initial

Dependencies:   mbed BSP_DISCO_F746NG mbed-dsp

main.cpp

Committer:
justenmg
Date:
2020-03-10
Revision:
9:fb0eb0b2796c
Parent:
3:51e15bd15778

File content as of revision 9:fb0eb0b2796c:

/**
  ******************************************************************************
  * @file    main.c
  * @author  Brian Mazzeo
  * @date    2020
  * @brief   This file provides a set of code for signal processing in 487.
  *          Parts are taken from example code from STMIcroelectronics
  ******************************************************************************
  * @attention
  *          This code was specifically developed for BYU ECEn 487 course 
  *          Introduction to Digital Signal Processing.
  *
  *
  ******************************************************************************
  */ 


#include "mbed.h"
#include "stm32746g_discovery_audio.h"
#include "stm32746g_discovery_sdram.h"
#include "stm32746g_discovery_lcd.h"
#include "arm_math.h"
#include "signal_processing.h"

/* The following type definitions are used to control the 
 * buffering of the audio data using a double buffering technique.
 * Most of the transactions between the WM8994 and the microcontroller
 * are handled by other code - but this signals what the buffering state
 * is, so the data can be appropriately processed. */
typedef enum {
    BUFFER_OFFSET_NONE = 0,
    BUFFER_OFFSET_HALF = 1,
    BUFFER_OFFSET_FULL = 2,
} BUFFER_StateTypeDef;

/* These audio block samples define the size of the buffering */
#define AUDIO_BLOCK_SAMPLES             ((uint32_t)128)         // Number of samples (L and R) in audio block (each samples is 16 bits)
#define AUDIO_BLOCK_SIZE                ((uint32_t)512)         // Number of bytes in audio block (4 * AUDIO_BLOCK_SAMPLES)

/* These RAM addresses are important to determine where the audio data is stored. */
#define SDRAM_DEVICE_ADDR_AUDIO_MEM     ((uint32_t)0xC0400000)
#define AUDIO_BUFFER_IN                 SDRAM_DEVICE_ADDR_AUDIO_MEM
#define AUDIO_BUFFER_OUT                (AUDIO_BUFFER_IN + (AUDIO_BLOCK_SIZE * 2))

/* These definitions define the size of the oscilloscope that is used to display data. */
#define OSC_START_X_POS     20
#define OSC_LINE_SIZE       256
#define OSC_Y_POS           130
#define AUDIO_DRAW_LIMIT    50

/* This define a timer that is then used to record the timing of the different processing stages. */
Timer timer;

/* This variable is important because it define the audio buffer recording state. */
volatile uint32_t  audio_rec_buffer_state = BUFFER_OFFSET_NONE;

/* Function declarations */
static void Erase_Trace(uint16_t Xpos, uint16_t Ypos, uint16_t Length);
static void Draw_Trace(uint16_t Xpos, uint16_t Ypos, uint16_t* Mem_start, uint16_t Length);
static void Audio_to_Float(uint16_t* buffer_in, float32_t* L_out, float32_t* R_out, uint16_t Length);
static void Float_to_Audio(float32_t* L_in, float32_t* R_in, uint16_t* buffer_out, uint16_t Length);

/* These memory blocks are important for converting to floating point representation. */
float32_t       L_channel_float_in[AUDIO_BLOCK_SAMPLES];
float32_t       R_channel_float_in[AUDIO_BLOCK_SAMPLES];
float32_t       L_channel_float_out[AUDIO_BLOCK_SAMPLES];
float32_t       R_channel_float_out[AUDIO_BLOCK_SAMPLES];
float32_t       *L_channel_float_in_p = &L_channel_float_in[0];
float32_t       *R_channel_float_in_p = &R_channel_float_in[0];
float32_t       *L_channel_float_out_p = &L_channel_float_out[0];
float32_t       *R_channel_float_out_p = &R_channel_float_out[0];

