init

Dependencies:   aconno_I2C Lis2dh12 WatchdogTimer

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers DW1000.cpp Source File

DW1000.cpp

00001 // Adapted from Matthias Grob & Manuel Stalder - ETH Zürich - 2015
00002 #include "DW1000.h"
00003 #include "NRFuart.h"
00004  
00005 // Change this depending on whether damaged or heatlhy DWM1000 modules are used.
00006 const bool DWM1000_DAMAGED = false;
00007 //const bool DWM1000_DAMAGED = false;
00008  
00009 /*DW1000::DW1000(PinName MOSI, PinName MISO, PinName SCLK, PinName CS, PinName IRQ, PinName RESET) : irq(IRQ), spi(MOSI, MISO, SCLK), cs(CS), reset(RESET) {
00010     irq.rise(this, &DW1000::ISR);
00011     */
00012     
00013 DW1000::DW1000(PinName MOSI, PinName MISO, PinName SCLK, PinName CS, PinName IRQ, PinName RESET) : irq(IRQ), spi(MOSI, MISO, SCLK), cs(CS), reset(RESET) {
00014     //irq.rise(this, &DW1000::ISR);
00015  
00016     //setCallbacks(NULL, NULL);
00017  
00018     select();
00019     deselect();                         // Chip must be deselected first
00020     resetAll();                         // we do a soft reset of the DW1000 everytime the driver starts
00021  
00022     // Configuration TODO: make method for that
00023     // User Manual "2.5.5 Default Configurations that should be modified" p. 22
00024     //Those values are for the standard mode (6.8Mbps, 5, 16Mhz, 32 Symbols) and are INCOMPLETE!
00025 //    writeRegister16(DW1000_AGC_CTRL, 0x04, 0x8870);
00026 //    writeRegister32(DW1000_AGC_CTRL, 0x0C, 0x2502A907);
00027 //    writeRegister32(DW1000_DRX_CONF, 0x08, 0x311A002D);
00028 //    writeRegister8 (DW1000_LDE_CTRL, 0x0806, 0xD);
00029 //    writeRegister16(DW1000_LDE_CTRL, 0x1806, 0x1607);
00030 //    writeRegister32(DW1000_TX_POWER, 0, 0x0E082848);
00031 //    writeRegister32(DW1000_RF_CONF, 0x0C, 0x001E3FE0);
00032 //    writeRegister8 (DW1000_TX_CAL, 0x0B, 0xC0);
00033 //    writeRegister8 (DW1000_FS_CTRL, 0x0B, 0xA6);
00034  
00035  
00036     //Those values are for the 110kbps mode (5, 16MHz, 1024 Symbols) and are quite complete
00037     writeRegister16(DW1000_AGC_CTRL, 0x04, 0x8870);             //AGC_TUNE1 for 16MHz PRF
00038     writeRegister32(DW1000_AGC_CTRL, 0x0C, 0x2502A907);         //AGC_TUNE2 (Universal)
00039     writeRegister16(DW1000_AGC_CTRL, 0x12, 0x0055);             //AGC_TUNE3 (Universal)
00040  
00041     writeRegister16(DW1000_DRX_CONF, 0x02, 0x000A);             //DRX_TUNE0b for 110kbps
00042     writeRegister16(DW1000_DRX_CONF, 0x04, 0x0087);             //DRX_TUNE1a for 16MHz PRF
00043     writeRegister16(DW1000_DRX_CONF, 0x06, 0x0064);             //DRX_TUNE1b for 110kbps & > 1024 symbols
00044     writeRegister32(DW1000_DRX_CONF, 0x08, 0x351A009A);         //PAC size for 1024 symbols preamble & 16MHz PRF
00045     //writeRegister32(DW1000_DRX_CONF, 0x08, 0x371A011D);               //PAC size for 2048 symbols preamble
00046  
00047     writeRegister8 (DW1000_LDE_CTRL, 0x0806, 0xD);              //LDE_CFG1
00048     writeRegister16(DW1000_LDE_CTRL, 0x1806, 0x1607);           //LDE_CFG2 for 16MHz PRF
00049  
00050     writeRegister32(DW1000_TX_POWER, 0, 0x28282828);            //Power for channel 5
00051  
00052     writeRegister8(DW1000_RF_CONF, 0x0B, 0xD8);                 //RF_RXCTRLH for channel 5
00053     writeRegister32(DW1000_RF_CONF, 0x0C, 0x001E3FE0);          //RF_TXCTRL for channel 5
00054  
00055     writeRegister8 (DW1000_TX_CAL, 0x0B, 0xC0);                 //TC_PGDELAY for channel 5
00056  
00057     writeRegister32 (DW1000_FS_CTRL, 0x07, 0x0800041D);         //FS_PLLCFG for channel 5
00058     writeRegister8 (DW1000_FS_CTRL, 0x0B, 0xA6);                //FS_PLLTUNE for channel 5
00059  
00060     loadLDE();                          // important everytime DW1000 initialises/awakes otherwise the LDE algorithm must be turned off or there's receiving malfunction see User Manual LDELOAD on p22 & p158
00061     
00062     // 110kbps CAUTION: a lot of other registers have to be set for an optimized operation on 110kbps
00063     writeRegister16(DW1000_TX_FCTRL, 1, 0x0800 | 0x0100 | 0x0080); // use 1024 symbols preamble (0x0800) (previously 2048 - 0x2800), 16MHz pulse repetition frequency (0x0100), 110kbps bit rate (0x0080) see p.69 of DW1000 User Manual
00064     writeRegister8(DW1000_SYS_CFG, 2, 0x44);    // enable special receiving option for 110kbps (disable smartTxPower)!! (0x44) see p.64 of DW1000 User Manual [DO NOT enable 1024 byte frames (0x03) becuase it generates disturbance of ranging don't know why...]
