init
Dependencies: aconno_I2C Lis2dh12 WatchdogTimer
DW1000.cpp
00001 // Adapted from Matthias Grob & Manuel Stalder - ETH Zürich - 2015 00002 #include "DW1000.h" 00003 #include "NRFuart.h" 00004 00005 // Change this depending on whether damaged or heatlhy DWM1000 modules are used. 00006 const bool DWM1000_DAMAGED = false; 00007 //const bool DWM1000_DAMAGED = false; 00008 00009 /*DW1000::DW1000(PinName MOSI, PinName MISO, PinName SCLK, PinName CS, PinName IRQ, PinName RESET) : irq(IRQ), spi(MOSI, MISO, SCLK), cs(CS), reset(RESET) { 00010 irq.rise(this, &DW1000::ISR); 00011 */ 00012 00013 DW1000::DW1000(PinName MOSI, PinName MISO, PinName SCLK, PinName CS, PinName IRQ, PinName RESET) : irq(IRQ), spi(MOSI, MISO, SCLK), cs(CS), reset(RESET) { 00014 //irq.rise(this, &DW1000::ISR); 00015 00016 //setCallbacks(NULL, NULL); 00017 00018 select(); 00019 deselect(); // Chip must be deselected first 00020 resetAll(); // we do a soft reset of the DW1000 everytime the driver starts 00021 00022 // Configuration TODO: make method for that 00023 // User Manual "2.5.5 Default Configurations that should be modified" p. 22 00024 //Those values are for the standard mode (6.8Mbps, 5, 16Mhz, 32 Symbols) and are INCOMPLETE! 00025 // writeRegister16(DW1000_AGC_CTRL, 0x04, 0x8870); 00026 // writeRegister32(DW1000_AGC_CTRL, 0x0C, 0x2502A907); 00027 // writeRegister32(DW1000_DRX_CONF, 0x08, 0x311A002D); 00028 // writeRegister8 (DW1000_LDE_CTRL, 0x0806, 0xD); 00029 // writeRegister16(DW1000_LDE_CTRL, 0x1806, 0x1607); 00030 // writeRegister32(DW1000_TX_POWER, 0, 0x0E082848); 00031 // writeRegister32(DW1000_RF_CONF, 0x0C, 0x001E3FE0); 00032 // writeRegister8 (DW1000_TX_CAL, 0x0B, 0xC0); 00033 // writeRegister8 (DW1000_FS_CTRL, 0x0B, 0xA6); 00034 00035 00036 //Those values are for the 110kbps mode (5, 16MHz, 1024 Symbols) and are quite complete 00037 writeRegister16(DW1000_AGC_CTRL, 0x04, 0x8870); //AGC_TUNE1 for 16MHz PRF 00038 writeRegister32(DW1000_AGC_CTRL, 0x0C, 0x2502A907); //AGC_TUNE2 (Universal) 00039 writeRegister16(DW1000_AGC_CTRL, 0x12, 0x0055); //AGC_TUNE3 (Universal) 00040 00041 writeRegister16(DW1000_DRX_CONF, 0x02, 0x000A); //DRX_TUNE0b for 110kbps 00042 writeRegister16(DW1000_DRX_CONF, 0x04, 0x0087); //DRX_TUNE1a for 16MHz PRF 00043 writeRegister16(DW1000_DRX_CONF, 0x06, 0x0064); //DRX_TUNE1b for 110kbps & > 1024 symbols 00044 writeRegister32(DW1000_DRX_CONF, 0x08, 0x351A009A); //PAC size for 1024 symbols preamble & 16MHz PRF 00045 //writeRegister32(DW1000_DRX_CONF, 0x08, 0x371A011D); //PAC size for 2048 symbols preamble 00046 00047 writeRegister8 (DW1000_LDE_CTRL, 0x0806, 0xD); //LDE_CFG1 00048 writeRegister16(DW1000_LDE_CTRL, 0x1806, 0x1607); //LDE_CFG2 for 16MHz PRF 00049 00050 writeRegister32(DW1000_TX_POWER, 0, 0x28282828); //Power for channel 5 00051 00052 writeRegister8(DW1000_RF_CONF, 0x0B, 0xD8); //RF_RXCTRLH for channel 5 00053 writeRegister32(DW1000_RF_CONF, 0x0C, 0x001E3FE0); //RF_TXCTRL for channel 5 00054 00055 writeRegister8 (DW1000_TX_CAL, 0x0B, 0xC0); //TC_PGDELAY for channel 5 00056 00057 writeRegister32 (DW1000_FS_CTRL, 0x07, 0x0800041D); //FS_PLLCFG for channel 5 00058 writeRegister8 (DW1000_FS_CTRL, 0x0B, 0xA6); //FS_PLLTUNE for channel 5 00059 00060 loadLDE(); // important everytime DW1000 initialises/awakes otherwise the LDE algorithm must be turned off or there's receiving malfunction see User Manual LDELOAD on p22 & p158 00061 00062 // 110kbps CAUTION: a lot of other registers