Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed
accelerometer.cpp
- Committer:
- bala0x07
- Date:
- 2017-02-27
- Revision:
- 0:e36d80703ed0
File content as of revision 0:e36d80703ed0:
#include "mbed.h" #include "obd_libraries.h" #include "accelerometer.h" #include "common_definitions.h" #define IDLE 0 #define ACTIVE 1 I2C i2c(PB_9, PB_8); Serial pc(USBTX, USBRX); InterruptIn double_tap(PC_1); // Pin assignment may vary InterruptIn inactivity(PC_0); // Pin assignment may vary DigitalOut led(LED1); // INTERFACING ADXL345 ACCELEROMETER USING I2C /* NOTE : Due to communication speed limitations, the maximum output data rate when using 400 kHz I2C is 800 Hz and scales linearly with a change in the I2C communication speed */ //InterruptIn activity(PB_0); // Button B1 (Blue) const int slave_address_acc = 0xA6; char axis_data[6] = {0,0,0,0,0,0}; int16_t x_axis, y_axis, z_axis; char interrupt_source[2]; char axis_data_start_address[2]; char intr_source_address[2] = {0x30, 0}; char all_interrupt_clear_command[2] = {0x2E, 0x00}; char all_interrupt_enable_command[2] = {0x2E, 0x18}; char activity_interrupt_disable_command[2] = {0x2E, 0x28}; char inactivity_interrupt_disable_command[2] = {0x2E, 0x30}; char accelerometer_status_registered = 0; unsigned int interrupt_source_duplicate; char previous_state = 0; char current_state = 0; extern long vehicle_speed; char current_speed, previous_speed; char speed_threshold = 10; //---------------------------------------------------------------------------------------------------------- void char_to_int(char data_fetched) { unsigned int shifter; interrupt_source_duplicate = 0x00; for(shifter = 0; shifter < 8; shifter++) { interrupt_source_duplicate |= (((data_fetched >> shifter) & 0x01) << shifter); // Converts char data into unsigned int } } //---------------------------------------------------------------------------------------------------------- void print_data_bits(char data_fetched) { unsigned int shifter; for(shifter = 0; shifter < 8; shifter++) { pc.printf("%d",((data_fetched&0x80)>>7)); data_fetched = data_fetched << 1; } pc.printf("\r\n\r\n"); } //---------------------------------------------------------------------------------------------------------- /*---------------------------------------------------------------------------------------------------------- AS FAR NOW, ONE INTERRUPT PIN (INT1) OF ACCELEROMETER IS NOT WORKING USE THIS TO CUSTOMIZE ACCELEROMETER WHEN THAT PIN IS WORKING void use_me_later() { char count; for(count = 0; count < 10; count++) { led = !led; wait(0.10); } } ----------------------------------------------------------------------------------------------------------*/ void interrupt_sudden_jerk() { char count; i2c.write(slave_address_acc, all_interrupt_clear_command, 2); pc.printf("~~~ ENTERED SUDDEN JERK CONDITION ~~~\r\n\r\n"); for(count = 0; count < 2; count++) { led = 1; wait(2); led = 0; wait(1); } i2c.write(slave_address_acc, all_interrupt_enable_command, 2); } //********************************************************************************************************* // THE FOLLWOING CODE BLOCK IS THE MULITIPLEXED ISR FOR BOTH ACTIVITY & INACTIVITY INTERRUPT void interrupt_activity_inactivity() { char count; // The following statement disables all interrupts since no other interrupts must disturb at this point i2c.write(slave_address_acc, all_interrupt_clear_command, 2); i2c.write(slave_address_acc, intr_source_address, 1); i2c.read(slave_address_acc, interrupt_source, 