00065  
00066     writeRegister16(DW1000_TX_ANTD, 0, 16384); // set TX and RX Antenna delay to neutral because we calibrate afterwards
00067     writeRegister16(DW1000_LDE_CTRL, 0x1804, 16384); // = 2^14 a quarter of the range of the 16-Bit register which corresponds to zero calibration in a round trip (TX1+RX2+TX2+RX1)
00068  
00069     writeRegister8(DW1000_SYS_CFG, 3, 0x20);    // enable auto reenabling receiver after error
00070  
00071     //irq.enable_irq();
00072 }
00073  
00074 /*
00075 void DW1000::setCallbacks(void (*callbackRX)(void), void (*callbackTX)(void)) {
00076     bool RX = false;
00077     bool TX = false;
00078     if (callbackRX) {
00079         this->callbackRX.attach(callbackRX);
00080         RX = true;
00081     }
00082     if (callbackTX) {
00083         this->callbackTX.attach(callbackTX);
00084         TX = true;
00085     }
00086     setInterrupt(RX, TX);
00087 }
00088 */
00089  
00090 uint32_t DW1000::getDeviceID() {
00091     uint32_t result;
00092     readRegister(DW1000_DEV_ID, 0, (uint8_t*)&result, 4);
00093     return result;
00094 }
00095  
00096 uint64_t DW1000::getEUI() {
00097     uint64_t result;
00098     readRegister(DW1000_EUI, 0, (uint8_t*)&result, 8);
00099     return result;
00100 }
00101  
00102 void DW1000::setEUI(uint64_t EUI) {
00103     writeRegister(DW1000_EUI, 0, (uint8_t*)&EUI, 8);
00104 }
00105  
00106 float DW1000::getVoltage() {
00107     uint8_t buffer[7] = {0x80, 0x0A, 0x0F, 0x01, 0x00};             // algorithm form User Manual p57
00108     writeRegister(DW1000_RF_CONF, 0x11, buffer, 2);
00109     writeRegister(DW1000_RF_CONF, 0x12, &buffer[2], 1);
00110     writeRegister(DW1000_TX_CAL, 0x00, &buffer[3], 1);
00111     writeRegister(DW1000_TX_CAL, 0x00, &buffer[4], 1);
00112     readRegister(DW1000_TX_CAL, 0x03, &buffer[5], 2);               // get the 8-Bit readings for Voltage and Temperature
00113     float Voltage = buffer[5] * 0.0057 + 2.3;
00114     //float Temperature = buffer[6] * 1.13 - 113.0;                 // TODO: getTemperature was always ~35 degree with better formula/calibration
00115     return Voltage;
00116 }
00117  
00118 uint64_t DW1000::getStatus() {
00119     return readRegister40(DW1000_SYS_STATUS, 0);
00120 }
00121  
00122 bool DW1000::hasReceivedFrame() {
00123     uint64_t status = getStatus();
00124     return status & 0x4000;
00125 }
00126  
00127 void DW1000::clearReceivedFlag() {
00128     writeRegister16(DW1000_SYS_STATUS, 0, 0x6F00);              // clearing of receiving status bits
00129 }
00130  
00131 bool DW1000::hasTransmissionStarted() {
00132     uint64_t status = getStatus();
00133     return status & 0x10;
00134 }
00135  
00136 bool DW1000::hasSentPreamble() {
00137     uint64_t status = getStatus();
00138     return status & 0x20;
00139 }
00140  
00141 bool DW1000::hasSentPHYHeader() {
00142     uint64_t status = getStatus();
00143     return status & 0x40;
00144 }
00145  
00146 bool DW1000::hasSentFrame() {
00147     uint64_t status = getStatus();
00148     return status & 0x80;
00149 }
00150  
00151 void DW1000::clearSentFlag() {
00152     writeRegister8(DW1000_SYS_STATUS, 0, 0xF8);                 // clearing of sending status bits
00153 }
00154  
00155 uint64_t DW1000::getSYSTimestamp() {
00156     return readRegister40(DW1000_SYS_TIME, 0);
00157 }
00158  
00159 uint64_t DW1000::getRXTimestamp() {
00160     return readRegister40(DW1000_RX_TIME, 0);
00161 }
00162  
00163 uint64_t DW1000::getTXTimestamp() {
00164     return readRegister40(DW1000_TX_TIME, 0);
00165 }
00166  
00167 float DW1000::getSYSTimestampUS() {
00168     return getSYSTimestamp() * TIMEUNITS_TO_US;
00169 }
00170  
00171 float DW1000::getRXTimestampUS() {
00172     return getRXTimestamp() * TIMEUNITS_TO_US;
00173 }
00174  
00175 float DW1000::getTXTimestampUS() {
00176     return getTXTimestamp() * TIMEUNITS_TO_US;
00177 }
00178  
00179 uint16_t DW1000::getStdNoise() {
