Example programs for MultiTech Dot devices demonstrating how to use the Dot devices and the Dot libraries for LoRa communication.

Dependencies:   ISL29011

Dependents:   Dot-Examples-delujoc

This project has moved to github

Please see GitHub Dot-Examples

Dot Library Not Included!

Because these example programs can be used for both mDot and xDot devices, the LoRa stack is not included. The libmDot library should be imported if building for mDot devices. The libxDot library should be imported if building for xDot devices.

Dot Library Limitations

Commit messages in Dot Library repositories specify the version of the library and the version of mbed-os it was compiled against. We recommend building your application with the version of mbed-os specified in the commit message of the version of the Dot library you're using. This will ensure that you don't run into any runtime issues caused by differences in the mbed-os versions.

Example Programs Description

This application contains multiple example programs. Each example demonstrates a different way to configure and use a Dot. A short summary of each example is provided below. Common code used by multiple examples is in the dot_utils.cpp file.

All examples print logging, including RX data, on the USB debug port at 115200 baud. Each example defaults the Dot's configuration and saves the new configuration to NVM.

OTA Example

This example demonstrates configuring the Dot for OTA join mode and entering sleep or deepsleep mode between transactions with the gateway. If deepsleep mode is used, the session is saved and restored so that a rejoin is not necessary after waking up even though RAM contents have been lost. ACKs are disabled, but network link checks are configured - if enough link checks are missed, the Dot will no longer be considered joined to the network and will attempt to rejoin before transmitting more data.

AUTO_OTA Example

This example demonstrates configuring the Dot for AUTO_OTA join mode and entering sleep or deepsleep mode between transactions with the gateway. AUTO_OTA join mode automatically saves and restores the session when deepsleep mode is used, so the manual saving and restoring of the session is not necessary. ACKs are disabled, but network link checks are configured - if enough link checks are missed, the Dot will no longer be considered joined to the network and will attempt to rejoin before transmitting more data.

Manual Example

This example demonstrates configuring the Dot for MANUAL join mode and entering sleep or deepsleep mode between transactions with the gateway. The Dot must be provisioned on the gateway before its packets will be accepted! Follow these steps to provision the Dot on a Conduit gateway:

  • ssh into the conduit
  • use the lorq-query application to provision the Dot on the gateway
    • lora-query -a 01020304 A 0102030401020304 <your Dot's device ID> 01020304010203040102030401020304 01020304010203040102030401020304
    • if any of the credentials change on the Dot side, they must be updated on the gateway side as well

To provision a Dot on a third-party gateway, see the gateway or network provider documentation.

Class B Example

This example demonstrates how to configure the dot for an OTA join, how to acquire a lock on a GPS synchronized beacon, and then to subsequently enter class B mode of operation. After a successful join, the device will request to the dot-library to switch to class B. When this happens, the library will send an uplink to the network server (hence we must be joined first before entering this mode) requesting the GPS time to calculate when the next beacon is expected. Once this time elapses, the dot will open an rx window to demodulate the broadcasted beacon and fire an mDotEvent::BeaconRx event upon successful reception. After the beacon is received, the example sends an uplink which will have the class B bit in the packet's frame control set to indicate to the network server that downlinks may now be scheduled on ping slots. The lora-query application can be used to configure a Conduit gateway to communicate with a Dot in class B mode. For information on how to inform a third-party gateway that a Dot is operating in class B mode, see the gateway or network provider documentation.

Class C Example

This example demonstrates configuring the Dot for OTA join mode and communicating with the gateway using class C mode. In class C mode the gateway can send a packet to the Dot at any time, so it must be listening whenever it is not transmitting. This means that the Dot cannot enter sleep or deepsleep mode. The gateway will not immediately send packets to the Dot (outside the receive windows following a transmission from the Dot) until it is informed that the Dot is operating in class C mode. The lora-query application can be used to configure a Conduit gateway to communicate with a Dot in class C mode. For information on how to inform a third-party gateway that a Dot is operating in class C mode, see the gateway or network provider documentation.

FOTA Example

Full FOTA support is available on mDot and on xDot with external flash. See this article for details on adding external flash for xDot FOTA.

Without external flash xDot can use the FOTA example to dynamically join a multicast session only. After joining the multicast session the received Fragmentation packets could be handed to a host MCU for processing and at completion the firmware can be loaded into the xDot using the bootloader and y-modem. See xDot Developer Guide.

