Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed BSP_DISCO_F746NG mbed-dsp
main.cpp
- Committer:
- justenmg
- Date:
- 2020-03-10
- Revision:
- 3:02dd3dd9120a
- Parent:
- 0:c0f52e8223fe
File content as of revision 3:02dd3dd9120a:
/**
******************************************************************************
* @file main.c
* @author Brian Mazzeo
* @date 2020
* @brief This file provides a set of code for signal processing in 487.
* Parts are taken from example code from STMIcroelectronics
******************************************************************************
* @attention
* This code was specifically developed for BYU ECEn 487 course
* Introduction to Digital Signal Processing.
*
*
******************************************************************************
*/
#include "mbed.h"
#include "stm32746g_discovery_audio.h"
#include "stm32746g_discovery_sdram.h"
#include "stm32746g_discovery_lcd.h"
#include "arm_math.h"
#include "signal_processing.h"
#include "spectrum.h"
/* The following type definitions are used to control the
* buffering of the audio data using a double buffering technique.
* Most of the transactions between the WM8994 and the microcontroller
* are handled by other code - but this signals what the buffering state
* is, so the data can be appropriately processed. */
typedef enum {
BUFFER_OFFSET_NONE = 0,
BUFFER_OFFSET_HALF = 1,
BUFFER_OFFSET_FULL = 2,
} BUFFER_StateTypeDef;
/* These audio block samples define the size of the buffering */
#define AUDIO_BLOCK_SAMPLES ((uint32_t)128) // Number of samples (L and R) in audio block (each samples is 16 bits)
#define AUDIO_BLOCK_SIZE ((uint32_t)512) // Number of bytes in audio block (4 * AUDIO_BLOCK_SAMPLES)
/* These RAM addresses are important to determine where the audio data is stored. */
#define SDRAM_DEVICE_ADDR_AUDIO_MEM ((uint32_t)0xC0400000)
#define AUDIO_BUFFER_IN SDRAM_DEVICE_ADDR_AUDIO_MEM
#define AUDIO_BUFFER_OUT (AUDIO_BUFFER_IN + (AUDIO_BLOCK_SIZE * 2))
/* These definitions define the size of the oscilloscope that is used to display data. */
#define OSC_START_X_POS 20
#define OSC_LINE_SIZE 256
#define OSC_Y_POS 130
#define AUDIO_DRAW_LIMIT 50
/* This define a timer that is then used to record the timing of the different processing stages. */
Timer timer;
/* This variable is important because it define the audio buffer recording state. */
volatile uint32_t audio_rec_buffer_state = BUFFER_OFFSET_NONE;
/* Function declarations */
static void Erase_Trace(uint16_t Xpos, uint16_t Ypos, uint16_t Length);
static void Draw_Trace(uint16_t Xpos, uint16_t Ypos, uint16_t* Mem_start, uint16_t Length);
static void Audio_to_Float(uint16_t* buffer_in, float32_t* L_out, float32_t* R_out, uint16_t Length);
static void Float_to_Audio(float32_t* L_in, float32_t* R_in, uint16_t* buffer_out, uint16_t Length);
/* These memory blocks are important for converting to floating point representation. */
float32_t L_channel_float_in[AUDIO_BLOCK_SAMPLES];
float32_t R_channel_float_in[AUDIO_BLOCK_SAMPLES];
float32_t L_channel_float_out[AUDIO_BLOCK_SAMPLES];
float32_t R_channel_float_out[AUDIO_BLOCK_SAMPLES];
float32_t *L_channel_float_in_p = &L_channel_float_in[0];
float32_t *R_channel_float_in_p = &R_channel_float_in[0];
float32_t *L_channel_float_out_p = &L_channel_float_out[0];
float32_t *R_channel_float_out_p = &R_channel_float_out[0];
/* These memory blocks are where the information is stored to send back out to the WM8994 chip. */
uint16_t Processed_audio[AUDIO_BLOCK_SAMPLES];
uint16_t *Processed_audio_p = &Processed_audio[0];
/* Useful variables during looping */
uint32_t counter = 0; // Loop counter
char buf[40]; // Character buffer for sprintf statements to the LCD