00180     return readRegister16(DW1000_RX_FQUAL, 0x00);
00181 }
00182  
00183 uint16_t DW1000::getPACC() {
00184     uint32_t v = readRegister32(DW1000_RX_FINFO, 0x00);
00185     v >>= 20;
00186     return static_cast<uint16_t>(v);
00187 }
00188  
00189 uint16_t DW1000::getFPINDEX() {
00190     return readRegister16(DW1000_RX_TIME, 0x05);
00191 }
00192  
00193 uint16_t DW1000::getFPAMPL1() {
00194     return readRegister16(DW1000_RX_TIME, 0x07);
00195 }
00196  
00197 uint16_t DW1000::getFPAMPL2() {
00198     return readRegister16(DW1000_RX_FQUAL, 0x02);
00199 }
00200  
00201 uint16_t DW1000::getFPAMPL3() {
00202     return readRegister16(DW1000_RX_FQUAL, 0x04);
00203 }
00204  
00205 uint16_t DW1000::getCIRPWR() {
00206     return readRegister16(DW1000_RX_FQUAL, 0x06);
00207 }
00208  
00209 uint8_t DW1000::getPRF()
00210 {
00211     uint32_t prf_mask = static_cast<uint32_t>(0x1 << 19 | 0x1 << 18);
00212     uint32_t prf = readRegister32(DW1000_CHAN_CTRL, 0x00);
00213     prf >>= 18;
00214     return static_cast<uint8_t>(prf & prf_mask);
00215 }
00216  
00217 void DW1000::sendString(char* message) {
00218     sendFrame((uint8_t*)message, strlen(message)+1);
00219 }
00220  
00221 void DW1000::receiveString(char* message) {
00222     readRegister(DW1000_RX_BUFFER, 0, (uint8_t*)message, getFramelength());  // get data from buffer
00223 }
00224  
00225 void DW1000::sendFrame(uint8_t* message, uint16_t length) {
00226     //if (length >= 1021) length = 1021;                            // check for maximim length a frame can have with 1024 Byte frames [not used, see constructor]
00227     if (length >= 125) length = 125;                                // check for maximim length a frame can have with 127 Byte frames
00228  
00229     Timer timer;
00230     timer.start();
00231     writeRegister(DW1000_TX_BUFFER, 0, message, length);            // fill buffer
00232     
00233     uint8_t backup = readRegister8(DW1000_TX_FCTRL, 1);             // put length of frame
00234     length += 2;                                                    // including 2 CRC Bytes
00235     length = ((backup & 0xFC) << 8) | (length & 0x03FF);
00236     writeRegister16(DW1000_TX_FCTRL, 0, length);
00237     
00238     stopTRX();                                                      // stop receiving
00239     writeRegister8(DW1000_SYS_CTRL, 0, 0x02);                       // trigger sending process by setting the TXSTRT bit
00240 }
00241  
00242 void DW1000::sendDelayedFrame(uint8_t* message, uint16_t length, uint64_t TxTimestamp) {
00243     clearSentFlag();                                                // This is necessary, otherwise we pick up the transmission time of the previous send
00244  
00245     if (TxTimestamp > CONST_2POWER40) {
00246         TxTimestamp -= CONST_2POWER40;
00247     }
00248  
00249     //if (length >= 1021) length = 1021;                            // check for maximim length a frame can have with 1024 Byte frames [not used, see constructor]
00250     if (length >= 125) length = 125;                                // check for maximim length a frame can have with 127 Byte frames
00251     writeRegister(DW1000_TX_BUFFER, 0, message, length);            // fill buffer
00252  
00253     uint8_t backup = readRegister8(DW1000_TX_FCTRL, 1);             // put length of frame
00254     length += 2;                                                    // including 2 CRC Bytes
00255     length = ((backup & 0xFC) << 8) | (length & 0x03FF);
00256     writeRegister16(DW1000_TX_FCTRL, 0, length);
00257  
00258     writeRegister40(DW1000_DX_TIME, 0, TxTimestamp);                //write the timestamp on which to send the message
00259  
00260     stopTRX();                                                      // stop receiving
00261     writeRegister8(DW1000_SYS_CTRL, 0, 0x02 | 0x04);                // trigger sending process by setting the TXSTRT and TXDLYS bit
