Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of gr-peach-opencv-project-sd-card by
matrix_decomp.cpp
00001 /*M/////////////////////////////////////////////////////////////////////////////////////// 00002 // 00003 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. 00004 // 00005 // By downloading, copying, installing or using the software you agree to this license. 00006 // If you do not agree to this license, do not download, install, 00007 // copy or use the software. 00008 // 00009 // 00010 // License Agreement 00011 // For Open Source Computer Vision Library 00012 // 00013 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. 00014 // Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. 00015 // Third party copyrights are property of their respective owners. 00016 // 00017 // Redistribution and use in source and binary forms, with or without modification, 00018 // are permitted provided that the following conditions are met: 00019 // 00020 // * Redistribution's of source code must retain the above copyright notice, 00021 // this list of conditions and the following disclaimer. 00022 // 00023 // * Redistribution's in binary form must reproduce the above copyright notice, 00024 // this list of conditions and the following disclaimer in the documentation 00025 // and/or other materials provided with the distribution. 00026 // 00027 // * The name of the copyright holders may not be used to endorse or promote products 00028 // derived from this software without specific prior written permission. 00029 // 00030 // This software is provided by the copyright holders and contributors "as is" and 00031 // any express or implied warranties, including, but not limited to, the implied 00032 // warranties of merchantability and fitness for a particular purpose are disclaimed. 00033 // In no event shall the Intel Corporation or contributors be liable for any direct, 00034 // indirect, incidental, special, exemplary, or consequential damages 00035 // (including, but not limited to, procurement of substitute goods or services; 00036 // loss of use, data, or profits; or business interruption) however caused 00037 // and on any theory of liability, whether in contract, strict liability, 00038 // or tort (including negligence or otherwise) arising in any way out of 00039 // the use of this software, even if advised of the possibility of such damage. 00040 // 00041 //M*/ 00042 00043 #include "precomp.hpp" 00044 00045 namespace cv { namespace hal { 00046 00047 /****************************************************************************************\ 00048 * LU & Cholesky implementation for small matrices * 00049 \****************************************************************************************/ 00050 00051 template<typename _Tp> static inline int 00052 LUImpl(_Tp* A, size_t astep, int m, _Tp* b, size_t bstep, int n, _Tp eps) 00053 { 00054 int i, j, k, p = 1; 00055 astep /= sizeof(A[0]); 00056 bstep /= sizeof(b[0]); 00057 00058 for( i = 0; i < m; i++ ) 00059 { 00060 k = i; 00061 00062 for( j = i+1; j < m; j++ ) 00063 if( std::abs(A[j*astep + i]) > std::abs(A[k*astep + i]) ) 00064 k = j; 00065 00066 if( std::abs(A[k*astep + i]) < eps ) 00067 return 0; 00068 00069 if( k != i ) 00070 { 00071 for( j = i; j < m; j++ ) 00072 std::swap(A[i*astep + j], A[k*astep + j]); 00073 if( b ) 00074 for( j = 0; j < n; j++ ) 00075 std::swap(b[i*bstep + j], b[k*bstep + j]); 00076 p = -p; 00077 } 00078 00079 _Tp d = -1/A[i*astep + i]; 00080 00081 for( j = i+1; j < m; j++ ) 00082 { 00083 _Tp alpha = A[j*astep + i]*d; 00084 00085 for( k = i+1; k < m; k++ ) 00086 A[j*astep + k] += alpha*A[i*astep + k]; 00087 00088 if( b ) 00089 for( k = 0; k < n; k++ ) 00090 b[j*bstep + k] += alpha*b[i*bstep + k]; 00091 } 00092 00093 A[i*astep + i] = -d; 00094 } 00095 00096 if( b ) 00097 { 00098 for( i = m-1; i >= 0; i-- ) 00099 for( j = 0; j < n; j++ ) 00100 { 00101 _Tp s = b[i*bstep + j]; 00102 for( k = i+1; k < m; k++ ) 00103 s -= A[i*astep + k]*b[k*bstep + j]; 00104 b[i*bstep + j] = s*A[i*astep + i]; 00105 } 00106 } 00107 00108 return p; 00109 } 00110 00111 00112 int LU32f(float* A, size_t astep, int m, float* b, size_t bstep, int n) 00113 { 00114 return LUImpl(A, astep, m, b, bstep, n, FLT_EPSILON*10); 00115 } 00116 00117 00118 int LU64f(double* A, size_t astep, int m, double* b, size_t bstep, int n) 00119 { 00120 return LUImpl(A, astep, m, b, bstep, n, DBL_EPSILON*100); 00121 } 00122 00123 template<typename _Tp> static inline bool 00124 CholImpl(_Tp* A, size_t astep, int m, _Tp* b, size_t bstep, int n) 00125 { 00126 _Tp* L = A; 00127 int i, j, k; 00128 double s; 00129 astep /= sizeof(A[0]); 00130 bstep /= sizeof(b[0]); 00131 00132 for( i = 0; i < m; i++ ) 00133 { 00134 for( j = 0; j < i; j++ ) 00135 { 00136 s = A[i*astep + j]; 00137 for( k = 0; k < j; k++ ) 00138 s -= L[i*astep + k]*L[j*astep + k]; 00139 L[i*astep + j] = (_Tp)(s*L[j*astep + j]); 00140 } 00141 s = A[i*astep + i]; 00142 for( k = 0; k < j; k++ ) 00143 { 00144 double t = L[i*astep + k]; 00145 s -= t*t; 00146 } 00147 if( s < std::numeric_limits<_Tp>::epsilon() ) 00148 return false; 00149 L[i*astep + i] = (_Tp)(1./std::sqrt(s)); 00150 } 00151 00152 if( !b ) 00153 return true; 00154 00155 // LLt x = b 00156 // 1: L y = b 00157 // 2. Lt x = y 00158 00159 /* 00160 [ L00 ] y0 b0 00161 [ L10 L11 ] y1 = b1 00162 [ L20 L21 L22 ] y2 b2 00163 [ L30 L31 L32 L33 ] y3 b3 00164 00165 [ L00 L10 L20 L30 ] x0 y0 00166 [ L11 L21 L31 ] x1 = y1 00167 [ L22 L32 ] x2 y2 00168 [ L33 ] x3 y3 00169 */ 00170 00171 for( i = 0; i < m; i++ ) 00172 { 00173 for( j = 0; j < n; j++ ) 00174 { 00175 s = b[i*bstep + j]; 00176 for( k = 0; k < i; k++ ) 00177 s -= L[i*astep + k]*b[k*bstep + j]; 00178 b[i*bstep + j] = (_Tp)(s*L[i*astep + i]); 00179 } 00180 } 00181 00182 for( i = m-1; i >= 0; i-- ) 00183 { 00184 for( j = 0; j < n; j++ ) 00185 { 00186 s = b[i*bstep + j]; 00187 for( k = m-1; k > i; k-- ) 00188 s -= L[k*astep + i]*b[k*bstep + j]; 00189 b[i*bstep + j] = (_Tp)(s*L[i*astep + i]); 00190 } 00191 } 00192 00193 return true; 00194 } 00195 00196 00197 bool Cholesky32f(float* A, size_t astep, int m, float* b, size_t bstep, int n) 00198 { 00199 return CholImpl(A, astep, m, b, bstep, n); 00200 } 00201 00202 bool Cholesky64f(double* A, size_t astep, int m, double* b, size_t bstep, int n) 00203 { 00204 return CholImpl(A, astep, m, b, bstep, n); 00205 } 00206 00207 //============================================================================= 00208 // for compatibility with 3.0 00209 00210 int LU(float* A, size_t astep, int m, float* b, size_t bstep, int n) 00211 { 00212 return LUImpl(A, astep, m, b, bstep, n, FLT_EPSILON*10); 00213 } 00214 00215 int LU(double* A, size_t astep, int m, double* b, size_t bstep, int n) 00216 { 00217 return LUImpl(A, astep, m, b, bstep, n, DBL_EPSILON*100); 00218 } 00219 00220 bool Cholesky(float* A, size_t astep, int m, float* b, size_t bstep, int n) 00221 { 00222 return CholImpl(A, astep, m, b, bstep, n); 00223 } 00224 00225 bool Cholesky(double* A, size_t astep, int m, double* b, size_t bstep, int n) 00226 { 00227 return CholImpl(A, astep, m, b, bstep, n); 00228 } 00229 00230 00231 }} 00232
Generated on Tue Jul 12 2022 14:47:25 by
1.7.2