int first_half_time = 0; // Time of first processing block
int second_half_time = 0; // Time of second processing block
int total_time = 0; // Time of total loop (first and second blocks)
/* Main Function */
int main()
{
/* Initialize the LCD Screen and display information */
BSP_LCD_Init();
BSP_LCD_LayerDefaultInit(LTDC_ACTIVE_LAYER, LCD_FB_START_ADDRESS);
BSP_LCD_SelectLayer(LTDC_ACTIVE_LAYER);
/* Clear the LCD and set the font to be default */
BSP_LCD_Clear(LCD_COLOR_BLACK);
BSP_LCD_SetFont(&LCD_DEFAULT_FONT);
/* Set the backcolor to be black and the textcolor to be orange. */
BSP_LCD_SetBackColor(LCD_COLOR_BLACK);
BSP_LCD_SetTextColor(LCD_COLOR_ORANGE);
/* The following are static display elements that will remain on the screen. */
BSP_LCD_DisplayStringAt(0, 0, (uint8_t *)"487 Demo Code (Mazzeo)", LEFT_MODE);
/* Display the L and R colors for the channels */
BSP_LCD_SetTextColor(LCD_COLOR_BLUE);
BSP_LCD_DisplayStringAt(0, OSC_Y_POS - 20, (uint8_t *)"L", LEFT_MODE);
BSP_LCD_SetTextColor(LCD_COLOR_GREEN);
BSP_LCD_DisplayStringAt(0, OSC_Y_POS, (uint8_t *)"R", LEFT_MODE);
//Set up the spectrum background display
Draw_Spectrum_Background();
/* The following code should not be code that you need to worry about - it sets up the audio interfaces. */
/* Initialize the Audio Interface */
BSP_AUDIO_IN_OUT_Init(INPUT_DEVICE_DIGITAL_MICROPHONE_2, OUTPUT_DEVICE_HEADPHONE, DEFAULT_AUDIO_IN_FREQ, DEFAULT_AUDIO_IN_BIT_RESOLUTION, DEFAULT_AUDIO_IN_CHANNEL_NBR);
/* Initialize SDRAM buffers */
BSP_SDRAM_Init();
memset((uint16_t *)AUDIO_BUFFER_IN, 0, AUDIO_BLOCK_SIZE * 2);
memset((uint16_t *)AUDIO_BUFFER_OUT, 0, AUDIO_BLOCK_SIZE * 2);
/* Start Recording */
if (BSP_AUDIO_IN_Record((uint16_t *)AUDIO_BUFFER_IN, AUDIO_BLOCK_SIZE) != AUDIO_OK) { printf("BSP_AUDIO_IN_Record error\n"); }
/* Start Playback */
BSP_AUDIO_OUT_SetAudioFrameSlot(CODEC_AUDIOFRAME_SLOT_02);
if (BSP_AUDIO_OUT_Play((uint16_t *)AUDIO_BUFFER_OUT, AUDIO_BLOCK_SIZE * 2) != AUDIO_OK) { printf("BSP_AUDIO_OUT_Play error\n"); }
/* The audio interfaces are all now working.
* Importantly - AUDIO_BUFFER_IN is the pointer to the incoming data from the WM8994
* AUDIO_BUFFER_OUT is the pointer to the outgoing data to the WM8994 */
/* Initialize signal processing filters - usually there are variables that
* need to be set up or that there are arrays you need to precompute - this
* function call allows you to do that. */
initalize_signal_processing();
/* Hardware timer starts. Set to zero */
timer.start();
/* Main signal processing while loop */
while (1) {
/* First Half */
/* Wait until end of half block recording before going on in the first half cycle*/
while (audio_rec_buffer_state != BUFFER_OFFSET_HALF) {}
/* This captures the time of an entire cycle */
total_time = timer.read_us();
/* Reset the timer counter to zero */
timer.reset();
/* Plot traces of first half block recording */
Erase_Trace(OSC_START_X_POS, OSC_Y_POS, AUDIO_BLOCK_SAMPLES);
Draw_Trace(OSC_START_X_POS, OSC_Y_POS, (uint16_t *) AUDIO_BUFFER_IN, AUDIO_BLOCK_SAMPLES);
/* Convert data to floating point representation for processing */
Audio_to_Float((uint16_t *) AUDIO_BUFFER_IN, L_channel_float_in_p, R_channel_float_in_p, AUDIO_BLOCK_SAMPLES);
/* ------------------------------------------------------------------------ */
/* Here is where signal processing can be done on the floating point arrays */
process_audio_channel_signals(L_channel_float_in_p, R_channel_float_in_p, L_channel_float_out_p, R_channel_float_out_p, AUDIO_BLOCK_SAMPLES);
FFT_audio_input(L_channel_float_in_p, R_channel_float_in_p, AUDIO_BLOCK_SAMPLES);
/* Here is where signal processing can end on the floating point arrays */
/* -------------------------------------------------------------------- */
