Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
fe_low_mem.c
00001 /* fe_low_mem.c 00002 * 00003 * Copyright (C) 2006-2016 wolfSSL Inc. 00004 * 00005 * This file is part of wolfSSL. 00006 * 00007 * wolfSSL is free software; you can redistribute it and/or modify 00008 * it under the terms of the GNU General Public License as published by 00009 * the Free Software Foundation; either version 2 of the License, or 00010 * (at your option) any later version. 00011 * 00012 * wolfSSL is distributed in the hope that it will be useful, 00013 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00014 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00015 * GNU General Public License for more details. 00016 * 00017 * You should have received a copy of the GNU General Public License 00018 * along with this program; if not, write to the Free Software 00019 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA 00020 */ 00021 00022 00023 /* Based from Daniel Beer's public domain word. */ 00024 00025 #ifdef HAVE_CONFIG_H 00026 #include <config.h> 00027 #endif 00028 00029 #include <wolfssl/wolfcrypt/settings.h> 00030 00031 #if defined(CURVED25519_SMALL) /* use slower code that takes less memory */ 00032 #if defined(HAVE_ED25519) || defined(HAVE_CURVE25519) 00033 00034 #include <wolfssl/wolfcrypt/fe_operations.h> 00035 00036 #ifdef NO_INLINE 00037 #include <wolfssl/wolfcrypt/misc.h> 00038 #else 00039 #include <wolfcrypt/src/misc.c> 00040 #endif 00041 00042 00043 void fprime_copy(byte *x, const byte *a) 00044 { 00045 int i; 00046 for (i = 0; i < F25519_SIZE; i++) 00047 x[i] = a[i]; 00048 } 00049 00050 00051 void fe_copy(fe x, const fe a) 00052 { 00053 int i; 00054 for (i = 0; i < F25519_SIZE; i++) 00055 x[i] = a[i]; 00056 } 00057 00058 00059 /* Double an X-coordinate */ 00060 static void xc_double(byte *x3, byte *z3, 00061 const byte *x1, const byte *z1) 00062 { 00063 /* Explicit formulas database: dbl-1987-m 00064 * 00065 * source 1987 Montgomery "Speeding the Pollard and elliptic 00066 * curve methods of factorization", page 261, fourth display 00067 * compute X3 = (X1^2-Z1^2)^2 00068 * compute Z3 = 4 X1 Z1 (X1^2 + a X1 Z1 + Z1^2) 00069 */ 00070 byte x1sq[F25519_SIZE]; 00071 byte z1sq[F25519_SIZE]; 00072 byte x1z1[F25519_SIZE]; 00073 byte a[F25519_SIZE]; 00074 00075 fe_mul__distinct(x1sq, x1, x1); 00076 fe_mul__distinct(z1sq, z1, z1); 00077 fe_mul__distinct(x1z1, x1, z1); 00078 00079 fe_sub(a, x1sq, z1sq); 00080 fe_mul__distinct(x3, a, a); 00081 00082 fe_mul_c(a, x1z1, 486662); 00083 fe_add(a, x1sq, a); 00084 fe_add(a, z1sq, a); 00085 fe_mul__distinct(x1sq, x1z1, a); 00086 fe_mul_c(z3, x1sq, 4); 00087 } 00088 00089 00090 /* Differential addition */ 00091 static void xc_diffadd(byte *x5, byte *z5, 00092 const byte *x1, const byte *z1, 00093 const byte *x2, const byte *z2, 00094 const byte *x3, const byte *z3) 00095 { 00096 /* Explicit formulas database: dbl-1987-m3 00097 * 00098 * source 1987 Montgomery "Speeding the Pollard and elliptic curve 00099 * methods of factorization", page 261, fifth display, plus 00100 * common-subexpression elimination 00101 * compute A = X2+Z2 00102 * compute B = X2-Z2 00103 * compute C = X3+Z3 00104 * compute D = X3-Z3 00105 * compute DA = D A 00106 * compute CB = C B 00107 * compute X5 = Z1(DA+CB)^2 00108 * compute Z5 = X1(DA-CB)^2 00109 */ 00110 byte da[F25519_SIZE]; 00111 byte cb[F25519_SIZE]; 00112 byte a[F25519_SIZE]; 00113 byte b[F25519_SIZE]; 00114 00115 fe_add(a, x2, z2); 00116 fe_sub(b, x3, z3); /* D */ 00117 fe_mul__distinct(da, a, b); 00118 00119 fe_sub(b, x2, z2); 00120 fe_add(a, x3, z3); /* C */ 00121 fe_mul__distinct(cb, a, b); 00122 00123 fe_add(a, da, cb); 00124 fe_mul__distinct(b, a, a); 00125 fe_mul__distinct(x5, z1, b); 00126 00127 fe_sub(a, da, cb); 00128 fe_mul__distinct(b, a, a); 00129 fe_mul__distinct(z5, x1, b); 00130 } 00131 00132 00133 int curve25519(byte *result, byte *e, byte *q) 00134 { 00135 /* Current point: P_m */ 00136 byte xm[F25519_SIZE]; 00137 byte zm[F25519_SIZE] = {1}; 00138 00139 /* Predecessor: P_(m-1) */ 00140 byte xm1[F25519_SIZE] = {1}; 00141 byte zm1[F25519_SIZE] = {0}; 00142 00143 int i; 00144 00145 /* Note: bit 254 is assumed to be 1 */ 00146 fe_copy(xm, q); 00147 00148 for (i = 253; i >= 0; i--) { 00149 const int bit = (e[i >> 3] >> (i & 7)) & 1; 00150 byte xms[F25519_SIZE]; 00151 byte zms[F25519_SIZE]; 00152 00153 /* From P_m and P_(m-1), compute P_(2m) and P_(2m-1) */ 00154 xc_diffadd(xm1, zm1, q, f25519_one, xm, zm, xm1, zm1); 00155 xc_double(xm, zm, xm, zm); 00156 00157 /* Compute P_(2m+1) */ 00158 xc_diffadd(xms, zms, xm1, zm1, xm, zm, q, f25519_one); 00159 00160 /* Select: 00161 * bit = 1 --> (P_(2m+1), P_(2m)) 00162 * bit = 0 --> (P_(2m), P_(2m-1)) 00163 */ 00164 fe_select(xm1, xm1, xm, bit); 00165 fe_select(zm1, zm1, zm, bit); 00166 fe_select(xm, xm, xms, bit); 00167 fe_select(zm, zm, zms, bit); 00168 } 00169 00170 /* Freeze out of projective coordinates */ 00171 fe_inv__distinct(zm1, zm); 00172 fe_mul__distinct(result, zm1, xm); 00173 fe_normalize(result); 00174 return 0; 00175 } 00176 00177 00178 static void raw_add(byte *x, const byte *p) 00179 { 00180 word16 c = 0; 00181 int i; 00182 00183 for (i = 0; i < F25519_SIZE; i++) { 00184 c += ((word16)x[i]) + ((word16)p[i]); 00185 x[i] = c; 00186 c >>= 8; 00187 } 00188 } 00189 00190 00191 static void raw_try_sub(byte *x, const byte *p) 00192 { 00193 byte minusp[F25519_SIZE]; 00194 word16 c = 0; 00195 int i; 00196 00197 for (i = 0; i < F25519_SIZE; i++) { 00198 c = ((word16)x[i]) - ((word16)p[i]) - c; 00199 minusp[i] = c; 00200 c = (c >> 8) & 1; 00201 } 00202 00203 fprime_select(x, minusp, x, c); 00204 } 00205 00206 00207 static int prime_msb(const byte *p) 00208 { 00209 int i; 00210 byte x; 00211 int shift = 1; 00212 int z = F25519_SIZE - 1; 00213 00214 /* 00215 Test for any hot bits. 00216 As soon as one instance is encountered set shift to 0. 