00262 }
00263  
00264 void DW1000::startRX() {
00265     writeRegister8(DW1000_SYS_CTRL, 0x01, 0x01);                    // start listening for preamble by setting the RXENAB bit
00266     wait_us(16);                                                    // According to page 81 in the user manual (RXENAB bit)
00267 }
00268  
00269 void DW1000::stopTRX() {
00270     writeRegister8(DW1000_SYS_CTRL, 0, 0x40);                       // disable tranceiver go back to idle mode by setting the TRXOFF bit
00271 }
00272  
00273 // PRIVATE Methods ------------------------------------------------------------------------------------
00274 void DW1000::loadLDE() {                                            // initialise LDE algorithm LDELOAD User Manual p22
00275     writeRegister16(DW1000_PMSC, 0, 0x0301);                        // set clock to XTAL so OTP is reliable
00276     writeRegister16(DW1000_OTP_IF, 0x06, 0x8000);                   // set LDELOAD bit in OTP
00277     wait_us(150);
00278     writeRegister16(DW1000_PMSC, 0, 0x0200);                        // recover to PLL clock
00279 }
00280  
00281 void DW1000::resetRX() {    
00282     writeRegister8(DW1000_PMSC, 3, 0xE0);   // set RX reset
00283     writeRegister8(DW1000_PMSC, 3, 0xF0);   // clear RX reset
00284 }
00285  
00286 void DW1000::hardwareReset(PinName reset_pin) {
00287     DigitalInOut reset(reset_pin);
00288     hardwareReset(reset);
00289 }
00290  
00291 void DW1000::hardwareReset(DigitalInOut& reset) {
00292     if (reset.is_connected()) {
00293         // DWM1000 RESET logic.
00294         if (DWM1000_DAMAGED) {
00295             /*
00296             // The following code works for damaged DWM1000 modules.
00297             // IMPORTANT: This will damage healthy DWM1000 modules!
00298             reset.output();
00299             reset = 1;
00300             wait_ms(100);
00301             reset = 0;
00302             wait_ms(100);
00303             reset = 1;
00304             wait_ms(100);
00305             */
00306         } else {
00307             // The following code works for healthy DWM1000 modules
00308             reset.output();
00309             reset = 0;
00310             wait_ms(100);
00311             reset.input();
00312         }
00313     }
00314 }
00315  
00316 void DW1000::softwareReset() {
00317     stopTRX();
00318     clearReceivedFlag();
00319     clearSentFlag();
00320 }
00321  
00322 void DW1000::resetAll() {
00323     hardwareReset(reset);
00324  
00325     writeRegister8(DW1000_PMSC, 0, 0x01);   // set clock to XTAL
00326     writeRegister8(DW1000_PMSC, 3, 0x00);   // set All reset
00327     wait_us(10);                            // wait for PLL to lock
00328     writeRegister8(DW1000_PMSC, 3, 0xF0);   // clear All reset
00329 }
00330  
00331  
00332 void DW1000::setInterrupt(bool RX, bool TX) {
00333     writeRegister16(DW1000_SYS_MASK, 0, RX*0x4000 | TX*0x0080);  // RX good frame 0x4000, TX done 0x0080
00334 }
00335  
00336 /*
00337 void DW1000::ISR() {
00338     uint64_t status = getStatus();
00339     if (status & 0x4000) {                                          // a frame was received
00340         callbackRX.call();
00341         writeRegister16(DW1000_SYS_STATUS, 0, 0x6F00);              // clearing of receiving status bits
00342     }
00343     if (status & 0x80) {                                            // sending complete
00344         callbackTX.call();
00345         writeRegister8(DW1000_SYS_STATUS, 0, 0xF8);                 // clearing of sending status bits
00346     }
00347 }
00348 */
00349  
00350 uint16_t DW1000::getFramelength() {
00351     uint16_t framelength = readRegister16(DW1000_RX_FINFO, 0);      // get framelength
00352     framelength = (framelength & 0x03FF) - 2;                       // take only the right bits and subtract the 2 CRC Bytes
00353     return framelength;
00354 }