/* These memory blocks are where the information is stored to send back out to the WM8994 chip. */
uint16_t    Processed_audio[AUDIO_BLOCK_SAMPLES];
uint16_t    *Processed_audio_p = &Processed_audio[0];

/* Useful variables during looping */
uint32_t counter = 0;               // Loop counter
char buf[40];                       // Character buffer for sprintf statements to the LCD
int first_half_time = 0;            // Time of first processing block
int second_half_time = 0;           // Time of second processing block
int total_time = 0;                 // Time of total loop (first and second blocks)

/* Main Function */
int main()
{
    /* Initialize the LCD Screen and display information */    
    BSP_LCD_Init();
    BSP_LCD_LayerDefaultInit(LTDC_ACTIVE_LAYER, LCD_FB_START_ADDRESS);
    BSP_LCD_SelectLayer(LTDC_ACTIVE_LAYER);

    /* Clear the LCD and set the font to be default */
    BSP_LCD_Clear(LCD_COLOR_BLACK);
    BSP_LCD_SetFont(&LCD_DEFAULT_FONT);
    
    /* Set the backcolor to be black and the textcolor to be orange. */    
    BSP_LCD_SetBackColor(LCD_COLOR_BLACK);
    BSP_LCD_SetTextColor(LCD_COLOR_ORANGE);
    
    /* The following are static display elements that will remain on the screen. */
    BSP_LCD_DisplayStringAt(0, 0, (uint8_t *)"487 Demo Code (Mazzeo)", LEFT_MODE);
    
    /* Display the L and R colors for the channels */
    BSP_LCD_SetTextColor(LCD_COLOR_BLUE);
    BSP_LCD_DisplayStringAt(0, OSC_Y_POS - 20, (uint8_t *)"L", LEFT_MODE);
    BSP_LCD_SetTextColor(LCD_COLOR_GREEN);
    BSP_LCD_DisplayStringAt(0, OSC_Y_POS, (uint8_t *)"R", LEFT_MODE);

    /* The following code should not be code that you need to worry about - it sets up the audio interfaces. */
        /* Initialize the Audio Interface */
        BSP_AUDIO_IN_OUT_Init(INPUT_DEVICE_DIGITAL_MICROPHONE_2, OUTPUT_DEVICE_HEADPHONE, DEFAULT_AUDIO_IN_FREQ, DEFAULT_AUDIO_IN_BIT_RESOLUTION, DEFAULT_AUDIO_IN_CHANNEL_NBR);
    
        /* Initialize SDRAM buffers */
        BSP_SDRAM_Init();
        memset((uint16_t *)AUDIO_BUFFER_IN, 0, AUDIO_BLOCK_SIZE * 2);
        memset((uint16_t *)AUDIO_BUFFER_OUT, 0, AUDIO_BLOCK_SIZE * 2);
    
        /* Start Recording */
        if (BSP_AUDIO_IN_Record((uint16_t *)AUDIO_BUFFER_IN, AUDIO_BLOCK_SIZE) != AUDIO_OK) { printf("BSP_AUDIO_IN_Record error\n"); }
    
        /* Start Playback */
        BSP_AUDIO_OUT_SetAudioFrameSlot(CODEC_AUDIOFRAME_SLOT_02);
        if (BSP_AUDIO_OUT_Play((uint16_t *)AUDIO_BUFFER_OUT, AUDIO_BLOCK_SIZE * 2) != AUDIO_OK) { printf("BSP_AUDIO_OUT_Play error\n"); }
        
    /* The audio interfaces are all now working.
     * Importantly - AUDIO_BUFFER_IN is the pointer to the incoming data from the WM8994
     *               AUDIO_BUFFER_OUT is the pointer to the outgoing data to the WM8994 */


    /* Initialize signal processing filters - usually there are variables that
     * need to be set up or that there are arrays you need to precompute - this
     * function call allows you to do that. */
    initalize_signal_processing();

