USB device stack

Dependents:   blinky_max32630fthr FTHR_USB_serial FTHR_OLED HSP_RPC_GUI_3_0_1 ... more

Fork of USBDevice by mbed official

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers USBHAL_KL25Z.cpp Source File

USBHAL_KL25Z.cpp

00001 /* Copyright (c) 2010-2011 mbed.org, MIT License
00002 *
00003 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
00004 * and associated documentation files (the "Software"), to deal in the Software without
00005 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
00006 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
00007 * Software is furnished to do so, subject to the following conditions:
00008 *
00009 * The above copyright notice and this permission notice shall be included in all copies or
00010 * substantial portions of the Software.
00011 *
00012 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
00013 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
00014 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
00015 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
00016 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
00017 */
00018 
00019 #if defined(TARGET_KL25Z) | defined(TARGET_KL43Z) | defined(TARGET_KL46Z) | defined(TARGET_K20D50M) | defined(TARGET_K64F) | defined(TARGET_K22F) | defined(TARGET_TEENSY3_1)
00020 
00021 #include "USBHAL.h"
00022 
00023 USBHAL * USBHAL::instance;
00024 
00025 static volatile int epComplete = 0;
00026 
00027 // Convert physical endpoint number to register bit
00028 #define EP(endpoint) (1<<(endpoint))
00029 
00030 // Convert physical to logical
00031 #define PHY_TO_LOG(endpoint)    ((endpoint)>>1)
00032 
00033 // Get endpoint direction
00034 #define IN_EP(endpoint)     ((endpoint) & 1U ? true : false)
00035 #define OUT_EP(endpoint)    ((endpoint) & 1U ? false : true)
00036 
00037 #define BD_OWN_MASK        (1<<7)
00038 #define BD_DATA01_MASK     (1<<6)
00039 #define BD_KEEP_MASK       (1<<5)
00040 #define BD_NINC_MASK       (1<<4)
00041 #define BD_DTS_MASK        (1<<3)
00042 #define BD_STALL_MASK      (1<<2)
00043 
00044 #define TX    1
00045 #define RX    0
00046 #define ODD   0
00047 #define EVEN  1
00048 // this macro waits a physical endpoint number
00049 #define EP_BDT_IDX(ep, dir, odd) (((ep * 4) + (2 * dir) + (1 *  odd)))
00050 
00051 #define SETUP_TOKEN    0x0D
00052 #define IN_TOKEN       0x09
00053 #define OUT_TOKEN      0x01
00054 #define TOK_PID(idx)   ((bdt[idx].info >> 2) & 0x0F)
00055 
00056 // for each endpt: 8 bytes
00057 typedef struct BDT {
00058     uint8_t   info;       // BD[0:7]
00059     uint8_t   dummy;      // RSVD: BD[8:15]
00060     uint16_t  byte_count; // BD[16:32]
00061     uint32_t  address;    // Addr
00062 } BDT;
00063 
00064 
00065 // there are:
00066 //    * 16 bidirectionnal endpt -> 32 physical endpt
00067 //    * as there are ODD and EVEN buffer -> 32*2 bdt
00068 __attribute__((__aligned__(512))) BDT bdt[NUMBER_OF_PHYSICAL_ENDPOINTS * 2];
00069 uint8_t * endpoint_buffer[(NUMBER_OF_PHYSICAL_ENDPOINTS - 2) * 2];
00070 uint8_t * endpoint_buffer_iso[2*2];
00071 
00072 static uint8_t set_addr = 0;
00073 static uint8_t addr = 0;
00074 
00075 static uint32_t Data1  = 0x55555555;
00076 
00077 static uint32_t frameNumber() {
00078     return((USB0->FRMNUML | (USB0->FRMNUMH << 8)) & 0x07FF);