1); char_to_int(interrupt_source[0]); // Coverts intr_source(char) to int & stores in intr_source_d pc.printf("INT Source = "); print_data_bits((interrupt_source_duplicate)); //-------------------------------------------------------------------------------------------------------- /* VERIFY WHETHER THE INTERRUPT IS BECAUSE OF ACTIVITY */ //if((((int)intr_source) & 0x10) == 0x10) if(interrupt_source_duplicate & 0x10) { /* THE FOLLOWING BLOCK IS USED JUST FOR VERIFICATION PURPOSE AND ARE NOT MANDATORY */ pc.printf("ENTERED ACTIVITY CONDITION\r\n\r\n"); for(count = 0; count < 10; count++) { led = !led; wait(0.05); } /* fetch_vehicle_speed(); previous_speed = vehicle_speed; wait(5); fetch_vehicle_speed(); current_speed = vehicle_speed; //if((current_speed > previous_speed) && (current_speed > speed_threshold)) // Decision making regarding vehicle's current state if(current_speed == 79) { i2c.write(slave_address_acc, activity_interrupt_disable_command, 2); // Disables Activity interrupt & enables Inactivity interrupt pc.printf("\r\n>>> VEHICLE HAS STARTED FROM STOP <<<"); } */ } //-------------------------------------------------------------------------------------------------------- /* VERIFY WHETHER THE INTERRUPT IS BECAUSE OF INACTIVITY */ //if((((int)intr_source) & 0x08) == 0x08) // Verify whether it is inactivity interrupt if(interrupt_source_duplicate & 0x08) { /* THE FOLLOWING BLOCK IS USED JUST FOR VERIFICATION PURPOSE AND ARE NOT MANDATORY */ pc.printf("ENTERED INACTIVITY CONDITION \r\n\r\n"); for(count = 0; count < 10; count++) { led = !led; wait(0.2); } /* fetch_vehicle_speed(); if(vehicle_speed == 0) // Decision making regarding vehicle's current state { i2c.write(slave_address_acc, inactivity_interrupt_disable_command, 2); // Disables Inactivity interrupt & enables Activity interrupt pc.printf("\r\n>>> VEHICLE HAS STOPPED FROM START <<<"); } */ } } //********************************************************************************************************* void initialize_accelerometer() { inactivity.rise(interrupt_activity_inactivity); // Attach the address of interrupt_activity_inactivity function to rising edge double_tap.rise(interrupt_sudden_jerk); pc.baud(38400); char cmd[2], cmd2[2], cmd3[5], cmd4[8], cmd5[3], cmd6[2], cmd7[2], cmd8[2]; /* THE FOLLOWING GROUP OF COMMAND VARIABLES STORES THE CONFIGURATION VALUES TO BE WRITTEN TO THE ADXL345 ACCELEROMETER */ cmd[0] = 0x2D; // Post the Register address of the slave (Have to write this into slave) cmd[1] = 0x08; // Turn ON the Measure Bit cmd3[0] = 0x1D; // Threshold Tap Register address cmd3[1] = 100; // Threshold tap Register value cmd3[2] = 0x7F; // Offset - X axis cmd3[3] = 0x7F; // Offset - Y axis cmd3[4] = 0x05; // Offset - Z axis cmd4[0] = 0x21; // DUR Register address cmd4[1] = 0x15; // DUR Register value providing maximum time to be held to generate an interrupt cmd4[2] = 0x15; // Latent cmd4[3] = 0x45; // Window Time cmd4[4] = 64; // THRES_ACT register value 62.5mg/LSB , therfore value 32 indicates 2g activity cmd4[5] = 50; // THRES_INACT Register cmd4[6] = 5; // TIME_INACT Register, making inactivity detection time = 5 secs cmd4[7] = 0x77; // Activity, Inactivity detection enabled for all axis cmd5[0] = 0x2E; // INT Enable Register address //cmd5[1] = 0x74; // INT Enable Register value enabling Single Tap, Double Tap, Activity and Free Fall detection //cmd5[2] = 0x00; // INT Map Register value mapping Single Tap event to INT1 //cmd5[1] = 0x20; // Enabling only the double tap