Renesas / SecureDweet
Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers rabbit.c Source File

rabbit.c

00001 /* rabbit.c
00002  *
00003  * Copyright (C) 2006-2016 wolfSSL Inc.
00004  *
00005  * This file is part of wolfSSL.
00006  *
00007  * wolfSSL is free software; you can redistribute it and/or modify
00008  * it under the terms of the GNU General Public License as published by
00009  * the Free Software Foundation; either version 2 of the License, or
00010  * (at your option) any later version.
00011  *
00012  * wolfSSL is distributed in the hope that it will be useful,
00013  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00014  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00015  * GNU General Public License for more details.
00016  *
00017  * You should have received a copy of the GNU General Public License
00018  * along with this program; if not, write to the Free Software
00019  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
00020  */
00021 
00022 
00023 #ifdef HAVE_CONFIG_H
00024     #include <config.h>
00025 #endif
00026 
00027 #include <wolfssl/wolfcrypt/settings.h>
00028 
00029 #ifndef NO_RABBIT
00030 
00031 #include <wolfssl/wolfcrypt/rabbit.h>
00032 #include <wolfssl/wolfcrypt/error-crypt.h>
00033 #include <wolfssl/wolfcrypt/logging.h>
00034 #ifdef NO_INLINE
00035     #include <wolfssl/wolfcrypt/misc.h>
00036 #else
00037     #include <wolfcrypt/src/misc.c>
00038 #endif
00039 
00040 
00041 #ifdef BIG_ENDIAN_ORDER
00042     #define LITTLE32(x) ByteReverseWord32(x)
00043 #else
00044     #define LITTLE32(x) (x)
00045 #endif
00046 
00047 #define U32V(x) ((word32)(x) & 0xFFFFFFFFU)
00048 
00049 
00050 /* Square a 32-bit unsigned integer to obtain the 64-bit result and return */
00051 /* the upper 32 bits XOR the lower 32 bits */
00052 static word32 RABBIT_g_func(word32 x)
00053 {
00054     /* Temporary variables */
00055     word32 a, b, h, l;
00056 
00057     /* Construct high and low argument for squaring */
00058     a = x&0xFFFF;
00059     b = x>>16;
00060 
00061     /* Calculate high and low result of squaring */
00062     h = (((U32V(a*a)>>17) + U32V(a*b))>>15) + b*b;
00063     l = x*x;
00064 
00065     /* Return high XOR low */
00066     return U32V(h^l);
00067 }
00068 
00069 
00070 /* Calculate the next internal state */
00071 static void RABBIT_next_state(RabbitCtx* ctx)
00072 {
00073     /* Temporary variables */
00074     word32 g[8], c_old[8], i;
00075 
00076     /* Save old counter values */
00077     for (i=0; i<8; i++)
00078         c_old[i] = ctx->c[i];
00079 
00080     /* Calculate new counter values */
00081     ctx->c[0] = U32V(ctx->c[0] + 0x4D34D34D + ctx->carry);
00082     ctx->c[1] = U32V(ctx->c[1] + 0xD34D34D3 + (ctx->c[0] < c_old[0]));
00083     ctx->c[2] = U32V(ctx->c[2] + 0x34D34D34 + (ctx->c[1] < c_old[1]));
00084     ctx->c[3] = U32V(ctx->c[3] + 0x4D34D34D + (ctx->c[2] < c_old[2]));
00085     ctx->c[4] = U32V(ctx->c[4] + 0xD34D34D3 + (ctx->c[3] < c_old[3]));
00086     ctx->c[5] = U32V(ctx->c[5] + 0x34D34D34 + (ctx->c[4] < c_old[4]));
00087     ctx->c[6] = U32V(ctx->c[6] + 0x4D34D34D + (ctx->c[5] < c_old[5]));
00088     ctx->c[7] = U32V(ctx->c[7] + 0xD34D34D3 + (ctx->c[6] < c_old[6]));
00089     ctx->carry = (ctx->c[7] < c_old[7]);
00090    
00091     /* Calculate the g-values */
00092     for (i=0;i<8;i++)
00093         g[i] = RABBIT_g_func(U32V(ctx->x[i] + ctx->c[i]));
00094 
00095     /* Calculate new state values */
00096     ctx->x[0] = U32V(g[0] + rotlFixed(g[7],16) + rotlFixed(g[6], 16));
00097     ctx->x[1] = U32V(g[1] + rotlFixed(g[0], 8) + g[7]);
00098     ctx->x[2] = U32V(g[2] + rotlFixed(g[1],16) + rotlFixed(g[0], 16));
00099     ctx->x[3] = U32V(g[3] + rotlFixed(g[2], 8) + g[1]);
00100     ctx->x[4] = U32V(g[4] + rotlFixed(g[3],16) + rotlFixed(g[2], 16));
00101     ctx->x[5] = U32V(g[5] + rotlFixed(g[4], 8) + g[3]);