00217 */ 00218 for (i = F25519_SIZE - 1; i >= 0; i--) { 00219 shift &= ((shift ^ ((-p[i] | p[i]) >> 7)) & 1); 00220 z -= shift; 00221 } 00222 x = p[z]; 00223 z <<= 3; 00224 shift = 1; 00225 for (i = 0; i < 8; i++) { 00226 shift &= ((-(x >> i) | (x >> i)) >> (7 - i) & 1); 00227 z += shift; 00228 } 00229 00230 return z - 1; 00231 } 00232 00233 00234 void fprime_select(byte *dst, const byte *zero, const byte *one, byte condition) 00235 { 00236 const byte mask = -condition; 00237 int i; 00238 00239 for (i = 0; i < F25519_SIZE; i++) 00240 dst[i] = zero[i] ^ (mask & (one[i] ^ zero[i])); 00241 } 00242 00243 00244 void fprime_add(byte *r, const byte *a, const byte *modulus) 00245 { 00246 raw_add(r, a); 00247 raw_try_sub(r, modulus); 00248 } 00249 00250 00251 void fprime_sub(byte *r, const byte *a, const byte *modulus) 00252 { 00253 raw_add(r, modulus); 00254 raw_try_sub(r, a); 00255 raw_try_sub(r, modulus); 00256 } 00257 00258 00259 void fprime_mul(byte *r, const byte *a, const byte *b, 00260 const byte *modulus) 00261 { 00262 word16 c = 0; 00263 int i,j; 00264 00265 XMEMSET(r, 0, F25519_SIZE); 00266 00267 for (i = prime_msb(modulus); i >= 0; i--) { 00268 const byte bit = (b[i >> 3] >> (i & 7)) & 1; 00269 byte plusa[F25519_SIZE]; 00270 00271 for (j = 0; j < F25519_SIZE; j++) { 00272 c |= ((word16)r[j]) << 1; 00273 r[j] = c; 00274 c >>= 8; 00275 } 00276 raw_try_sub(r, modulus); 00277 00278 fprime_copy(plusa, r); 00279 fprime_add(plusa, a, modulus); 00280 00281 fprime_select(r, r, plusa, bit); 00282 } 00283 } 00284 00285 00286 void fe_load(byte *x, word32 c) 00287 { 00288 word32 i; 00289 00290 for (i = 0; i < sizeof(c); i++) { 00291 x[i] = c; 00292 c >>= 8; 00293 } 00294 00295 for (; i < F25519_SIZE; i++) 00296 x[i] = 0; 00297 } 00298 00299 00300 void fe_normalize(byte *x) 00301 { 00302 byte minusp[F25519_SIZE]; 00303 word16 c; 00304 int i; 00305 00306 /* Reduce using 2^255 = 19 mod p */ 00307 c = (x[31] >> 7) * 19; 00308 x[31] &= 127; 00309 00310 for (i = 0; i < F25519_SIZE; i++) { 00311 c += x[i]; 00312 x[i] = c; 00313 c >>= 8; 00314 } 00315 00316 /* The number is now less than 2^255 + 18, and therefore less than 00317 * 2p. Try subtracting p, and conditionally load the subtracted 00318 * value if underflow did not occur. 