    /* Hardware timer starts. Set to zero */
    timer.start();
    
    /* Main signal processing while loop */
    while (1) {
    
    /* First Half */
        /* Wait until end of half block recording before going on in the first half cycle*/
        while (audio_rec_buffer_state != BUFFER_OFFSET_HALF) {}

        /* This captures the time of an entire cycle */
        total_time = timer.read_us();
        
        /* Reset the timer counter to zero */
        timer.reset();

        /* Plot traces of first half block recording */   
        Erase_Trace(OSC_START_X_POS, OSC_Y_POS, AUDIO_BLOCK_SAMPLES);
        Draw_Trace(OSC_START_X_POS, OSC_Y_POS, (uint16_t *) AUDIO_BUFFER_IN, AUDIO_BLOCK_SAMPLES);
        
        /* Convert data to floating point representation for processing */
        Audio_to_Float((uint16_t *) AUDIO_BUFFER_IN, L_channel_float_in_p, R_channel_float_in_p, AUDIO_BLOCK_SAMPLES);

            /* ------------------------------------------------------------------------ */
            /* Here is where signal processing can be done on the floating point arrays */

            process_audio_channel_signals(L_channel_float_in_p, R_channel_float_in_p, L_channel_float_out_p, R_channel_float_out_p, AUDIO_BLOCK_SAMPLES);
        
            /* Here is where signal processing can end on the floating point arrays */        
            /* -------------------------------------------------------------------- */    
                
        /* Covert floating point data back to fixed point audio format */
        Float_to_Audio(L_channel_float_out_p, R_channel_float_out_p, (uint16_t *) Processed_audio, AUDIO_BLOCK_SAMPLES);

        /* Copy recorded 1st half block into the audio buffer that goes out */
        /* Replace the second memcpy with this first one once you have worked out the processed audio functions. */
        memcpy((uint16_t *)(AUDIO_BUFFER_OUT), (uint16_t *)(Processed_audio), AUDIO_BLOCK_SIZE);
        //memcpy((uint16_t *)(AUDIO_BUFFER_OUT), (uint16_t *)(AUDIO_BUFFER_IN), AUDIO_BLOCK_SIZE);

        /* Display useful cycle information (split up information display so the processing is more balanced) */
        sprintf(buf, "Cycles: %9d", counter);
        BSP_LCD_SetTextColor(LCD_COLOR_RED);
        BSP_LCD_DisplayStringAt(0, 46, (uint8_t *) buf, LEFT_MODE);                


        /* Capture the timing of the first half processing */
        first_half_time = timer.read_us();
    /* End First Half */

    /* Second Half */
        /* Wait end of one block recording */
        while (audio_rec_buffer_state != BUFFER_OFFSET_FULL) {}
        
        /* Plot traces of second half block recording */
        Erase_Trace(OSC_START_X_POS+AUDIO_BLOCK_SAMPLES, OSC_Y_POS, AUDIO_BLOCK_SAMPLES);
        Draw_Trace( OSC_START_X_POS+AUDIO_BLOCK_SAMPLES, OSC_Y_POS, (uint16_t *) (AUDIO_BUFFER_IN + (AUDIO_BLOCK_SIZE)), AUDIO_BLOCK_SAMPLES);

        /* Convert data to floating point representation for processing */
        Audio_to_Float((uint16_t *) (AUDIO_BUFFER_IN + (AUDIO_BLOCK_SIZE)), L_channel_float_in_p, R_channel_float_in_p, AUDIO_BLOCK_SAMPLES);

            /* ------------------------------------------------------------------------ */
            /* Here is where signal processing can be done on the floating point arrays */

            process_audio_channel_signals(L_channel_float_in_p, R_channel_float_in_p, L_channel_float_out_p, R_channel_float_out_p, AUDIO_BLOCK_SAMPLES);
        
            /* Here is where signal processing can end on the floating point arrays */        
            /* -------------------------------------------------------------------- */    
            
