Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of gr-peach-opencv-project-sd-card by
utility.hpp
00001 /*M/////////////////////////////////////////////////////////////////////////////////////// 00002 // 00003 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. 00004 // 00005 // By downloading, copying, installing or using the software you agree to this license. 00006 // If you do not agree to this license, do not download, install, 00007 // copy or use the software. 00008 // 00009 // 00010 // License Agreement 00011 // For Open Source Computer Vision Library 00012 // 00013 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. 00014 // Copyright (C) 2009, Willow Garage Inc., all rights reserved. 00015 // Third party copyrights are property of their respective owners. 00016 // 00017 // Redistribution and use in source and binary forms, with or without modification, 00018 // are permitted provided that the following conditions are met: 00019 // 00020 // * Redistribution's of source code must retain the above copyright notice, 00021 // this list of conditions and the following disclaimer. 00022 // 00023 // * Redistribution's in binary form must reproduce the above copyright notice, 00024 // this list of conditions and the following disclaimer in the documentation 00025 // and/or other materials provided with the distribution. 00026 // 00027 // * The name of the copyright holders may not be used to endorse or promote products 00028 // derived from this software without specific prior written permission. 00029 // 00030 // This software is provided by the copyright holders and contributors "as is" and 00031 // any express or implied warranties, including, but not limited to, the implied 00032 // warranties of merchantability and fitness for a particular purpose are disclaimed. 00033 // In no event shall the Intel Corporation or contributors be liable for any direct, 00034 // indirect, incidental, special, exemplary, or consequential damages 00035 // (including, but not limited to, procurement of substitute goods or services; 00036 // loss of use, data, or profits; or business interruption) however caused 00037 // and on any theory of liability, whether in contract, strict liability, 00038 // or tort (including negligence or otherwise) arising in any way out of 00039 // the use of this software, even if advised of the possibility of such damage. 00040 // 00041 //M*/ 00042 00043 #ifndef __OPENCV_CUDA_UTILITY_HPP__ 00044 #define __OPENCV_CUDA_UTILITY_HPP__ 00045 00046 #include "saturate_cast.hpp " 00047 #include "datamov_utils.hpp " 00048 00049 /** @file 00050 * @deprecated Use @ref cudev instead. 00051 */ 00052 00053 //! @cond IGNORED 00054 00055 namespace cv { namespace cuda { namespace device 00056 { 00057 #define OPENCV_CUDA_LOG_WARP_SIZE (5) 00058 #define OPENCV_CUDA_WARP_SIZE (1 << OPENCV_CUDA_LOG_WARP_SIZE) 00059 #define OPENCV_CUDA_LOG_MEM_BANKS ((__CUDA_ARCH__ >= 200) ? 5 : 4) // 32 banks on fermi, 16 on tesla 00060 #define OPENCV_CUDA_MEM_BANKS (1 << OPENCV_CUDA_LOG_MEM_BANKS) 00061 00062 /////////////////////////////////////////////////////////////////////////////// 00063 // swap 00064 00065 template <typename T> void __device__ __host__ __forceinline__ swap(T& a, T& b) 00066 { 00067 const T temp = a; 00068 a = b; 00069 b = temp; 00070 } 00071 00072 /////////////////////////////////////////////////////////////////////////////// 00073 // Mask Reader 00074 00075 struct SingleMask 00076 { 00077 explicit __host__ __device__ __forceinline__ SingleMask(PtrStepb mask_) : mask(mask_) {} 00078 __host__ __device__ __forceinline__ SingleMask(const SingleMask& mask_): mask(mask_.mask){} 00079 00080 __device__ __forceinline__ bool operator()(int y, int x) const 00081 { 00082 return mask.ptr(y)[x] != 0; 00083 } 00084 00085 PtrStepb mask; 00086 }; 00087 00088 struct SingleMaskChannels 00089 { 00090 __host__ __device__ __forceinline__ SingleMaskChannels(PtrStepb mask_, int channels_) 00091 : mask(mask_), channels(channels_) {} 00092 __host__ __device__ __forceinline__ SingleMaskChannels(const SingleMaskChannels& mask_) 00093 :mask(mask_.mask), channels(mask_.channels){} 00094 00095 __device__ __forceinline__ bool operator()(int y, int x) const 00096 { 00097 return mask.ptr(y)[x / channels] != 0; 00098 } 00099 00100 PtrStepb mask; 00101 int channels; 00102 }; 00103 00104 struct MaskCollection 00105 { 00106 explicit __host__ __device__ __forceinline__ MaskCollection(PtrStepb* maskCollection_) 00107 : maskCollection(maskCollection_) {} 00108 00109 __device__ __forceinline__ MaskCollection(const MaskCollection& masks_) 00110 : maskCollection(masks_.maskCollection), curMask(masks_.curMask){} 00111 00112 __device__ __forceinline__ void next() 00113 { 00114 curMask = *maskCollection++; 00115 } 00116 __device__ __forceinline__ void setMask(int z) 00117 { 00118 curMask = maskCollection[z]; 00119 } 00120 00121 __device__ __forceinline__ bool operator()(int y, int x) const 00122 { 00123 uchar val; 00124 return curMask.data == 0 || (ForceGlob<uchar>::Load(curMask.ptr(y), x, val), (val != 0)); 00125 } 00126 00127 const PtrStepb* maskCollection; 00128 PtrStepb curMask; 00129 }; 00130 00131 struct WithOutMask 00132 { 00133 __host__ __device__ __forceinline__ WithOutMask(){} 00134 __host__ __device__ __forceinline__ WithOutMask(const WithOutMask&){} 00135 00136 __device__ __forceinline__ void next() const 00137 { 00138 } 00139 __device__ __forceinline__ void setMask(int) const 00140 { 00141 } 00142 00143 __device__ __forceinline__ bool operator()(int, int) const 00144 { 00145 return true; 00146 } 00147 00148 __device__ __forceinline__ bool operator()(int, int, int) const 00149 { 00150 return true; 00151 } 00152 00153 static __device__ __forceinline__ bool check(int, int) 00154 { 00155 return true; 00156 } 00157 00158 static __device__ __forceinline__ bool check(int, int, int) 00159 { 00160 return true; 00161 } 00162 }; 00163 00164 /////////////////////////////////////////////////////////////////////////////// 00165 // Solve linear system 00166 00167 // solve 2x2 linear system Ax=b 00168 template <typename T> __device__ __forceinline__ bool solve2x2(const T A[2][2], const T b[2], T x[2]) 00169 { 00170 T det = A[0][0] * A[1][1] - A[1][0] * A[0][1]; 00171 00172 if (det != 0) 00173 { 00174 double invdet = 1.0 / det; 00175 00176 x[0] = saturate_cast<T>(invdet * (b[0] * A[1][1] - b[1] * A[0][1])); 00177 00178 x[1] = saturate_cast<T>(invdet * (A[0][0] * b[1] - A[1][0] * b[0])); 00179 00180 return true; 00181 } 00182 00183 return false; 00184 } 00185 00186 // solve 3x3 linear system Ax=b 00187 template <typename T> __device__ __forceinline__ bool solve3x3(const T A[3][3], const T b[3], T x[3]) 00188 { 00189 T det = A[0][0] * (A[1][1] * A[2][2] - A[1][2] * A[2][1]) 00190 - A[0][1] * (A[1][0] * A[2][2] - A[1][2] * A[2][0]) 00191 + A[0][2] * (A[1][0] * A[2][1] - A[1][1] * A[2][0]); 00192 00193 if (det != 0) 00194 { 00195 double invdet = 1.0 / det; 00196 00197 x[0] = saturate_cast<T>(invdet * 00198 (b[0] * (A[1][1] * A[2][2] - A[1][2] * A[2][1]) - 00199 A[0][1] * (b[1] * A[2][2] - A[1][2] * b[2] ) + 00200 A[0][2] * (b[1] * A[2][1] - A[1][1] * b[2] ))); 00201 00202 x[1] = saturate_cast<T>(invdet * 00203 (A[0][0] * (b[1] * A[2][2] - A[1][2] * b[2] ) - 00204 b[0] * (A[1][0] * A[2][2] - A[1][2] * A[2][0]) + 00205 A[0][2] * (A[1][0] * b[2] - b[1] * A[2][0]))); 00206 00207 x[2] = saturate_cast<T>(invdet * 00208 (A[0][0] * (A[1][1] * b[2] - b[1] * A[2][1]) - 00209 A[0][1] * (A[1][0] * b[2] - b[1] * A[2][0]) + 00210 b[0] * (A[1][0] * A[2][1] - A[1][1] * A[2][0]))); 00211 00212 return true; 00213 } 00214 00215 return false; 00216 } 00217 }}} // namespace cv { namespace cuda { namespace cudev 00218 00219 //! @endcond 00220 00221 #endif // __OPENCV_CUDA_UTILITY_HPP__ 00222
Generated on Tue Jul 12 2022 14:47:50 by
1.7.2