00319 */ 00320 c = 19; 00321 00322 for (i = 0; i + 1 < F25519_SIZE; i++) { 00323 c += x[i]; 00324 minusp[i] = c; 00325 c >>= 8; 00326 } 00327 00328 c += ((word16)x[i]) - 128; 00329 minusp[31] = c; 00330 00331 /* Load x-p if no underflow */ 00332 fe_select(x, minusp, x, (c >> 15) & 1); 00333 } 00334 00335 00336 void fe_select(byte *dst, 00337 const byte *zero, const byte *one, 00338 byte condition) 00339 { 00340 const byte mask = -condition; 00341 int i; 00342 00343 for (i = 0; i < F25519_SIZE; i++) 00344 dst[i] = zero[i] ^ (mask & (one[i] ^ zero[i])); 00345 } 00346 00347 00348 void fe_add(fe r, const fe a, const fe b) 00349 { 00350 word16 c = 0; 00351 int i; 00352 00353 /* Add */ 00354 for (i = 0; i < F25519_SIZE; i++) { 00355 c >>= 8; 00356 c += ((word16)a[i]) + ((word16)b[i]); 00357 r[i] = c; 00358 } 00359 00360 /* Reduce with 2^255 = 19 mod p */ 00361 r[31] &= 127; 00362 c = (c >> 7) * 19; 00363 00364 for (i = 0; i < F25519_SIZE; i++) { 00365 c += r[i]; 00366 r[i] = c; 00367 c >>= 8; 00368 } 00369 } 00370 00371 00372 void fe_sub(fe r, const fe a, const fe b) 00373 { 00374 word32 c = 0; 00375 int i; 00376 00377 /* Calculate a + 2p - b, to avoid underflow */ 00378 c = 218; 00379 for (i = 0; i + 1 < F25519_SIZE; i++) { 00380 c += 65280 + ((word32)a[i]) - ((word32)b[i]); 00381 r[i] = c; 00382 c >>= 8; 00383 } 00384 00385 c += ((word32)a[31]) - ((word32)b[31]); 00386 r[31] = c & 127; 00387 c = (c >> 7) * 19; 00388 00389 for (i = 0; i < F25519_SIZE; i++) { 00390 c += r[i]; 00391 r[i] = c; 00392 c >>= 8; 00393 } 00394 } 00395 00396 00397 void fe_neg(fe r, const fe a) 00398 { 00399 word32 c = 0; 00400 int i; 00401 00402 /* Calculate 2p - a, to avoid underflow */ 00403 c = 218; 00404 for (i = 0; i + 1 < F25519_SIZE; i++) { 00405 c += 65280 - ((word32)a[i]); 00406 r[i] = c; 00407 c >>= 8; 00408 } 00409 00410 c -= ((word32)a[31]); 00411 r[31] = c & 127; 00412 c = (c >> 7) * 19; 00413 00414 for (i = 0; i < F25519_SIZE; i++) { 00415 c += r[i]; 00416 r[i] = c; 00417 c >>= 8; 00418 } 00419 } 00420 00421 00422 void fe_mul__distinct(byte *r, const byte *a, const byte *b) 00423 { 00424 word32 c = 0; 00425 int i; 00426 00427 for (i = 0; i < F25519_SIZE; i++) { 00428 int j; 00429 00430 c >>= 8; 00431 for (j = 0; j <= i; j++) 00432 c += ((word32)a[j]) * ((word32)b[i - j]); 00433 00434 for (; j < F25519_SIZE; j++) 00435 c += ((word32)a[j]) * 00436 ((word32)b[i + F25519_SIZE - j]) * 38; 00437 00438 r[i] = c; 00439 } 00440 00441 r[31] &= 127; 00442 c = (c >> 7) * 19; 00443 00444 for (i = 0; i < F25519_SIZE; i++) { 00445 c += r[i]; 00446 r[i] = c; 00447 c >>= 8; 00448 } 00449 } 00450 00451 00452 void fe_mul(fe r, const fe a, const fe b) 00453 { 00454 byte tmp[F25519_SIZE]; 00455 00456 fe_mul__distinct(tmp, a, b); 00457 fe_copy(r, tmp); 00458 } 00459 00460 00461 void fe_mul_c(byte *r, const byte *a, word32 b) 00462 { 00463 word32 c = 0; 00464 int i; 00465 00466 for (i = 0; i < F25519_SIZE; i++) { 00467 c >>= 8; 00468 c += b * ((word32)a[i]); 00469 r[i] = c; 00470 } 00471 00472 r[31] &= 127; 00473 c >>= 7; 00474 