00355  
00356 // SPI Interface ------------------------------------------------------------------------------------
00357 uint8_t DW1000::readRegister8(uint8_t reg, uint16_t subaddress) {
00358     uint8_t result;
00359     readRegister(reg, subaddress, &result, 1);
00360     return result;
00361 }
00362  
00363 uint16_t DW1000::readRegister16(uint8_t reg, uint16_t subaddress) {
00364     uint16_t result;
00365     readRegister(reg, subaddress, (uint8_t*)&result, 2);
00366     return result;
00367 }
00368  
00369 uint32_t DW1000::readRegister32(uint8_t reg, uint16_t subaddress) {
00370     uint32_t result;
00371     readRegister(reg, subaddress, (uint8_t*)&result, 4);
00372     return result;
00373 }
00374  
00375 uint64_t DW1000::readRegister40(uint8_t reg, uint16_t subaddress) {
00376     uint64_t result;
00377     readRegister(reg, subaddress, (uint8_t*)&result, 5);
00378     result &= 0xFFFFFFFFFF;                                 // only 40-Bit
00379     return result;
00380 }
00381  
00382 void DW1000::writeRegister8(uint8_t reg, uint16_t subaddress, uint8_t buffer) {
00383     writeRegister(reg, subaddress, &buffer, 1);
00384 }
00385  
00386 void DW1000::writeRegister16(uint8_t reg, uint16_t subaddress, uint16_t buffer) {
00387     writeRegister(reg, subaddress, (uint8_t*)&buffer, 2);
00388 }
00389  
00390 void DW1000::writeRegister32(uint8_t reg, uint16_t subaddress, uint32_t buffer) {
00391     writeRegister(reg, subaddress, (uint8_t*)&buffer, 4);
00392 }
00393  
00394 void DW1000::writeRegister40(uint8_t reg, uint16_t subaddress, uint64_t buffer) {
00395     writeRegister(reg, subaddress, (uint8_t*)&buffer, 5);
00396 }
00397  
00398 void DW1000::readRegister(uint8_t reg, uint16_t subaddress, uint8_t *buffer, int length) {
00399     setupTransaction(reg, subaddress, false);
00400     for(int i=0; i<length; i++)                             // get data
00401         buffer[i] = spi.write(0x00);
00402     deselect();
00403 }
00404  
00405 void DW1000::writeRegister(uint8_t reg, uint16_t subaddress, uint8_t *buffer, int length) {
00406     setupTransaction(reg, subaddress, true);
00407     for(int i=0; i<length; i++)                             // put data
00408         spi.write(buffer[i]);
00409     deselect();
00410 }
00411  
00412 void DW1000::setupTransaction(uint8_t reg, uint16_t subaddress, bool write) {
00413     reg |=  (write * DW1000_WRITE_FLAG);                                        // set read/write flag
00414     select();
00415     if (subaddress > 0) {                                                       // there's a subadress, we need to set flag and send second header byte
00416         spi.write(reg | DW1000_SUBADDRESS_FLAG);
00417         if (subaddress > 0x7F) {                                                // sub address too long, we need to set flag and send third header byte
00418             spi.write((uint8_t)(subaddress & 0x7F) | DW1000_2_SUBADDRESS_FLAG); // and 
00419             spi.write((uint8_t)(subaddress >> 7));
00420         } else {
00421             spi.write((uint8_t)subaddress);
00422         }
00423     } else {
00424         spi.write(reg);                                                         // say which register address we want to access
00425     }
00426 }
00427  
00428 void DW1000::select() {     // always called to start an SPI transmission
00429     /*
00430     if (irq != NULL) {
00431         //irq->disable_irq();
00432         irq.disable_irq();
00433     }
00434     */
00435     cs = 0;                 // set Cable Select pin low to start transmission
00436 }
00437  
00438 void DW1000::deselect() {   // always called to end an SPI transmission
00439     cs = 1;                 // set Cable Select pin high to stop transmission
00440     /*
00441     if (irq != NULL) {
00442         //irq->enable_irq();
00443         irq.enable_irq();
00444     }
00445     */
00446 }