/* Covert floating point data back to fixed point audio format */
Float_to_Audio(L_channel_float_out_p, R_channel_float_out_p, (uint16_t *) Processed_audio, AUDIO_BLOCK_SAMPLES);
/* Copy recorded 1st half block into the audio buffer that goes out */
/* Replace the second memcpy with this first one once you have worked out the processed audio functions. */
memcpy((uint16_t *)(AUDIO_BUFFER_OUT), (uint16_t *)(Processed_audio), AUDIO_BLOCK_SIZE);
//memcpy((uint16_t *)(AUDIO_BUFFER_OUT), (uint16_t *)(AUDIO_BUFFER_IN), AUDIO_BLOCK_SIZE);
/* Display useful cycle information (split up information display so the processing is more balanced) */
sprintf(buf, "Cycles: %9d", counter);
BSP_LCD_SetTextColor(LCD_COLOR_RED);
BSP_LCD_DisplayStringAt(0, 46, (uint8_t *) buf, LEFT_MODE);
/* Capture the timing of the first half processing */
first_half_time = timer.read_us();
/* End First Half */
/* Second Half */
/* Wait end of one block recording */
while (audio_rec_buffer_state != BUFFER_OFFSET_FULL) {}
/* Plot traces of second half block recording */
Erase_Trace(OSC_START_X_POS+AUDIO_BLOCK_SAMPLES, OSC_Y_POS, AUDIO_BLOCK_SAMPLES);
Draw_Trace( OSC_START_X_POS+AUDIO_BLOCK_SAMPLES, OSC_Y_POS, (uint16_t *) (AUDIO_BUFFER_IN + (AUDIO_BLOCK_SIZE)), AUDIO_BLOCK_SAMPLES);
/* Convert data to floating point representation for processing */
Audio_to_Float((uint16_t *) (AUDIO_BUFFER_IN + (AUDIO_BLOCK_SIZE)), L_channel_float_in_p, R_channel_float_in_p, AUDIO_BLOCK_SAMPLES);
/* ------------------------------------------------------------------------ */
/* Here is where signal processing can be done on the floating point arrays */
process_audio_channel_signals(L_channel_float_in_p, R_channel_float_in_p, L_channel_float_out_p, R_channel_float_out_p, AUDIO_BLOCK_SAMPLES);
FFT_audio_input(L_channel_float_in_p, R_channel_float_in_p, AUDIO_BLOCK_SAMPLES);
/* Here is where signal processing can end on the floating point arrays */
/* -------------------------------------------------------------------- */
/* Covert floating point data back to fixed point audio format */
Float_to_Audio(L_channel_float_out_p, R_channel_float_out_p, (uint16_t *) Processed_audio, AUDIO_BLOCK_SAMPLES);
/* Copy recorded 2nd half block into the audio buffer that goes out */
memcpy((uint16_t *)(AUDIO_BUFFER_OUT + (AUDIO_BLOCK_SIZE)), (uint16_t *) (Processed_audio), AUDIO_BLOCK_SIZE);
//memcpy((uint16_t *)(AUDIO_BUFFER_OUT + (AUDIO_BLOCK_SIZE)), (uint16_t *)(AUDIO_BUFFER_IN + (AUDIO_BLOCK_SIZE)), AUDIO_BLOCK_SIZE);
/* Compute important cycle information and display it*/
sprintf(buf, "1:%6d 2:%6d T:%6d", first_half_time, second_half_time, total_time);
BSP_LCD_SetTextColor(LCD_COLOR_RED);
BSP_LCD_DisplayStringAt(0, 20, (uint8_t *) buf, LEFT_MODE);
/* Copy recorded 2nd half block into audio output buffer */
/* Change the recording buffer state to reflect the status of the buffer */
audio_rec_buffer_state = BUFFER_OFFSET_NONE;
/* Increase the counter */
counter++;
/* Measures the amount of time to process the second half */
second_half_time = timer.read_us();
/* End Second Half */
}
}
/**
* @brief Draws a trace of the data line.
* @param Xpos: X position
* @param Ypos: Y position
* @param Mem_start: Start of memory location
* @param Length: length of trace
* @retval None
*/
void Erase_Trace(uint16_t Xpos, uint16_t Ypos, uint16_t Length)
{
/* Creates a brown rectangle above and below the axis */
BSP_LCD_SetTextColor(LCD_COLOR_BROWN);
BSP_LCD_FillRect(Xpos, Ypos - AUDIO_DRAW_LIMIT, Length, AUDIO_DRAW_LIMIT);
BSP_LCD_FillRect(Xpos, Ypos+1, Length, AUDIO_DRAW_LIMIT);
/* Draw axis for plotting */
BSP_LCD_SetTextColor(LCD_COLOR_WHITE);
BSP_LCD_DrawHLine(Xpos, Ypos, Length);
}
/**
* @brief Draws a trace of the data line.