have to be set for an optimized operation on 110kbps 00063 writeRegister16(DW1000_TX_FCTRL, 1, 0x0800 | 0x0100 | 0x0080); // use 1024 symbols preamble (0x0800) (previously 2048 - 0x2800), 16MHz pulse repetition frequency (0x0100), 110kbps bit rate (0x0080) see p.69 of DW1000 User Manual 00064 writeRegister8(DW1000_SYS_CFG, 2, 0x44); // enable special receiving option for 110kbps (disable smartTxPower)!! (0x44) see p.64 of DW1000 User Manual [DO NOT enable 1024 byte frames (0x03) becuase it generates disturbance of ranging don't know why...] 00065 00066 writeRegister16(DW1000_TX_ANTD, 0, 16384); // set TX and RX Antenna delay to neutral because we calibrate afterwards 00067 writeRegister16(DW1000_LDE_CTRL, 0x1804, 16384); // = 2^14 a quarter of the range of the 16-Bit register which corresponds to zero calibration in a round trip (TX1+RX2+TX2+RX1) 00068 00069 writeRegister8(DW1000_SYS_CFG, 3, 0x20); // enable auto reenabling receiver after error 00070 00071 //irq.enable_irq(); 00072 } 00073 00074 /* 00075 void DW1000::setCallbacks(void (*callbackRX)(void), void (*callbackTX)(void)) { 00076 bool RX = false; 00077 bool TX = false; 00078 if (callbackRX) { 00079 this->callbackRX.attach(callbackRX); 00080 RX = true; 00081 } 00082 if (callbackTX) { 00083 this->callbackTX.attach(callbackTX); 00084 TX = true; 00085 } 00086 setInterrupt(RX, TX); 00087 } 00088 */ 00089 00090 uint32_t DW1000::getDeviceID() { 00091 uint32_t result; 00092 readRegister(DW1000_DEV_ID, 0, (uint8_t*)&result, 4); 00093 return result; 00094 } 00095 00096 uint64_t DW1000::getEUI() { 00097 uint64_t result; 00098 readRegister(DW1000_EUI, 0, (uint8_t*)&result, 8); 00099 return result; 00100 } 00101 00102 void DW1000::setEUI(uint64_t EUI) { 00103 writeRegister(DW1000_EUI, 0, (uint8_t*)&EUI, 8); 00104 } 00105 00106 float DW1000::getVoltage() { 00107 uint8_t buffer[7] = {0x80, 0x0A, 0x0F, 0x01, 0x00}; // algorithm form User Manual p57 00108 writeRegister(DW1000_RF_CONF, 0x11, buffer, 2); 00109 writeRegister(DW1000_RF_CONF, 0x12, &buffer[2], 1); 00110 writeRegister(DW1000_TX_CAL, 0x00, &buffer[3], 1); 00111 writeRegister(DW1000_TX_CAL, 0x00, &buffer[4], 1); 00112 readRegister(DW1000_TX_CAL, 0x03, &buffer[5], 2); // get the 8-Bit readings for Voltage and Temperature 00113 float Voltage = buffer[5] * 0.0057 + 2.3; 00114 //float Temperature = buffer[6] * 1.13 - 113.0; // TODO: getTemperature was always ~35 degree with better formula/calibration 00115 return Voltage; 00116 } 00117 00118 uint64_t DW1000::getStatus() { 00119 return readRegister40(DW1000_SYS_STATUS, 0); 00120 } 00121 00122 bool DW1000::hasReceivedFrame() { 00123 uint64_t status = getStatus(); 00124 return status & 0x4000; 00125 } 00126 00127 void DW1000::clearReceivedFlag() { 00128 writeRegister16(DW1000_SYS_STATUS, 0, 0x6F00); // clearing of receiving status bits 00129 } 00130 00131 bool DW1000::hasTransmissionStarted() { 00132 uint64_t status = getStatus(); 00133 return status & 0x10; 00134 } 00135 00136 bool DW1000::hasSentPreamble() { 00137 uint64_t status = getStatus(); 00138 return status & 0x20; 00139 } 00140 00141 bool DW1000::hasSentPHYHeader() { 00142 uint64_t status = getStatus(); 00143 return status & 0x40; 00144 } 00145 00146 bool DW1000::hasSentFrame() { 00147 uint64_t status = getStatus(); 00148 return status & 0x80; 00149 } 00150 00151 void DW1000::clearSentFlag() { 00152 writeRegister8(DW1000_SYS_STATUS, 0, 0xF8); // clearing of sending status