00102     ctx->x[6] = U32V(g[6] + rotlFixed(g[5],16) + rotlFixed(g[4], 16));
00103     ctx->x[7] = U32V(g[7] + rotlFixed(g[6], 8) + g[5]);
00104 }
00105 
00106 
00107 /* IV setup */
00108 static void wc_RabbitSetIV(Rabbit* ctx, const byte* inIv)
00109 {
00110     /* Temporary variables */
00111     word32 i0, i1, i2, i3, i;
00112     word32 iv[2];
00113 
00114     if (inIv)
00115         XMEMCPY(iv, inIv, sizeof(iv));
00116     else
00117         XMEMSET(iv,    0, sizeof(iv));
00118       
00119     /* Generate four subvectors */
00120     i0 = LITTLE32(iv[0]);
00121     i2 = LITTLE32(iv[1]);
00122     i1 = (i0>>16) | (i2&0xFFFF0000);
00123     i3 = (i2<<16) | (i0&0x0000FFFF);
00124 
00125     /* Modify counter values */
00126     ctx->workCtx.c[0] = ctx->masterCtx.c[0] ^ i0;
00127     ctx->workCtx.c[1] = ctx->masterCtx.c[1] ^ i1;
00128     ctx->workCtx.c[2] = ctx->masterCtx.c[2] ^ i2;
00129     ctx->workCtx.c[3] = ctx->masterCtx.c[3] ^ i3;
00130     ctx->workCtx.c[4] = ctx->masterCtx.c[4] ^ i0;
00131     ctx->workCtx.c[5] = ctx->masterCtx.c[5] ^ i1;
00132     ctx->workCtx.c[6] = ctx->masterCtx.c[6] ^ i2;
00133     ctx->workCtx.c[7] = ctx->masterCtx.c[7] ^ i3;
00134 
00135     /* Copy state variables */
00136     for (i=0; i<8; i++)
00137         ctx->workCtx.x[i] = ctx->masterCtx.x[i];
00138     ctx->workCtx.carry = ctx->masterCtx.carry;
00139 
00140     /* Iterate the system four times */
00141     for (i=0; i<4; i++)
00142         RABBIT_next_state(&(ctx->workCtx));
00143 }
00144 
00145 
00146 /* Key setup */
00147 static INLINE int DoKey(Rabbit* ctx, const byte* key, const byte* iv)
00148 {
00149     /* Temporary variables */
00150     word32 k0, k1, k2, k3, i;
00151 
00152     /* Generate four subkeys */
00153     k0 = LITTLE32(*(word32*)(key+ 0));
00154     k1 = LITTLE32(*(word32*)(key+ 4));
00155     k2 = LITTLE32(*(word32*)(key+ 8));
00156     k3 = LITTLE32(*(word32*)(key+12));
00157 
00158     /* Generate initial state variables */
00159     ctx->masterCtx.x[0] = k0;
00160     ctx->masterCtx.x[2] = k1;
00161     ctx->masterCtx.x[4] = k2;
00162     ctx->masterCtx.x[6] = k3;
00163     ctx->masterCtx.x[1] = U32V(k3<<16) | (k2>>16);
00164     ctx->masterCtx.x[3] = U32V(k0<<16) | (k3>>16);
00165     ctx->masterCtx.x[5] = U32V(k1<<16) | (k0>>16);
00166     ctx->masterCtx.x[7] = U32V(k2<<16) | (k1>>16);
00167 
00168     /* Generate initial counter values */
00169     ctx->masterCtx.c[0] = rotlFixed(k2, 16);
00170     ctx->masterCtx.c[2] = rotlFixed(k3, 16);
00171     ctx->masterCtx.c[4] = rotlFixed(k0, 16);
00172     ctx->masterCtx.c[6] = rotlFixed(k1, 16);
00173     ctx->masterCtx.c[1] = (k0&0xFFFF0000) | (k1&0xFFFF);
00174     ctx->masterCtx.c[3] = (k1&0xFFFF0000) | (k2&0xFFFF);
00175     ctx->masterCtx.c[5] = (k2&0xFFFF0000) | (k3&0xFFFF);
00176     ctx->masterCtx.c[7] = (k3&0xFFFF0000) | (k0&0xFFFF);
00177 
00178     /* Clear carry bit */
00179     ctx->masterCtx.carry = 0;
00180 
00181     /* Iterate the system four times */
00182     for (i=0; i<4; i++)
00183         RABBIT_next_state(&(ctx->masterCtx));
00184 
00185     /* Modify the counters */
00186     for (i=0; i<8; i++)
00187         ctx->masterCtx.c[i] ^= ctx->masterCtx.x[(i+4)&0x7];
00188 
00189     /* Copy master instance to work instance */
00190     for (i=0; i<8; i++) {
00191         ctx->workCtx.x[i] = ctx->masterCtx.x[i];
00192         ctx->workCtx.c[i] = ctx->masterCtx.c[i];
00193     }
00194     ctx->workCtx.carry = ctx->masterCtx.carry;
00195 
00196     wc_RabbitSetIV(ctx, iv);
00197 
00198     return 0;
00199 }
00200 
00201 
00202 /* Key setup */
00203 int wc_RabbitSetKey(Rabbit* ctx, const byte* key, const byte* iv)
00204 {
00205 #ifdef XSTREAM_ALIGN
00206     if ((wolfssl_word)key % 4) {
00207         int alignKey[4];
00208 
00209         /* iv aligned in SetIV */
