 03393 } 03394 03395 inline 03396 UMat::UMat(const UMat& m) 03397 : flags(m.flags), dims(m.dims), rows(m.rows), cols(m.cols), allocator(m.allocator), 03398 usageFlags(m.usageFlags), u(m.u), offset(m.offset), size(&rows) 03399 { 03400 addref(); 03401 if( m.dims <= 2 ) 03402 { 03403 step[0] = m.step[0]; step[1] = m.step[1]; 03404 } 03405 else 03406 { 03407 dims = 0; 03408 copySize(m); 03409 } 03410 } 03411 03412 03413 template<typename _Tp> inline 03414 UMat::UMat(const std::vector<_Tp>& vec, bool copyData) 03415 : flags(MAGIC_VAL | DataType<_Tp>::type | CV_MAT_CONT_FLAG), dims(2), rows((int)vec.size()), 03416 cols(1), allocator(0), usageFlags(USAGE_DEFAULT), u(0), offset(0), size(&rows) 03417 { 03418 if(vec.empty()) 03419 return; 03420 if( !copyData ) 03421 { 03422 // !!!TODO!!! 03423 CV_Error(Error::StsNotImplemented, ""); 03424 } 03425 else 03426 Mat((int)vec.size(), 1, DataType<_Tp>::type, (uchar*)&vec[0]).copyTo(*this); 03427 } 03428 03429 03430 inline 03431 UMat& UMat::operator = (const UMat& m) 03432 { 03433 if( this != &m ) 03434 { 03435 const_cast<UMat&>(m).addref(); 03436 release(); 03437 flags = m.flags; 03438 if( dims <= 2 && m.dims <= 2 ) 03439 { 03440 dims = m.dims; 03441 rows = m.rows; 03442 cols = m.cols; 03443 step[0] = m.step[0]; 03444 step[1] = m.step[1]; 03445 } 03446 else 03447 copySize(m); 03448 allocator = m.allocator; 03449 if (usageFlags == USAGE_DEFAULT) 03450 usageFlags = m.usageFlags; 03451 u = m.u; 03452 offset = m.offset; 03453 } 03454 return *this; 03455 } 03456 03457 inline 03458 UMat UMat::row(int y) const 03459 { 03460 return UMat(*this, Range(y, y + 1), Range::all()); 03461 } 03462 03463 inline 03464 UMat UMat::col(int x) const 03465 { 03466 return UMat(*this, Range::all(), Range(x, x + 1)); 03467 } 03468 03469 inline 03470 UMat UMat::rowRange(int startrow, int endrow) const 03471 { 03472 return UMat(*this, Range(startrow, endrow), Range::all()); 03473 } 03474 03475 inline 03476 UMat UMat::rowRange(const Range& r) const 03477 { 03478 return UMat(*this, r, Range::all()); 03479 } 03480 03481 inline 03482 UMat UMat::colRange(int startcol, int endcol) const 03483 { 03484 return UMat(*this, Range::all(), Range(startcol, endcol)); 03485 } 03486 03487 inline 03488 UMat UMat::colRange(const Range& r) const 03489 { 03490 return UMat(*this, Range::all(), r); 03491 } 03492 03493 inline 03494 UMat UMat::clone() const 03495 { 03496 UMat m; 03497 copyTo(m); 03498 return m; 03499 } 03500 03501 inline 03502 void UMat::assignTo( UMat& m, int _type ) const 03503 { 03504 if( _type < 0 ) 03505 m = *this; 03506 else 03507 convertTo(m, _type); 03508 } 03509 03510 inline 03511 void UMat::create(int _rows, int _cols, int _type, UMatUsageFlags _usageFlags) 03512 { 03513 _type &= TYPE_MASK; 03514 if( dims <= 2 && rows == _rows && cols == _cols && type() == _type && u ) 03515 return; 03516 int sz[] = {_rows, _cols}; 03517 create(2, sz, _type, _usageFlags); 03518 } 03519 03520 inline 03521 void UMat::create(Size _sz, int _type, UMatUsageFlags _usageFlags) 03522 { 03523 create(_sz.height, _sz.width, _type, _usageFlags); 03524 } 03525 03526 inline 03527 void UMat::addref() 03528 { 03529 if( u ) 03530 CV_XADD(&(u->urefcount), 1); 03531 } 03532 03533 inline void UMat::release() 03534 { 03535 if( u && CV_XADD(&(u->urefcount), -1) == 1 ) 03536 deallocate(); 03537 for(int i = 0; i < dims; i++) 03538 size.p[i] = 0; 03539 u = 0; 03540 } 03541 03542 inline 03543 UMat UMat::operator()( Range _rowRange, Range _colRange ) const 03544 { 03545 return UMat(*this, _rowRange, _colRange); 03546 } 03547 03548 inline 03549 UMat UMat::operator()( const Rect& roi ) const 03550 { 03551 return UMat(*this, roi); 03552 } 03553 03554 inline 03555 UMat UMat::operator()(const Range* ranges) const 03556 { 03557 return UMat(*this, ranges); 03558 } 03559 03560 inline 03561 UMat UMat::operator()(const std::vector<Range>& ranges) const 03562 { 03563 return UMat(*this, ranges); 03564 } 03565 03566 inline 03567 bool UMat::isContinuous() const 03568 { 03569 return (flags & CONTINUOUS_FLAG) != 0; 03570 } 03571 03572 inline 03573 bool UMat::isSubmatrix() const 03574 { 03575 return (flags & SUBMATRIX_FLAG) != 0; 03576 } 03577 03578 inline 03579 size_t UMat::elemSize() const 03580 { 03581 return dims > 0 ? step.p[dims - 1] : 0; 03582 } 03583 03584 inline 03585 size_t UMat::elemSize1() const 03586 { 03587 return CV_ELEM_SIZE1(flags ); 03588 } 03589 03590 inline 03591 int UMat::type() const 03592 { 03593 return CV_MAT_TYPE(flags ); 03594 } 03595 03596 inline 03597 int UMat::depth() const 03598 { 03599 return CV_MAT_DEPTH(flags ); 03600 } 03601 03602 inline 03603 int UMat::channels() const 03604 { 03605 return CV_MAT_CN(flags ); 03606 } 03607 03608 inline 03609 size_t UMat::step1(int i) const 03610 { 03611 return step.p[i] / elemSize1(); 03612 } 03613 03614 inline 03615 bool UMat::empty() const 03616 { 03617 return u == 0 || total() == 0; 03618 } 03619 03620 inline 03621 size_t UMat::total() const 03622 { 03623 if( dims <= 2 ) 03624 return (size_t)rows * cols; 03625 size_t p = 1; 03626 for( int i = 0; i < dims; i++ ) 03627 p *= size[i]; 03628 return p; 03629 } 03630 03631 #ifdef CV_CXX_MOVE_SEMANTICS 03632 03633 inline 03634 UMat::UMat(UMat&& m) 03635 : flags(m.flags), dims(m.dims), rows(m.rows), cols(m.cols), allocator(m.allocator), 03636 usageFlags(m.usageFlags), u(m.u), offset(m.offset), size(&rows) 03637 { 03638 if (m.dims <= 2) // move new step/size info 03639 { 03640 step[0] = m.step[0]; 03641 step[1] = m.step[1]; 03642 } 03643 else 03644 { 03645 CV_DbgAssert(m.step.p != m.step.buf); 03646 step.p = m.step.p; 03647 size.p = m.size.p; 03648 m.step.p = m.step.buf; 03649 m.size.p = &m.rows; 03650 } 03651 m.flags = MAGIC_VAL; m.dims = m.rows = m.cols = 0; 03652 m.allocator = NULL; 03653 m.u = NULL; 03654 m.offset = 0; 03655 } 03656 03657 inline 03658 UMat& UMat::operator = (UMat&& m) 03659 { 03660 if (this == &m) 03661 return *this; 03662 release(); 03663 flags = m.flags; dims = m.dims; rows = m.rows; cols = m.cols; 03664 allocator = m.allocator; usageFlags = m.usageFlags; 03665 u = m.u; 03666 offset = m.offset; 03667 if (step.p != step.buf) // release self step/size 03668 { 03669 fastFree(step.p); 03670 step.p = step.buf; 03671 size.p = &rows; 03672 } 03673 if (m.dims <= 2) // move new step/size info 03674 { 03675 step[0] = m.step[0]; 03676 step[1] = m.step[1]; 03677 } 03678 else 03679 { 03680 CV_DbgAssert(m.step.p != m.step.buf); 03681 step.p = m.step.p; 03682 size.p = m.size.p; 03683 m.step.p = m.step.buf; 03684 m.size.p = &m.rows; 03685 } 03686 m.flags = MAGIC_VAL; m.dims = m.rows = m.cols = 0; 03687 m.allocator = NULL; 03688 m.u = NULL; 03689 m.offset = 0; 03690 return *this; 03691 } 03692 03693 #endif 03694 03695 03696 inline bool UMatData::hostCopyObsolete() const { return (flags & HOST_COPY_OBSOLETE) != 0; } 03697 inline bool UMatData::deviceCopyObsolete() const { return (flags & DEVICE_COPY_OBSOLETE) != 0; } 03698 inline bool UMatData::deviceMemMapped() const { return (flags & DEVICE_MEM_MAPPED) != 0; } 03699 inline bool UMatData::copyOnMap() const { return (flags & COPY_ON_MAP) != 0; } 03700 inline bool UMatData::tempUMat() const { return (flags & TEMP_UMAT) != 0; } 03701 inline bool UMatData::tempCopiedUMat() const { return (flags & TEMP_COPIED_UMAT) == TEMP_COPIED_UMAT; } 03702 03703 inline void UMatData::markDeviceMemMapped(bool flag) 03704 { 03705 if(flag) 03706 flags |= DEVICE_MEM_MAPPED; 03707 else 03708 flags &= ~DEVICE_MEM_MAPPED; 03709 } 03710 03711 inline void UMatData::markHostCopyObsolete(bool flag) 03712 { 03713 if(flag) 03714 flags |= HOST_COPY_OBSOLETE; 03715 else 03716 flags &= ~HOST_COPY_OBSOLETE; 03717 } 03718 inline void UMatData::markDeviceCopyObsolete(bool flag) 03719 { 03720 if(flag) 03721 flags |= DEVICE_COPY_OBSOLETE; 03722 else 03723 flags &= ~DEVICE_COPY_OBSOLETE; 03724 } 03725 03726 inline UMatDataAutoLock::UMatDataAutoLock(UMatData* _u) : u(_u) { u->lock(); } 03727 inline UMatDataAutoLock::~UMatDataAutoLock() { u->unlock(); } 03728 03729 //! @endcond 03730 03731 } //cv 03732 03733 #endif
Generated on Tue Jul 12 2022 18:20:18 by
1.7.2