This example demonstrates how to incorporate over-the-air updates to an application. The example uses a Class C application. Class A or B functionality could also be used. The device will automatically enter into Class C operation for the FOTA operation, Class B would be disabled during the FOTA transfer.

  • Add the following code to allow Fota to use the Dot instance

examples/src/fota_example.cpp

    // Initialize FOTA singleton
    Fota::getInstance(dot);
  • Add fragmentation and multicast handling the the PacketRx event

examples/inc/RadioEvent.h

    virtual void PacketRx(uint8_t port, uint8_t *payload, uint16_t size, int16_t rssi, int8_t snr, lora::DownlinkControl ctrl, uint8_t slot, uint8_t retries, uint32_t address, uint32_t fcnt, bool dupRx) {
        mDotEvent::PacketRx(port, payload, size, rssi, snr, ctrl, slot, retries, address, fcnt, dupRx);

#if ACTIVE_EXAMPLE == FOTA_EXAMPLE
        if(port == 200 || port == 201 || port == 202) {
            Fota::getInstance()->processCmd(payload, port, size);
        }
#endif
    }

A definition is needed to enable FOTA.

mbed_app.json

{
    "macros": [
        "FOTA=1"
    ]
}


Peer to Peer Example

This example demonstrates configuring Dots for peer to peer communication without a gateway. It should be compiled and run on two Dots. Peer to peer communication uses LoRa modulation but uses a single higher throughput (usually 500kHz or 250kHz) datarate. It is similar to class C operation - when a Dot isn't transmitting, it's listening for packets from the other Dot. Both Dots must be configured exactly the same for peer to peer communication to be successful.


Choosing An Example Program and Channel Plan

Only the active example is compiled. The active example can be updated by changing the ACTIVE_EXAMPLE definition in the examples/example_config.h file.

By default the OTA_EXAMPLE will be compiled and the US915 channel plan will be used.

example_config.h

#ifndef __EXAMPLE__CONFIG_H__
#define __EXAMPLE__CONFIG_H__

#define OTA_EXAMPLE              1  // see ota_example.cpp
#define AUTO_OTA_EXAMPLE         2  // see auto_ota_example.cpp
#define MANUAL_EXAMPLE           3  // see manual_example.cpp
#define PEER_TO_PEER_EXAMPLE     4  // see peer_to_peer_example.cpp
#define CLASS_C_EXAMPLE          5  // see class_c_example.cpp

// the active example is the one that will be compiled
#if !defined(ACTIVE_EXAMPLE)
#define ACTIVE_EXAMPLE  OTA_EXAMPLE
#endif

// the active channel plan is the one that will be compiled
// options are :
//      CP_US915
//      CP_AU915
//      CP_EU868
//      CP_KR920
//      CP_AS923
//      CP_AS923_JAPAN
#if !defined(CHANNEL_PLAN)
#define CHANNEL_PLAN CP_US915
#endif

#endif


Compile the AUTO_OTA_EXAMPLE and use the EU868 channel plan instead.

example_config.h

#ifndef __EXAMPLE__CONFIG_H__
#define __EXAMPLE__CONFIG_H__

#define OTA_EXAMPLE              1  // see ota_example.cpp
#define AUTO_OTA_EXAMPLE         2  // see auto_ota_example.cpp
#define MANUAL_EXAMPLE           3  // see manual_example.cpp
#define PEER_TO_PEER_EXAMPLE     4  // see peer_to_peer_example.cpp
#define CLASS_C_EXAMPLE          5  // see class_c_example.cpp

// the active example is the one that will be compiled
#if !defined(ACTIVE_EXAMPLE)
#define ACTIVE_EXAMPLE  AUTO_OTA_EXAMPLE
#endif

// the active channel plan is the one that will be compiled
// options are :
//      CP_US915
//      CP_AU915
//      CP_EU868
//      CP_KR920
//      CP_AS923
//      CP_AS923_JAPAN
#if !defined(CHANNEL_PLAN)
#define CHANNEL_PLAN CP_EU868
#endif

#endif



Dot Libraries

Stable and development libraries are available for both mDot and xDot platforms. The library chosen must match the target platform. Compiling for the mDot platform with the xDot library or vice versa will not succeed.

mDot Library

Development library for mDot.

libmDot-dev

Stable library for mDot.

libmDot-stable


For mbed-os 5 use:

Import librarylibmDot-mbed5

Stable version of the mDot library for mbed 5. This version of the library is suitable for deployment scenarios. See lastest commit message for version of mbed-os library that has been tested against.

xDot Library

Development library for xDot.

libxDot-dev

Stable library for xDot.

libxDot-stable


For mbed-os 5 use:

Import librarylibxDot-mbed5

Stable version of the xDot library for mbed 5. This version of the library is suitable for deployment scenarios.