interrupt //cmd5[2] = 0x20; // Mapping the double tap interrupt to INT2 pin //cmd5[1] = 0x10; // Enabling only the activity interrupt //cmd5[2] = 0x10; // Mapping the sctivity interrupt to the INT2 pin //cmd5[1] = 0x08; // Enabling only the inactivity interrupt //cmd5[2] = 0x08; // Mapping the Inactivity interrupt to the INT2 pin cmd5[1] = 0x38; // Enabling Activity & inactivity interrupt cmd5[2] = 0xDF; // Activity--->INT1 & Inactivity--->INT2 cmd6[0] = 0x2A; // Address of the TAP_AXES Register cmd6[1] = 0x06; // X & Y axis participate in tap detection cmd7[0] = 0x28; // Address of the Threshold register for Free Fall detection cmd7[1] = 0x07; // Recommeded value : 0x05 to 0x09 Refer datasheet cmd8[0] = 0x2C; // Address of the BW RATE register cmd8[1] = 0x0D; // Increased the data rate to 800Hz, default is 0x0A indicating 100Hz cmd2[0] = 0x31; // Data format register address cmd2[1] = 0x04; // Making the acceleration data as left justified axis_data_start_address[0] = 0x32; i2c.write(slave_address_acc, cmd, 2); i2c.write(slave_address_acc, cmd3, 5); i2c.write(slave_address_acc, cmd4, 8); i2c.write(slave_address_acc, cmd5, 3); i2c.write(slave_address_acc, cmd6, 2); i2c.write(slave_address_acc, cmd7, 2); i2c.write(slave_address_acc, cmd8, 2); i2c.write(slave_address_acc, cmd2, 2); //char dev_add[2] = {0x00,0}; //i2c.write(slave_address_acc, dev_add, 1); //i2c.read(slave_address_acc, dev_add, 1); //print_data_bits(dev_add[0]); pc.printf(" ACCELEROMETER DATA LOG \r\n\r\n"); while (1); pc.printf("\r\n CAME HERE \r\n"); // pc.printf(" ACCELEROMETER DATA LOG \r\n\r\n"); // while (1) { /*-------------------------------------------------------------------------------------------------------------------------------------- wait(1.0); pc.printf("STILL IN WHILE LOOP\r\n\r\n"); --------------------------------------------------------------------------------------------------------------------------------------*/ // wait(0.25); //-------------------------------------------------------------------------------------------------------------------------------------- // USE THE FOLLOWING BLOCK TO READ THE DATA IN X-AXIS, Y-AXIS & Z-AXIS /* i2c.write(slave_address_acc, axis_data_start_address, 1); i2c.read(slave_address_acc, axis_data, 6); x_axis = axis_data[1]; // Puts MSB data into respective axes y_axis = axis_data[3]; z_axis = axis_data[5]; if(x_axis & 0x80) // Testing the signess of the x-axis data pc.printf("X-axis_1 = %d\r\n", (((~x_axis)+1))); // Converts 2's complement data into decimal else pc.printf("X-axis_0 = %d\r\n", x_axis); if(y_axis & 0x80) // Testing the signess of the y-axis data pc.printf("Y-axis_1 = %d\r\n", (((~y_axis)+1))); // Converts 2's complement data into decimal else pc.printf("Y-axis_0 = %d\r\n", y_axis); if(z_axis & 0x80) // Testing the signess of the y-axis data pc.printf("Z-axis_1 = %d\r\n\r\n", (((~z_axis)+1))); // Converts 2's complement data into decimal else pc.printf("Z-axis_0 = %d\r\n\r\n",z_axis); */ /*-------------------------------------------------------------------------------------------------------------------------------------- // THIS CAN BE USED WHEN THERE IS A NEED OF VERY HIGH LEVEL ACCURACY & USE INT16_T DATA TYPE x_axis = (int)axis_data[1] << 8 | (int)axis_data[0]; y_axis = (int)axis_data[3] << 8 | (int)axis_data[2]; z_axis = (int)axis_data[5] << 8 | (int)axis_data[4]; --------------------------------------------------------------------------------------------------------------------------------------*/ // } }