00079 }
00080 
00081 uint32_t USBHAL::endpointReadcore(uint8_t endpoint, uint8_t *buffer) {
00082     return 0;
00083 }
00084 
00085 USBHAL::USBHAL(void) {
00086     // Disable IRQ
00087     NVIC_DisableIRQ(USB0_IRQn);
00088 
00089 #if defined(TARGET_K64F)
00090     MPU->CESR=0;
00091 #endif
00092     // fill in callback array
00093     epCallback[0] = &USBHAL::EP1_OUT_callback;
00094     epCallback[1] = &USBHAL::EP1_IN_callback;
00095     epCallback[2] = &USBHAL::EP2_OUT_callback;
00096     epCallback[3] = &USBHAL::EP2_IN_callback;
00097     epCallback[4] = &USBHAL::EP3_OUT_callback;
00098     epCallback[5] = &USBHAL::EP3_IN_callback;
00099     epCallback[6] = &USBHAL::EP4_OUT_callback;
00100     epCallback[7] = &USBHAL::EP4_IN_callback;
00101     epCallback[8] = &USBHAL::EP5_OUT_callback;
00102     epCallback[9] = &USBHAL::EP5_IN_callback;
00103     epCallback[10] = &USBHAL::EP6_OUT_callback;
00104     epCallback[11] = &USBHAL::EP6_IN_callback;
00105     epCallback[12] = &USBHAL::EP7_OUT_callback;
00106     epCallback[13] = &USBHAL::EP7_IN_callback;
00107     epCallback[14] = &USBHAL::EP8_OUT_callback;
00108     epCallback[15] = &USBHAL::EP8_IN_callback;
00109     epCallback[16] = &USBHAL::EP9_OUT_callback;
00110     epCallback[17] = &USBHAL::EP9_IN_callback;
00111     epCallback[18] = &USBHAL::EP10_OUT_callback;
00112     epCallback[19] = &USBHAL::EP10_IN_callback;
00113     epCallback[20] = &USBHAL::EP11_OUT_callback;
00114     epCallback[21] = &USBHAL::EP11_IN_callback;
00115     epCallback[22] = &USBHAL::EP12_OUT_callback;
00116     epCallback[23] = &USBHAL::EP12_IN_callback;
00117     epCallback[24] = &USBHAL::EP13_OUT_callback;
00118     epCallback[25] = &USBHAL::EP13_IN_callback;
00119     epCallback[26] = &USBHAL::EP14_OUT_callback;
00120     epCallback[27] = &USBHAL::EP14_IN_callback;
00121     epCallback[28] = &USBHAL::EP15_OUT_callback;
00122     epCallback[29] = &USBHAL::EP15_IN_callback;
00123 
00124 #if defined(TARGET_KL43Z)
00125     // enable USBFS clock
00126     SIM->SCGC4 |= SIM_SCGC4_USBFS_MASK;
00127 
00128     // enable the IRC48M clock
00129     USB0->CLK_RECOVER_IRC_EN |= USB_CLK_RECOVER_IRC_EN_IRC_EN_MASK;
00130 
00131     // enable the USB clock recovery tuning
00132     USB0->CLK_RECOVER_CTRL |= USB_CLK_RECOVER_CTRL_CLOCK_RECOVER_EN_MASK;
00133 
00134     // choose usb src clock
00135     SIM->SOPT2 |= SIM_SOPT2_USBSRC_MASK;
00136 #else
00137     // choose usb src as PLL
00138     SIM->SOPT2 &= ~SIM_SOPT2_PLLFLLSEL_MASK;
00139     SIM->SOPT2 |= (SIM_SOPT2_USBSRC_MASK | (1 << SIM_SOPT2_PLLFLLSEL_SHIFT));
00140 
00141     // enable OTG clock
00142     SIM->SCGC4 |= SIM_SCGC4_USBOTG_MASK;
00143 #endif
00144 
00145     // Attach IRQ
00146     instance = this;
00147     NVIC_SetVector(USB0_IRQn, (uint32_t)&_usbisr);
00148     NVIC_EnableIRQ(USB0_IRQn);
00149 
00150     // USB Module Configuration
00151     // Reset USB Module
00152     USB0->USBTRC0 |= USB_USBTRC0_USBRESET_MASK;
00153     while(USB0->USBTRC0 & USB_USBTRC0_USBRESET_MASK);
00154 
00155     // Set BDT Base Register
00156     USB0->BDTPAGE1 = (uint8_t)((uint32_t)bdt>>8);
00157     USB0->BDTPAGE2 = (uint8_t)((uint32_t)bdt>>16);
00158     USB0->BDTPAGE3 = (uint8_t)((uint32_t)bdt>>24);
00159 