Committer:
Taylor Heck
Date:
Tue May 25 09:54:33 2021 -0500
Revision:
42:20f6b29a9903
Parent:
33:15ea8f985c54
Target mbed-os 6 and Dot Library version 4.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
Mike Fiore 11:d2e31743433a 1 #include "dot_util.h"
Mike Fiore 14:19fae4509473 2 #include "RadioEvent.h"
Mike Fiore 11:d2e31743433a 3
Mike Fiore 11:d2e31743433a 4 #if ACTIVE_EXAMPLE == PEER_TO_PEER_EXAMPLE
Mike Fiore 11:d2e31743433a 5
mfiore 17:d4f82e16de5f 6 /////////////////////////////////////////////////////////////////////////////
mfiore 17:d4f82e16de5f 7 // -------------------- DOT LIBRARY REQUIRED ------------------------------//
mfiore 17:d4f82e16de5f 8 // * Because these example programs can be used for both mDot and xDot //
mfiore 17:d4f82e16de5f 9 // devices, the LoRa stack is not included. The libmDot library should //
mfiore 17:d4f82e16de5f 10 // be imported if building for mDot devices. The libxDot library //
mfiore 17:d4f82e16de5f 11 // should be imported if building for xDot devices. //
mfiore 17:d4f82e16de5f 12 // * https://developer.mbed.org/teams/MultiTech/code/libmDot-dev-mbed5/ //
mfiore 17:d4f82e16de5f 13 // * https://developer.mbed.org/teams/MultiTech/code/libmDot-mbed5/ //
mfiore 17:d4f82e16de5f 14 // * https://developer.mbed.org/teams/MultiTech/code/libxDot-dev-mbed5/ //
mfiore 17:d4f82e16de5f 15 // * https://developer.mbed.org/teams/MultiTech/code/libxDot-mbed5/ //
mfiore 17:d4f82e16de5f 16 /////////////////////////////////////////////////////////////////////////////
mfiore 17:d4f82e16de5f 17
Mike Fiore 11:d2e31743433a 18 /////////////////////////////////////////////////////////////
Mike Fiore 11:d2e31743433a 19 // * these options must match between the two devices in //
Mike Fiore 11:d2e31743433a 20 // order for communication to be successful
Mike Fiore 11:d2e31743433a 21 /////////////////////////////////////////////////////////////
Mike Fiore 11:d2e31743433a 22 static uint8_t network_address[] = { 0x01, 0x02, 0x03, 0x04 };
Mike Fiore 11:d2e31743433a 23 static uint8_t network_session_key[] = { 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04 };
Mike Fiore 11:d2e31743433a 24 static uint8_t data_session_key[] = { 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04 };
Mike Fiore 11:d2e31743433a 25
Mike Fiore 11:d2e31743433a 26 mDot* dot = NULL;
Mike Fiore 21:09d05faf0e13 27 lora::ChannelPlan* plan = NULL;
Mike Fiore 11:d2e31743433a 28
Taylor Heck 42:20f6b29a9903 29 mbed::UnbufferedSerial pc(USBTX, USBRX);
Mike Fiore 11:d2e31743433a 30
Evan Hosseini 30:2f5ae37e6c47 31 #if defined(TARGET_XDOT_L151CC)
Evan Hosseini 30:2f5ae37e6c47 32 I2C i2c(I2C_SDA, I2C_SCL);
Evan Hosseini 30:2f5ae37e6c47 33 ISL29011 lux(i2c);
Evan Hosseini 30:2f5ae37e6c47 34 #else
Evan Hosseini 30:2f5ae37e6c47 35 AnalogIn lux(XBEE_AD0);
Evan Hosseini 30:2f5ae37e6c47 36 #endif
Evan Hosseini 30:2f5ae37e6c47 37
Mike Fiore 11:d2e31743433a 38 int main() {