* @param Xpos: X position
* @param Ypos: Y position
* @param Mem_start: Start of memory location
* @param Length: length of trace
* @retval None
*/
void Draw_Trace(uint16_t Xpos, uint16_t Ypos, uint16_t* Mem_start, uint16_t Length)
{
uint16_t i;
uint16_t* mem_address;
char buf[10];
int16_t L_audio_value;
int16_t R_audio_value;
mem_address = Mem_start;
for (i=0; i<Length; i++)
{
R_audio_value = (int16_t) *mem_address;
mem_address++;
L_audio_value = (int16_t) *mem_address;
mem_address++;
L_audio_value = L_audio_value / 100;
R_audio_value = R_audio_value / 100;
if (L_audio_value > AUDIO_DRAW_LIMIT) {L_audio_value = AUDIO_DRAW_LIMIT;}
else if (L_audio_value < -AUDIO_DRAW_LIMIT) {L_audio_value = -AUDIO_DRAW_LIMIT;}
if (R_audio_value > AUDIO_DRAW_LIMIT) {R_audio_value = AUDIO_DRAW_LIMIT;}
else if (R_audio_value < -AUDIO_DRAW_LIMIT) {R_audio_value = -AUDIO_DRAW_LIMIT;}
BSP_LCD_DrawPixel(Xpos + i, (uint16_t) ((int16_t) Ypos + L_audio_value), LCD_COLOR_BLUE);
BSP_LCD_DrawPixel(Xpos + i, (uint16_t) ((int16_t) Ypos + R_audio_value), LCD_COLOR_GREEN);
}
}
/**
* @brief Converts audio data in buffer to floating point representation.
* @param buffer_in: Pointer to Audio buffer start location
* @param L_out: Pointer to Left channel out data (float32_t)
* @param R_out: Pointer to Right channel out data (float32_t)
* @param Length: length of data to convert
* @retval None
*/
void Audio_to_Float(uint16_t* buffer_in, float32_t* L_out, float32_t* R_out, uint16_t Length)
{
uint16_t i;
uint16_t* audio_mem_address;
float32_t* L_chan_mem_address;
float32_t* R_chan_mem_address;
float32_t L_audio_value;
float32_t R_audio_value;
audio_mem_address = buffer_in;
L_chan_mem_address = L_out;
R_chan_mem_address = R_out;
for (i=0; i<Length; i++)
{
R_audio_value = (float32_t) ((int16_t) *audio_mem_address);
audio_mem_address++;
L_audio_value = (float32_t) ((int16_t) *audio_mem_address);
audio_mem_address++;
*L_chan_mem_address = L_audio_value;
L_chan_mem_address++;
*R_chan_mem_address = R_audio_value;
R_chan_mem_address++;
}
}
/**
* @brief Converts audio data in buffer to floating point representation.
* @param L_out: Pointer to Left channel in data (float32_t)
* @param R_out: Pointer to Right channel in data (float32_t)
* @param buffer_out: Pointer to combined 32 bit (two 16-bit int samples)
* @param Length: length of data to convert
* @retval None
*/
void Float_to_Audio(float32_t* L_in, float32_t* R_in, uint16_t* buffer_out, uint16_t Length)
{
uint16_t i;
uint16_t* audio_mem_address;
float32_t* L_chan_mem_address;
float32_t* R_chan_mem_address;
int16_t L_audio_value;
int16_t R_audio_value;
audio_mem_address = buffer_out;
L_chan_mem_address = L_in;
R_chan_mem_address = R_in;
for (i=0; i<Length; i++)
{
L_audio_value = (int16_t) ((float32_t) *L_chan_mem_address);
L_chan_mem_address++;
R_audio_value = (int16_t) ((float32_t) *R_chan_mem_address);
R_chan_mem_address++;
*audio_mem_address = (uint16_t) R_audio_value;
audio_mem_address++;
*audio_mem_address = (uint16_t) L_audio_value;
audio_mem_address++;
}
}
/*-------------------------------------------------------------------------------------
Callbacks implementation:
the callbacks API are defined __weak in the stm32746g_discovery_audio.c file
and their implementation should be done in the user code if they are needed.
Below some examples of callback implementations.
-------------------------------------------------------------------------------------*/
/**
* @brief Manages the DMA Transfer complete interrupt.
* @param None
* @retval None
*/
void BSP_AUDIO_IN_TransferComplete_CallBack(void)
{
audio_rec_buffer_state = BUFFER_OFFSET_FULL;
}
/**
* @brief Manages the DMA Half Transfer complete interrupt.
* @param None
* @retval None
*/
void BSP_AUDIO_IN_HalfTransfer_CallBack(void)
{
audio_rec_buffer_state = BUFFER_OFFSET_HALF;
}
/**
* @brief Audio IN Error callback function.
* @param None
* @retval None
*/
void BSP_AUDIO_IN_Error_CallBack(void)
{
printf("BSP_AUDIO_IN_Error_CallBack\n");
}