c *= 19; 00475 00476 for (i = 0; i < F25519_SIZE; i++) { 00477 c += r[i]; 00478 r[i] = c; 00479 c >>= 8; 00480 } 00481 } 00482 00483 00484 void fe_inv__distinct(byte *r, const byte *x) 00485 { 00486 byte s[F25519_SIZE]; 00487 int i; 00488 00489 /* This is a prime field, so by Fermat's little theorem: 00490 * 00491 * x^(p-1) = 1 mod p 00492 * 00493 * Therefore, raise to (p-2) = 2^255-21 to get a multiplicative 00494 * inverse. 00495 * 00496 * This is a 255-bit binary number with the digits: 00497 * 00498 * 11111111... 01011 00499 * 00500 * We compute the result by the usual binary chain, but 00501 * alternate between keeping the accumulator in r and s, so as 00502 * to avoid copying temporaries. 00503 */ 00504 00505 /* 1 1 */ 00506 fe_mul__distinct(s, x, x); 00507 fe_mul__distinct(r, s, x); 00508 00509 /* 1 x 248 */ 00510 for (i = 0; i < 248; i++) { 00511 fe_mul__distinct(s, r, r); 00512 fe_mul__distinct(r, s, x); 00513 } 00514 00515 /* 0 */ 00516 fe_mul__distinct(s, r, r); 00517 00518 /* 1 */ 00519 fe_mul__distinct(r, s, s); 00520 fe_mul__distinct(s, r, x); 00521 00522 /* 0 */ 00523 fe_mul__distinct(r, s, s); 00524 00525 /* 1 */ 00526 fe_mul__distinct(s, r, r); 00527 fe_mul__distinct(r, s, x); 00528 00529 /* 1 */ 00530 fe_mul__distinct(s, r, r); 00531 fe_mul__distinct(r, s, x); 00532 } 00533 00534 00535 void fe_invert(fe r, const fe x) 00536 { 00537 byte tmp[F25519_SIZE]; 00538 00539 fe_inv__distinct(tmp, x); 00540 fe_copy(r, tmp); 00541 } 00542 00543 00544 /* Raise x to the power of (p-5)/8 = 2^252-3, using s for temporary 00545 * storage. 00546 */ 00547 static void exp2523(byte *r, const byte *x, byte *s) 00548 { 00549 int i; 00550 00551 /* This number is a 252-bit number with the binary expansion: 00552 * 00553 * 111111... 01 00554 */ 00555 00556 /* 1 1 */ 00557 fe_mul__distinct(r, x, x); 00558 fe_mul__distinct(s, r, x); 00559 00560 /* 1 x 248 */ 00561 for (i = 0; i < 248; i++) { 00562 fe_mul__distinct(r, s, s); 00563 fe_mul__distinct(s, r, x); 00564 } 00565 00566 /* 0 */ 00567 fe_mul__distinct(r, s, s); 00568 00569 /* 1 */ 00570 fe_mul__distinct(s, r, r); 00571 fe_mul__distinct(r, s, x); 00572 } 00573 00574 00575 void fe_sqrt(byte *r, const byte *a) 00576 { 00577 byte v[F25519_SIZE]; 00578 byte i[F25519_SIZE]; 00579 byte x[F25519_SIZE]; 00580 byte y[F25519_SIZE]; 00581 00582 /* v = (2a)^((p-5)/8) [x = 2a] */ 00583 fe_mul_c(x, a, 2); 00584 exp2523(v, x, y); 00585 00586 /* i = 2av^2 - 1 */ 00587 fe_mul__distinct(y, v, v); 00588 fe_mul__distinct(i, x, y); 00589 fe_load(y, 1); 00590 fe_sub(i, i, y); 00591 00592 /* r = avi */ 00593 fe_mul__distinct(x, v, a); 00594 fe_mul__distinct(r, x, i); 00595 } 00596 00597 #endif /* HAVE_CURVE25519 or HAVE_ED25519 */ 00598 #endif /* CURVED25519_SMALL */ 00599
Generated on Tue Jul 12 2022 15:55:18 by
1.7.2