Mike Fiore 14:19fae4509473 39 // Custom event handler for automatically displaying RX data
Mike Fiore 11:d2e31743433a 40 RadioEvent events;
Mike Fiore 11:d2e31743433a 41 uint32_t tx_frequency;
Mike Fiore 11:d2e31743433a 42 uint8_t tx_datarate;
Mike Fiore 11:d2e31743433a 43 uint8_t tx_power;
Mike Fiore 11:d2e31743433a 44 uint8_t frequency_band;
Mike Fiore 11:d2e31743433a 45
Mike Fiore 11:d2e31743433a 46 pc.baud(115200);
Mike Fiore 11:d2e31743433a 47
Evan Hosseini 30:2f5ae37e6c47 48 #if defined(TARGET_XDOT_L151CC)
Evan Hosseini 30:2f5ae37e6c47 49 i2c.frequency(400000);
Evan Hosseini 30:2f5ae37e6c47 50 #endif
Evan Hosseini 30:2f5ae37e6c47 51
Mike Fiore 11:d2e31743433a 52 mts::MTSLog::setLogLevel(mts::MTSLog::TRACE_LEVEL);
Taylor Heck 42:20f6b29a9903 53
Taylor Heck 42:20f6b29a9903 54 // Create channel plan
Taylor Heck 42:20f6b29a9903 55 plan = create_channel_plan();
Mike Fiore 21:09d05faf0e13 56 assert(plan);
Mike Fiore 21:09d05faf0e13 57
Mike Fiore 21:09d05faf0e13 58 dot = mDot::getInstance(plan);
Mike Fiore 21:09d05faf0e13 59 assert(dot);
Mike Fiore 11:d2e31743433a 60
jreiss 33:15ea8f985c54 61 logInfo("mbed-os library version: %d.%d.%d", MBED_MAJOR_VERSION, MBED_MINOR_VERSION, MBED_PATCH_VERSION);
Mike Fiore 16:a3832552dfe1 62
Mike Fiore 12:ec9768677cea 63 // start from a well-known state
Mike Fiore 12:ec9768677cea 64 logInfo("defaulting Dot configuration");
Mike Fiore 12:ec9768677cea 65 dot->resetConfig();
Mike Fiore 12:ec9768677cea 66
Mike Fiore 11:d2e31743433a 67 // make sure library logging is turned on
Mike Fiore 11:d2e31743433a 68 dot->setLogLevel(mts::MTSLog::INFO_LEVEL);
Mike Fiore 11:d2e31743433a 69
Mike Fiore 11:d2e31743433a 70 // attach the custom events handler
Mike Fiore 11:d2e31743433a 71 dot->setEvents(&events);
Mike Fiore 11:d2e31743433a 72
Mike Fiore 11:d2e31743433a 73 // update configuration if necessary
Mike Fiore 11:d2e31743433a 74 if (dot->getJoinMode() != mDot::PEER_TO_PEER) {
Mike Fiore 11:d2e31743433a 75 logInfo("changing network join mode to PEER_TO_PEER");
Mike Fiore 11:d2e31743433a 76 if (dot->setJoinMode(mDot::PEER_TO_PEER) != mDot::MDOT_OK) {
Mike Fiore 11:d2e31743433a 77 logError("failed to set network join mode to PEER_TO_PEER");
Mike Fiore 11:d2e31743433a 78 }
Mike Fiore 11:d2e31743433a 79 }
Mike Fiore 11:d2e31743433a 80 frequency_band = dot->getFrequencyBand();
Mike Fiore 11:d2e31743433a 81 switch (frequency_band) {
Mike Fiore 21:09d05faf0e13 82 case lora::ChannelPlan::EU868_OLD:
Mike Fiore 21:09d05faf0e13 83 case lora::ChannelPlan::EU868:
Mike Fiore 11:d2e31743433a 84 // 250kHz channels achieve higher throughput
Mike Fiore 21:09d05faf0e13 85 // DR_6 : SF7 @ 250kHz
Mike Fiore 21:09d05faf0e13 86 // DR_0 - DR_5 (125kHz channels) available but much slower
Mike Fiore 11:d2e31743433a 87 tx_frequency = 869850000;
Mike Fiore 21:09d05faf0e13 88 tx_datarate = lora::DR_6;
Mike Fiore 11:d2e31743433a 89 // the 869850000 frequency is 100% duty cycle if the total power is under 7 dBm - tx power 4 + antenna gain 3 = 7