bits 00153 } 00154 00155 uint64_t DW1000::getSYSTimestamp() { 00156 return readRegister40(DW1000_SYS_TIME, 0); 00157 } 00158 00159 uint64_t DW1000::getRXTimestamp() { 00160 return readRegister40(DW1000_RX_TIME, 0); 00161 } 00162 00163 uint64_t DW1000::getTXTimestamp() { 00164 return readRegister40(DW1000_TX_TIME, 0); 00165 } 00166 00167 float DW1000::getSYSTimestampUS() { 00168 return getSYSTimestamp() * TIMEUNITS_TO_US; 00169 } 00170 00171 float DW1000::getRXTimestampUS() { 00172 return getRXTimestamp() * TIMEUNITS_TO_US; 00173 } 00174 00175 float DW1000::getTXTimestampUS() { 00176 return getTXTimestamp() * TIMEUNITS_TO_US; 00177 } 00178 00179 uint16_t DW1000::getStdNoise() { 00180 return readRegister16(DW1000_RX_FQUAL, 0x00); 00181 } 00182 00183 uint16_t DW1000::getPACC() { 00184 uint32_t v = readRegister32(DW1000_RX_FINFO, 0x00); 00185 v >>= 20; 00186 return static_cast<uint16_t>(v); 00187 } 00188 00189 uint16_t DW1000::getFPINDEX() { 00190 return readRegister16(DW1000_RX_TIME, 0x05); 00191 } 00192 00193 uint16_t DW1000::getFPAMPL1() { 00194 return readRegister16(DW1000_RX_TIME, 0x07); 00195 } 00196 00197 uint16_t DW1000::getFPAMPL2() { 00198 return readRegister16(DW1000_RX_FQUAL, 0x02); 00199 } 00200 00201 uint16_t DW1000::getFPAMPL3() { 00202 return readRegister16(DW1000_RX_FQUAL, 0x04); 00203 } 00204 00205 uint16_t DW1000::getCIRPWR() { 00206 return readRegister16(DW1000_RX_FQUAL, 0x06); 00207 } 00208 00209 uint8_t DW1000::getPRF() 00210 { 00211 uint32_t prf_mask = static_cast<uint32_t>(0x1 << 19 | 0x1 << 18); 00212 uint32_t prf = readRegister32(DW1000_CHAN_CTRL, 0x00); 00213 prf >>= 18; 00214 return static_cast<uint8_t>(prf & prf_mask); 00215 } 00216 00217 void DW1000::sendString(char* message) { 00218 sendFrame((uint8_t*)message, strlen(message)+1); 00219 } 00220 00221 void DW1000::receiveString(char* message) { 00222 readRegister(DW1000_RX_BUFFER, 0, (uint8_t*)message, getFramelength()); // get data from buffer 00223 } 00224 00225 void DW1000::sendFrame(uint8_t* message, uint16_t length) { 00226 //if (length >= 1021) length = 1021; // check for maximim length a frame can have with 1024 Byte frames [not used, see constructor] 00227 if (length >= 125) length = 125; // check for maximim length a frame can have with 127 Byte frames 00228 00229 Timer timer; 00230 timer.start(); 00231 writeRegister(DW1000_TX_BUFFER, 0, message, length); // fill buffer 00232 00233 uint8_t backup = readRegister8(DW1000_TX_FCTRL, 1); // put length of frame 00234 length += 2; // including 2 CRC Bytes 00235 length = ((backup & 0xFC) << 8) | (length & 0x03FF); 00236 writeRegister16(DW1000_TX_FCTRL, 0, length); 00237 00238 stopTRX(); // stop receiving 00239 writeRegister8(DW1000_SYS_CTRL, 0, 0x02); // trigger sending process by setting the TXSTRT bit 00240 } 00241 00242 void DW1000::sendDelayedFrame(uint8_t* message, uint16_t length, uint64_t TxTimestamp) { 00243 clearSentFlag(); // This is necessary, otherwise we pick up the transmission time of the previous send 00244 00245 if (TxTimestamp > CONST_2POWER40) { 00246 TxTimestamp -= CONST_2POWER40; 00247 } 00248 00249 //if (length >= 1021) length = 1021; // check for maximim length a frame can have with 1024 Byte frames [not used, see constructor] 00250 if (length >= 125) length = 125; // check for maximim length a frame can have with 127 Byte frames 00251 writeRegister(DW1000_TX_BUFFER, 0, message, length); // fill buffer 00252 00253 uint8_t backup = readRegister8(DW1000_TX_FCTRL, 1); // put length of frame 00254 length += 2; // including 2 CRC Bytes 00255 length = ((backup & 0xFC) << 8) | (length & 0x03FF); 00256 writeRegister16(DW1000_TX_FCTRL, 0, length); 00257 00258 writeRegister40(DW1000_DX_TIME, 0, TxTimestamp); //write the timestamp on which to send the message 00259 00260 stopTRX(); // stop receiving 00261 writeRegister8(DW1000_SYS_CTRL, 0, 0x02 | 0x04); // trigger sending process by setting the TXSTRT and TXDLYS bit 00262 } 00263 00264 void DW1000::startRX() { 00265 writeRegister8(DW1000_SYS_CTRL, 0x01, 0x01); // start listening for preamble by setting the RXENAB bit 00266 wait_us(16); // According to page 81 in the user manual (RXENAB bit) 00267 } 00268 00269 void DW1000::stopTRX() { 00270 writeRegister8(DW1000_SYS_CTRL, 0, 0x40); // disable tranceiver go back to idle mode by setting the TRXOFF bit 00271 } 00272 00273 // PRIVATE Methods ------------------------------------------------------------------------------------ 00274 void DW1000::loadLDE() { // initialise LDE algorithm LDELOAD User Manual p22 00275 writeRegister16(DW1000_PMSC, 0, 0x0301); // set clock to XTAL so OTP is reliable 00276 writeRegister16(DW1000_OTP_IF, 0x06, 0x8000); // set LDELOAD bit in OTP 00277 wait_us(150); 00278 writeRegister16(DW1000_PMSC, 0, 0x0200); // recover to PLL clock 00279 } 00280 00281 void DW1000::resetRX() { 00282 writeRegister8(DW1000_PMSC, 3, 0xE0); // set RX reset 00283 writeRegister8(DW1000_PMSC, 3, 0xF0); // clear RX reset 00284 } 00285 00286 void DW1000::hardwareReset(PinName reset_pin) { 00287 DigitalInOut reset(reset_pin); 00288 hardwareReset(reset); 00289 } 00290 00291 void DW1000::hardwareReset(DigitalInOut& reset) { 00292 if (reset.is_connected()) { 00293 // DWM1000 RESET logic. 00294 if (DWM1000_DAMAGED) { 00295 /* 00296 // The following code works for damaged DWM1000 modules. 00297 // IMPORTANT: This will damage healthy DWM1000 modules! 00298 reset.output(); 00299 reset = 1; 00300 wait_ms(100); 00301 reset = 0; 00302 wait_ms(100); 00303 reset = 1; 00304 wait_ms(100); 00305 */ 00306 } else { 00307 // The following code works for healthy DWM1000 modules 00308 reset.output(); 00309 reset = 0; 00310 wait_ms(100); 00311 reset.input(); 00312 } 00313 } 00314 } 00315 00316 void DW1000::softwareReset() { 00317 stopTRX(); 00318 clearReceivedFlag(); 00319 clearSentFlag(); 00320 } 00321 00322 void DW1000::resetAll() { 00323 hardwareReset(reset); 00324 00325 writeRegister8(DW1000_PMSC, 0, 0x01); // set clock to XTAL 00326 writeRegister8(DW1000_PMSC, 3, 0x00); // set All reset 00327 wait_us(10); // wait for PLL to lock 00328 writeRegister8(DW1000_PMSC, 3, 0xF0); // clear All reset 00329 } 00330 00331 00332 void DW1000::setInterrupt(bool RX, bool TX) { 00333 writeRegister16(DW1000_SYS_MASK, 0, RX*0x4000 | TX*0x0080); // RX good frame 0x4000, TX done 0x0080 00334 } 00335 00336 /* 00337 void DW1000::ISR() { 00338 uint64_t status = getStatus(); 00339 if (status & 0x4000) { // a frame was received 00340 callbackRX.call(); 00341 writeRegister16(DW1000_SYS_STATUS, 0, 0x6F00); // clearing of receiving status bits 00342 } 00343 if (status & 0x80) { // sending complete 00344 callbackTX.call(); 00345 writeRegister8(DW1000_SYS_STATUS, 0, 0xF8); // clearing of sending status bits 00346 } 00347 } 00348 */ 00349 00350 uint16_t DW1000::getFramelength() { 00351 uint16_t framelength = readRegister16(DW1000_RX_FINFO, 0); // get framelength 00352 framelength = (framelength & 0x03FF) - 2; // take only the right bits and subtract the 2 CRC Bytes 00353 return framelength; 00354 } 00355 00356 // SPI Interface ------------------------------------------------------------------------------------ 00357 uint8_t DW1000::readRegister8(uint8_t reg, uint16_t subaddress) { 00358 uint8_t result; 00359 readRegister(reg, subaddress, &result, 1); 00360 return result; 00361 } 00362 00363 uint16_t DW1000::readRegister16(uint8_t reg, uint16_t subaddress) { 00364 uint16_t result; 00365 readRegister(reg, subaddress, (uint8_t*)&result, 2); 00366 return result; 00367 } 00368 00369 uint32_t DW1000::readRegister32(uint8_t reg, uint16_t subaddress) { 00370 uint32_t result; 00371 readRegister(reg, subaddress, (uint8_t*)&result, 4); 00372 return result; 00373 } 00374 00375 uint64_t DW1000::readRegister40(uint8_t reg, uint16_t subaddress) { 00376 uint64_t result; 00377 readRegister(reg, subaddress, (uint8_t*)&result, 5); 00378 result &= 0xFFFFFFFFFF; // only 40-Bit 00379 return result; 00380 } 00381 00382 void DW1000::writeRegister8(uint8_t reg, uint16_t subaddress, uint8_t buffer) { 00383 writeRegister(reg, subaddress, &buffer, 1); 00384 } 00385 00386 void DW1000::writeRegister16(uint8_t reg, uint16_t subaddress, uint16_t buffer) { 00387 writeRegister(reg, subaddress, (uint8_t*)&buffer, 2); 00388 } 00389 00390 void DW1000::writeRegister32(uint8_t reg, uint16_t subaddress, uint32_t buffer) { 00391 writeRegister(reg, subaddress, (uint8_t*)&buffer, 4); 00392 } 00393 00394 void DW1000::writeRegister40(uint8_t reg, uint16_t subaddress, uint64_t buffer) { 00395 writeRegister(reg, subaddress, (uint8_t*)&buffer, 5); 00396 } 00397 00398 void DW1000::readRegister(uint8_t reg, uint16_t subaddress, uint8_t *buffer, int length) { 00399 setupTransaction(reg, subaddress, false); 00400 for(int i=0; i<length; i++) // get data 00401 buffer[i] = spi.write(0x00); 00402 deselect(); 00403 } 00404 00405 void DW1000::writeRegister(uint8_t reg, uint16_t subaddress, uint8_t *buffer, int length) { 00406 setupTransaction(reg, subaddress, true); 00407 for(int i=0; i<length; i++) // put data 00408 spi.write(buffer[i]); 00409 deselect(); 00410 } 00411 00412 void DW1000::setupTransaction(uint8_t reg, uint16_t subaddress, bool write) { 00413 reg |= (write * DW1000_WRITE_FLAG); // set read/write flag 00414 select(); 00415 if (subaddress > 0) { // there's a subadress, we need to set flag and send second header byte 00416 spi.write(reg | DW1000_SUBADDRESS_FLAG); 00417 if (subaddress > 0x7F) { // sub address too long, we need to set flag and send third header byte 00418 spi.write((uint8_t)(subaddress & 0x7F) | DW1000_2_SUBADDRESS_FLAG); // and 00419 spi.write((uint8_t)(subaddress >> 7)); 00420 } else { 00421 spi.write((uint8_t)subaddress); 00422 } 00423 } else { 00424 spi.write(reg); // say which register address we want to access 00425 } 00426 } 00427 00428 void DW1000::select() { // always called to start an SPI transmission 00429 /* 00430 if (irq != NULL) { 00431 //irq->disable_irq(); 00432 irq.disable_irq(); 00433 } 00434 */ 00435 cs = 0; // set Cable Select pin low to start transmission 00436 } 00437 00438 void DW1000::deselect() { // always called to end an SPI transmission 00439 cs = 1; // set Cable Select pin high to stop transmission 00440 /* 00441 if (irq != NULL) { 00442 //irq->enable_irq(); 00443 irq.enable_irq(); 00444 } 00445 */ 00446 }
Generated on Sat Jul 16 2022 03:03:28 by
1.7.2