        /* Covert floating point data back to fixed point audio format */
        Float_to_Audio(L_channel_float_out_p, R_channel_float_out_p, (uint16_t *) Processed_audio, AUDIO_BLOCK_SAMPLES);

        /* Copy recorded 2nd half block into the audio buffer that goes out */
        memcpy((uint16_t *)(AUDIO_BUFFER_OUT + (AUDIO_BLOCK_SIZE)), (uint16_t *) (Processed_audio), AUDIO_BLOCK_SIZE);
        //memcpy((uint16_t *)(AUDIO_BUFFER_OUT + (AUDIO_BLOCK_SIZE)), (uint16_t *)(AUDIO_BUFFER_IN + (AUDIO_BLOCK_SIZE)), AUDIO_BLOCK_SIZE);
        
                
        /* Compute important cycle information and display it*/
        sprintf(buf, "1:%6d 2:%6d T:%6d", first_half_time, second_half_time, total_time);
        BSP_LCD_SetTextColor(LCD_COLOR_RED);
        BSP_LCD_DisplayStringAt(0, 20, (uint8_t *) buf, LEFT_MODE);

        /* Copy recorded 2nd half block into audio output buffer */
            
        /* Change the recording buffer state to reflect the status of the buffer */   
        audio_rec_buffer_state = BUFFER_OFFSET_NONE;

        /* Increase the counter */
        counter++;
        
        /* Measures the amount of time to process the second half */    
        second_half_time = timer.read_us();
        
    /* End Second Half */
    }
}

/**
  * @brief  Draws a trace of the data line.
  * @param  Xpos: X position
  * @param  Ypos: Y position
  * @param  Mem_start: Start of memory location
  * @param  Length: length of trace
  * @retval None
  */
void Erase_Trace(uint16_t Xpos, uint16_t Ypos, uint16_t Length)
{
    /* Creates a brown rectangle above and below the axis */
    BSP_LCD_SetTextColor(LCD_COLOR_BROWN);
    BSP_LCD_FillRect(Xpos, Ypos - AUDIO_DRAW_LIMIT, Length, AUDIO_DRAW_LIMIT);
    BSP_LCD_FillRect(Xpos, Ypos+1, Length, AUDIO_DRAW_LIMIT);
    
    /* Draw axis for plotting */
    BSP_LCD_SetTextColor(LCD_COLOR_WHITE);
    BSP_LCD_DrawHLine(Xpos, Ypos, Length);

}


/**
  * @brief  Draws a trace of the data line.
  * @param  Xpos: X position
  * @param  Ypos: Y position
  * @param  Mem_start: Start of memory location
  * @param  Length: length of trace
  * @retval None
  */
void Draw_Trace(uint16_t Xpos, uint16_t Ypos, uint16_t* Mem_start, uint16_t Length)
{
    uint16_t i;
    uint16_t* mem_address;
    //char buf[10];
    int16_t L_audio_value;
    int16_t R_audio_value;
       
    mem_address = Mem_start;
      
    for (i=0; i<Length; i++)
   {       
        R_audio_value = (int16_t) *mem_address;
        mem_address++;
        L_audio_value = (int16_t) *mem_address;
        mem_address++;
        
        L_audio_value = L_audio_value / 100;
        R_audio_value = R_audio_value / 100;
        
        if (L_audio_value > AUDIO_DRAW_LIMIT) {L_audio_value = AUDIO_DRAW_LIMIT;}
        else if (L_audio_value < -AUDIO_DRAW_LIMIT) {L_audio_value = -AUDIO_DRAW_LIMIT;}

        if (R_audio_value > AUDIO_DRAW_LIMIT) {R_audio_value = AUDIO_DRAW_LIMIT;}
        else if (R_audio_value < -AUDIO_DRAW_LIMIT) {R_audio_value = -AUDIO_DRAW_LIMIT;}
        