Mike Fiore 11:d2e31743433a 90 tx_power = 4;
Mike Fiore 11:d2e31743433a 91 break;
Mike Fiore 21:09d05faf0e13 92
Mike Fiore 21:09d05faf0e13 93 case lora::ChannelPlan::US915_OLD:
Mike Fiore 21:09d05faf0e13 94 case lora::ChannelPlan::US915:
Mike Fiore 21:09d05faf0e13 95 case lora::ChannelPlan::AU915_OLD:
Mike Fiore 21:09d05faf0e13 96 case lora::ChannelPlan::AU915:
Mike Fiore 11:d2e31743433a 97 // 500kHz channels achieve highest throughput
Mike Fiore 21:09d05faf0e13 98 // DR_8 : SF12 @ 500kHz
Mike Fiore 21:09d05faf0e13 99 // DR_9 : SF11 @ 500kHz
Mike Fiore 21:09d05faf0e13 100 // DR_10 : SF10 @ 500kHz
Mike Fiore 21:09d05faf0e13 101 // DR_11 : SF9 @ 500kHz
Mike Fiore 21:09d05faf0e13 102 // DR_12 : SF8 @ 500kHz
Mike Fiore 21:09d05faf0e13 103 // DR_13 : SF7 @ 500kHz
Mike Fiore 21:09d05faf0e13 104 // DR_0 - DR_3 (125kHz channels) available but much slower
Mike Fiore 11:d2e31743433a 105 tx_frequency = 915500000;
Mike Fiore 21:09d05faf0e13 106 tx_datarate = lora::DR_13;
Mike Fiore 11:d2e31743433a 107 // 915 bands have no duty cycle restrictions, set tx power to max
Mike Fiore 11:d2e31743433a 108 tx_power = 20;
Mike Fiore 11:d2e31743433a 109 break;
Mike Fiore 21:09d05faf0e13 110
Mike Fiore 21:09d05faf0e13 111 case lora::ChannelPlan::AS923:
Mike Fiore 21:09d05faf0e13 112 case lora::ChannelPlan::AS923_JAPAN:
Mike Fiore 21:09d05faf0e13 113 // 250kHz channels achieve higher throughput
Mike Fiore 21:09d05faf0e13 114 // DR_6 : SF7 @ 250kHz
Mike Fiore 21:09d05faf0e13 115 // DR_0 - DR_5 (125kHz channels) available but much slower
Mike Fiore 21:09d05faf0e13 116 tx_frequency = 924800000;
Mike Fiore 21:09d05faf0e13 117 tx_datarate = lora::DR_6;
Mike Fiore 21:09d05faf0e13 118 tx_power = 16;
Mike Fiore 21:09d05faf0e13 119 break;
Mike Fiore 21:09d05faf0e13 120
Mike Fiore 21:09d05faf0e13 121 case lora::ChannelPlan::KR920:
Mike Fiore 21:09d05faf0e13 122 // DR_5 : SF7 @ 125kHz
Mike Fiore 21:09d05faf0e13 123 tx_frequency = 922700000;
Mike Fiore 21:09d05faf0e13 124 tx_datarate = lora::DR_5;
Mike Fiore 21:09d05faf0e13 125 tx_power = 14;
Mike Fiore 21:09d05faf0e13 126 break;
Mike Fiore 21:09d05faf0e13 127
Mike Fiore 21:09d05faf0e13 128 default:
Mike Fiore 21:09d05faf0e13 129 while (true) {
Mike Fiore 21:09d05faf0e13 130 logFatal("no known channel plan in use - extra configuration is needed!");
Taylor Heck 42:20f6b29a9903 131 ThisThread::sleep_for(5s);
Mike Fiore 21:09d05faf0e13 132 }
Mike Fiore 21:09d05faf0e13 133 break;
Mike Fiore 11:d2e31743433a 134 }
Mike Fiore 11:d2e31743433a 135 // in PEER_TO_PEER mode there is no join request/response transaction
Mike Fiore 11:d2e31743433a 136 // as long as both Dots are configured correctly, they should be able to communicate
Mike Fiore 11:d2e31743433a 137 update_peer_to_peer_config(network_address, network_session_key, data_session_key, tx_frequency, tx_datarate, tx_power);
Mike Fiore 11:d2e31743433a 138
Mike Fiore 11:d2e31743433a 139 // save changes to configuration