00210         WOLFSSL_MSG("wc_RabbitSetKey unaligned key");
00211 
00212         XMEMCPY(alignKey, key, sizeof(alignKey));
00213 
00214         return DoKey(ctx, (const byte*)alignKey, iv);
00215     }
00216 #endif /* XSTREAM_ALIGN */
00217 
00218     return DoKey(ctx, key, iv);
00219 }
00220 
00221 
00222 /* Encrypt/decrypt a message of any size */
00223 static INLINE int DoProcess(Rabbit* ctx, byte* output, const byte* input,
00224                             word32 msglen)
00225 {
00226     /* Encrypt/decrypt all full blocks */
00227     while (msglen >= 16) {
00228         /* Iterate the system */
00229         RABBIT_next_state(&(ctx->workCtx));
00230 
00231         /* Encrypt/decrypt 16 bytes of data */
00232         *(word32*)(output+ 0) = *(word32*)(input+ 0) ^
00233                    LITTLE32(ctx->workCtx.x[0] ^ (ctx->workCtx.x[5]>>16) ^
00234                    U32V(ctx->workCtx.x[3]<<16));
00235         *(word32*)(output+ 4) = *(word32*)(input+ 4) ^
00236                    LITTLE32(ctx->workCtx.x[2] ^ (ctx->workCtx.x[7]>>16) ^
00237                    U32V(ctx->workCtx.x[5]<<16));
00238         *(word32*)(output+ 8) = *(word32*)(input+ 8) ^
00239                    LITTLE32(ctx->workCtx.x[4] ^ (ctx->workCtx.x[1]>>16) ^
00240                    U32V(ctx->workCtx.x[7]<<16));
00241         *(word32*)(output+12) = *(word32*)(input+12) ^
00242                    LITTLE32(ctx->workCtx.x[6] ^ (ctx->workCtx.x[3]>>16) ^
00243                    U32V(ctx->workCtx.x[1]<<16));
00244 
00245         /* Increment pointers and decrement length */
00246         input  += 16;
00247         output += 16;
00248         msglen -= 16;
00249     }
00250 
00251     /* Encrypt/decrypt remaining data */
00252     if (msglen) {
00253 
00254         word32 i;
00255         word32 tmp[4];
00256         byte*  buffer = (byte*)tmp;
00257 
00258         XMEMSET(tmp, 0, sizeof(tmp));   /* help static analysis */
00259 
00260         /* Iterate the system */
00261         RABBIT_next_state(&(ctx->workCtx));
00262 
00263         /* Generate 16 bytes of pseudo-random data */
00264         tmp[0] = LITTLE32(ctx->workCtx.x[0] ^
00265                   (ctx->workCtx.x[5]>>16) ^ U32V(ctx->workCtx.x[3]<<16));
00266         tmp[1] = LITTLE32(ctx->workCtx.x[2] ^ 
00267                   (ctx->workCtx.x[7]>>16) ^ U32V(ctx->workCtx.x[5]<<16));
00268         tmp[2] = LITTLE32(ctx->workCtx.x[4] ^ 
00269                   (ctx->workCtx.x[1]>>16) ^ U32V(ctx->workCtx.x[7]<<16));
00270         tmp[3] = LITTLE32(ctx->workCtx.x[6] ^ 
00271                   (ctx->workCtx.x[3]>>16) ^ U32V(ctx->workCtx.x[1]<<16));
00272 
00273         /* Encrypt/decrypt the data */
00274         for (i=0; i<msglen; i++)
00275             output[i] = input[i] ^ buffer[i];
00276     }
00277 
00278     return 0;
00279 }
00280 
00281 
00282 /* Encrypt/decrypt a message of any size */
00283 int wc_RabbitProcess(Rabbit* ctx, byte* output, const byte* input, word32 msglen)
00284 {
00285 #ifdef XSTREAM_ALIGN
00286     if ((wolfssl_word)input % 4 || (wolfssl_word)output % 4) {
00287         #ifndef NO_WOLFSSL_ALLOC_ALIGN
00288             byte* tmp;
00289             WOLFSSL_MSG("wc_RabbitProcess unaligned");
00290 
00291             tmp = (byte*)XMALLOC(msglen, NULL, DYNAMIC_TYPE_TMP_BUFFER);
00292             if (tmp == NULL) return MEMORY_E;
00293 
00294             XMEMCPY(tmp, input, msglen);
00295             DoProcess(ctx, tmp, tmp, msglen);
00296             XMEMCPY(output, tmp, msglen);
00297 
00298             XFREE(tmp, NULL, DYNAMIC_TYPE_TMP_BUFFER);
00299 
00300             return 0;
00301         #else
00302             return BAD_ALIGN_E;
00303         #endif
00304     }
00305 #endif /* XSTREAM_ALIGN */
00306 
00307     return DoProcess(ctx, output, input, msglen);
00308 }
00309 
00310 
00311 #endif /* NO_RABBIT */
00312