        BSP_LCD_DrawPixel(Xpos + i, (uint16_t) ((int16_t) Ypos + L_audio_value), LCD_COLOR_BLUE);
        BSP_LCD_DrawPixel(Xpos + i, (uint16_t) ((int16_t) Ypos + R_audio_value), LCD_COLOR_GREEN);
   }
   
}

/**
  * @brief  Converts audio data in buffer to floating point representation.
  * @param  buffer_in: Pointer to Audio buffer start location
  * @param  L_out: Pointer to Left channel out data (float32_t)
  * @param  R_out: Pointer to Right channel out data (float32_t)
  * @param  Length: length of data to convert
  * @retval None
  */
void Audio_to_Float(uint16_t* buffer_in, float32_t* L_out, float32_t* R_out, uint16_t Length)
{
    uint16_t i;
    uint16_t* audio_mem_address;
    float32_t* L_chan_mem_address;
    float32_t* R_chan_mem_address;
    float32_t L_audio_value;
    float32_t R_audio_value;

    audio_mem_address = buffer_in;
    L_chan_mem_address = L_out;
    R_chan_mem_address = R_out;
    
    for (i=0; i<Length; i++)
   {
        R_audio_value = (float32_t) ((int16_t) *audio_mem_address);
        audio_mem_address++;
        L_audio_value = (float32_t) ((int16_t) *audio_mem_address);
        audio_mem_address++;
                
        *L_chan_mem_address = L_audio_value;
        L_chan_mem_address++;
        
        *R_chan_mem_address = R_audio_value;
        R_chan_mem_address++;
   }
}

/**
  * @brief  Converts audio data in buffer to floating point representation.
  * @param  L_out: Pointer to Left channel in data (float32_t)
  * @param  R_out: Pointer to Right channel in data (float32_t)
  * @param  buffer_out: Pointer to combined 32 bit (two 16-bit int samples)
  * @param  Length: length of data to convert
  * @retval None
  */
void Float_to_Audio(float32_t* L_in, float32_t* R_in, uint16_t* buffer_out, uint16_t Length)
{
    uint16_t i;
    uint16_t* audio_mem_address;
    float32_t* L_chan_mem_address;
    float32_t* R_chan_mem_address;
    int16_t L_audio_value;
    int16_t R_audio_value;
        
    audio_mem_address = buffer_out;
    L_chan_mem_address = L_in;
    R_chan_mem_address = R_in;
    
    for (i=0; i<Length; i++)
   {
        L_audio_value = (int16_t) ((float32_t) *L_chan_mem_address);
        L_chan_mem_address++;
        
        R_audio_value = (int16_t) ((float32_t) *R_chan_mem_address);
        R_chan_mem_address++;
        
        *audio_mem_address = (uint16_t) R_audio_value;
        audio_mem_address++;
        *audio_mem_address = (uint16_t) L_audio_value;
        audio_mem_address++;
   }
}





/*-------------------------------------------------------------------------------------
       Callbacks implementation:
           the callbacks API are defined __weak in the stm32746g_discovery_audio.c file
           and their implementation should be done in the user code if they are needed.
           Below some examples of callback implementations.
  -------------------------------------------------------------------------------------*/
/**
  * @brief Manages the DMA Transfer complete interrupt.
  * @param None
  * @retval None
  */
void BSP_AUDIO_IN_TransferComplete_CallBack(void)
{
    audio_rec_buffer_state = BUFFER_OFFSET_FULL;
}

/**
  * @brief  Manages the DMA Half Transfer complete interrupt.
  * @param  None
  * @retval None
  */
void BSP_AUDIO_IN_HalfTransfer_CallBack(void)
{
    audio_rec_buffer_state = BUFFER_OFFSET_HALF;
}

/**
  * @brief  Audio IN Error callback function.
  * @param  None
  * @retval None
  */
void BSP_AUDIO_IN_Error_CallBack(void)
{
    printf("BSP_AUDIO_IN_Error_CallBack\n");
}