Mike Fiore 11:d2e31743433a 140 logInfo("saving configuration");
Mike Fiore 11:d2e31743433a 141 if (!dot->saveConfig()) {
Mike Fiore 11:d2e31743433a 142 logError("failed to save configuration");
Mike Fiore 11:d2e31743433a 143 }
Mike Fiore 11:d2e31743433a 144
Mike Fiore 11:d2e31743433a 145 // display configuration
Mike Fiore 11:d2e31743433a 146 display_config();
Mike Fiore 11:d2e31743433a 147
Mike Fiore 11:d2e31743433a 148 while (true) {
Evan Hosseini 30:2f5ae37e6c47 149 uint16_t light;
Mike Fiore 11:d2e31743433a 150 std::vector<uint8_t> tx_data;
Mike Fiore 11:d2e31743433a 151
Mike Fiore 11:d2e31743433a 152 // join network if not joined
Mike Fiore 11:d2e31743433a 153 if (!dot->getNetworkJoinStatus()) {
Mike Fiore 11:d2e31743433a 154 join_network();
Mike Fiore 11:d2e31743433a 155 }
Mike Fiore 11:d2e31743433a 156
Evan Hosseini 30:2f5ae37e6c47 157 #if defined(TARGET_XDOT_L151CC)
Evan Hosseini 30:2f5ae37e6c47 158 // configure the ISL29011 sensor on the xDot-DK for continuous ambient light sampling, 16 bit conversion, and maximum range
Evan Hosseini 30:2f5ae37e6c47 159 lux.setMode(ISL29011::ALS_CONT);
Evan Hosseini 30:2f5ae37e6c47 160 lux.setResolution(ISL29011::ADC_16BIT);
Evan Hosseini 30:2f5ae37e6c47 161 lux.setRange(ISL29011::RNG_64000);
Evan Hosseini 30:2f5ae37e6c47 162
Evan Hosseini 30:2f5ae37e6c47 163 // get the latest light sample and send it to the gateway
Evan Hosseini 30:2f5ae37e6c47 164 light = lux.getData();
Evan Hosseini 30:2f5ae37e6c47 165 tx_data.push_back((light >> 8) & 0xFF);
Evan Hosseini 30:2f5ae37e6c47 166 tx_data.push_back(light & 0xFF);
Evan Hosseini 30:2f5ae37e6c47 167 logInfo("light: %lu [0x%04X]", light, light);
Mike Fiore 11:d2e31743433a 168 send_data(tx_data);
Mike Fiore 11:d2e31743433a 169
Evan Hosseini 30:2f5ae37e6c47 170 // put the LSL29011 ambient light sensor into a low power state
Evan Hosseini 30:2f5ae37e6c47 171 lux.setMode(ISL29011::PWR_DOWN);
Evan Hosseini 30:2f5ae37e6c47 172 #else
Evan Hosseini 30:2f5ae37e6c47 173 // get some dummy data and send it to the gateway
Evan Hosseini 30:2f5ae37e6c47 174 light = lux.read_u16();
Evan Hosseini 30:2f5ae37e6c47 175 tx_data.push_back((light >> 8) & 0xFF);
Evan Hosseini 30:2f5ae37e6c47 176 tx_data.push_back(light & 0xFF);
Evan Hosseini 30:2f5ae37e6c47 177 logInfo("light: %lu [0x%04X]", light, light);
Evan Hosseini 30:2f5ae37e6c47 178 send_data(tx_data);
Evan Hosseini 30:2f5ae37e6c47 179 #endif
Evan Hosseini 30:2f5ae37e6c47 180
Mike Fiore 11:d2e31743433a 181 // the Dot can't sleep in PEER_TO_PEER mode
Mike Fiore 11:d2e31743433a 182 // it must be waiting for data from the other Dot
Mike Fiore 11:d2e31743433a 183 // send data every 5 seconds
Mike Fiore 11:d2e31743433a 184 logInfo("waiting for 5s");
Taylor Heck 42:20f6b29a9903 185 ThisThread::sleep_for(5s);
Mike Fiore 11:d2e31743433a 186 }
Mike Fiore 11:d2e31743433a 187
Mike Fiore 11:d2e31743433a 188 return 0;
Mike Fiore 11:d2e31743433a 189 }
Mike Fiore 11:d2e31743433a 190
Mike Fiore 11:d2e31743433a 191 #endif