Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed-rpc-stmfork mbed-src
Fork of rpc_over_serial by
main.cpp
- Committer:
- mosi
- Date:
- 2014-08-04
- Revision:
- 3:4ed0d32d3b38
- Parent:
- 2:94d791a36afe
File content as of revision 3:4ed0d32d3b38:
#include "mbed.h"
#include "mbed_rpc.h"
#include "stmbed.h"
//Serial pc(USBTX, USBRX);
//Serial pc(p29, p30); // stm32f103b
Serial pc(SERIAL_TX, SERIAL_RX); // stm32f103b PA_2 PA_3
DigitalOut ld1(PA_5);
DigitalOut myled(LED1);
void Tx_interrupt();
void Rx_interrupt();
void send_line();
void read_line();
// Circular buffers for serial TX and RX data - used by interrupt routines
const int buffer_size = 255;
// might need to increase buffer size for high baud rates
char tx_buffer[buffer_size];
char rx_buffer[buffer_size];
// Circular buffer pointers
// volatile makes read-modify-write atomic
volatile int tx_in=0;
volatile int tx_out=0;
volatile int rx_in=0;
volatile int rx_out=0;
// Line buffers for sprintf and sscanf
char tx_line[80];
char rx_line[80];
void blink(){
myled = 1; // LED is ON
wait(0.5); // 200 ms
myled = 0; // LED is OFF
wait(1.0); // 1 sec
}
int main() {
ld1=0;
blink();
blink();
blink();
char buf[256], outbuf[256];
//pc.baud(115200);
pc.baud(9600); // nucleo F103RB
// receive commands, and send back the responses
pc.printf(" ************** Serial RPC example starting ************************* \r\n");
// setup the classes that can be created dynamically
// RPC::add_rpc_class<RpcAnalogIn>();
// RPC::add_rpc_class<RpcAnalogOut>();
RPC::add_rpc_class<RpcDigitalIn>();
RPC::add_rpc_class<RpcDigitalOut>();
RPC::add_rpc_class<RpcDigitalInOut>();
RPC::add_rpc_class<RpcPwmOut>();
RPC::add_rpc_class<RpcTimer>();
RPC::add_rpc_class<RpcSPI>();
RPC::add_rpc_class<RpcSerial>();
// receive commands, and send back the responses
pc.printf(" ************** 1 \r\n");
// Setup a serial interrupt function to receive data
pc.attach(&Rx_interrupt, Serial::RxIrq);
// Setup a serial interrupt function to transmit data
//pc.attach(&Tx_interrupt, Serial::TxIrq);
pc.printf(" ************** 2 \r\n");
while(1) {
// Read a line from the large rx buffer from rx interrupt routine
read_line();
//pc.gets(buf, 4);
//pc.printf("#> '%s'\r\n", buf);
/************************************
This is an example of the RPC command required to create an LED object and turn it on:
/DigitalOut/new LED1 myled
/myled/write 1
*************************************
*/
RPC::call(buf, outbuf);
RPC::call(rx_line, outbuf);
pc.printf("%s\r\n", outbuf);
}
}
// Copy tx line buffer to large tx buffer for tx interrupt routine
void send_line() {
int i;
char temp_char;
bool empty;
i = 0;
// Start Critical Section - don't interrupt while changing global buffer variables
NVIC_DisableIRQ(USART2_IRQn);
empty = (tx_in == tx_out);
while ((i==0) || (tx_line[i-1] != '\n')) {
// Wait if buffer full
if (((tx_in + 1) % buffer_size) == tx_out) {
// End Critical Section - need to let interrupt routine empty buffer by sending
NVIC_EnableIRQ(USART2_IRQn);
while (((tx_in + 1) % buffer_size) == tx_out) {
}
// Start Critical Section - don't interrupt while changing global buffer variables
NVIC_DisableIRQ(USART2_IRQn);
}
tx_buffer[tx_in] = tx_line[i];
i++;
tx_in = (tx_in + 1) % buffer_size;
}
if (pc.writeable() && (empty)) {
temp_char = tx_buffer[tx_out];
tx_out = (tx_out + 1) % buffer_size;
// Send first character to start tx interrupts, if stopped
pc.putc(temp_char);
}
// End Critical Section
NVIC_EnableIRQ(USART2_IRQn);
return;
}
// Read a line from the large rx buffer from rx interrupt routine
void read_line() {
int i;
i = 0;
// Start Critical Section - don't interrupt while changing global buffer variables
NVIC_DisableIRQ(USART2_IRQn); // stm32: USART2_IRQn lpc nxp: UART1_IRQn
// Loop reading rx buffer characters until end of line character
while ((i==0) || (rx_line[i-1] != '\r')) {
// Wait if buffer empty
if (rx_in == rx_out) {
// End Critical Section - need to allow rx interrupt to get new characters for buffer
NVIC_EnableIRQ(USART2_IRQn);
while (rx_in == rx_out) {
}
// Start Critical Section - don't interrupt while changing global buffer variables
NVIC_DisableIRQ(USART2_IRQn);
}
rx_line[i] = rx_buffer[rx_out];
i++;
rx_out = (rx_out + 1) % buffer_size;
}
// End Critical Section
NVIC_EnableIRQ(USART2_IRQn);
rx_line[i-1] = 0;
return;
}
// Interupt Routine to read in data from serial port
void Rx_interrupt() {
// led1=1;
// Loop just in case more than one character is in UART's receive FIFO buffer
// Stop if buffer full
while ((pc.readable()) && (((rx_in + 1) % buffer_size) != rx_out)) {
rx_buffer[rx_in] = pc.getc();
// Uncomment to Echo to USB serial to watch data flow
pc.putc(rx_buffer[rx_in]);
rx_in = (rx_in + 1) % buffer_size;
}
// led1=0;
return;
}
// Interupt Routine to write out data to serial port
void Tx_interrupt() {
// led2=1;
// Loop to fill more than one character in UART's transmit FIFO buffer
// Stop if buffer empty
while ((pc.writeable()) && (tx_in != tx_out)) {
pc.putc(tx_buffer[tx_out]);
tx_out = (tx_out + 1) % buffer_size;
}
// led2=0;
return;
}