00160     // Clear interrupt flag
00161     USB0->ISTAT = 0xff;
00162 
00163     // USB Interrupt Enablers
00164     USB0->INTEN |= USB_INTEN_TOKDNEEN_MASK |
00165                    USB_INTEN_SOFTOKEN_MASK |
00166                    USB_INTEN_ERROREN_MASK  |
00167                    USB_INTEN_USBRSTEN_MASK;
00168 
00169     // Disable weak pull downs
00170     USB0->USBCTRL &= ~(USB_USBCTRL_PDE_MASK | USB_USBCTRL_SUSP_MASK);
00171 
00172     USB0->USBTRC0 |= 0x40;
00173 }
00174 
00175 USBHAL::~USBHAL(void) { }
00176 
00177 void USBHAL::connect(void) {
00178     // enable USB
00179     USB0->CTL |= USB_CTL_USBENSOFEN_MASK;
00180     // Pull up enable
00181     USB0->CONTROL |= USB_CONTROL_DPPULLUPNONOTG_MASK;
00182 }
00183 
00184 void USBHAL::disconnect(void) {
00185     // disable USB
00186     USB0->CTL &= ~USB_CTL_USBENSOFEN_MASK;
00187     // Pull up disable
00188     USB0->CONTROL &= ~USB_CONTROL_DPPULLUPNONOTG_MASK;
00189 
00190     //Free buffers if required:
00191     for (int i = 0; i<(NUMBER_OF_PHYSICAL_ENDPOINTS - 2) * 2; i++) {
00192         free(endpoint_buffer[i]);
00193         endpoint_buffer[i] = NULL;
00194     }
00195     free(endpoint_buffer_iso[2]);
00196     endpoint_buffer_iso[2] = NULL;
00197     free(endpoint_buffer_iso[0]);
00198     endpoint_buffer_iso[0] = NULL;
00199 }
00200 
00201 void USBHAL::configureDevice(void) {
00202     // not needed
00203 }
00204 
00205 void USBHAL::unconfigureDevice(void) {
00206     // not needed
00207 }
00208 
00209 void USBHAL::setAddress(uint8_t address) {
00210     // we don't set the address now otherwise the usb controller does not ack
00211     // we set a flag instead
00212     // see usbisr when an IN token is received
00213     set_addr = 1;
00214     addr = address;
00215 }
00216 
00217 bool USBHAL::realiseEndpoint(uint8_t endpoint, uint32_t maxPacket, uint32_t flags) {
00218     uint32_t handshake_flag = 0;
00219     uint8_t * buf;
00220 
00221     if (endpoint > NUMBER_OF_PHYSICAL_ENDPOINTS - 1) {
00222         return false;
00223     }
00224 
00225     uint32_t log_endpoint = PHY_TO_LOG(endpoint);
00226 
00227     if ((flags & ISOCHRONOUS) == 0) {
00228         handshake_flag = USB_ENDPT_EPHSHK_MASK;
00229         if (IN_EP(endpoint)) {
00230             if (endpoint_buffer[EP_BDT_IDX(log_endpoint, TX, ODD)] == NULL)
00231                 endpoint_buffer[EP_BDT_IDX(log_endpoint, TX, ODD)] = (uint8_t *) malloc (64);
00232             buf = &endpoint_buffer[EP_BDT_IDX(log_endpoint, TX, ODD)][0];
00233         } else {
00234             if (endpoint_buffer[EP_BDT_IDX(log_endpoint, RX, ODD)] == NULL)
00235                 endpoint_buffer[EP_BDT_IDX(log_endpoint, RX, ODD)] = (uint8_t *) malloc (64);
00236             buf = &endpoint_buffer[EP_BDT_IDX(log_endpoint, RX, ODD)][0];
00237         }
00238     } else {
00239         if (IN_EP(endpoint)) {
00240             if (endpoint_buffer_iso[2] == NULL)
00241                 endpoint_buffer_iso[2] = (uint8_t *) malloc (1023);
00242             buf = &endpoint_buffer_iso[2][0];
00243         } else {
00244             if (endpoint_buffer_iso[0] == NULL)
00245                 endpoint_buffer_iso[0] = (uint8_t *) malloc (1023);
00246             buf = &endpoint_buffer_iso[0][0];
00247         }
00248     }
00249 
00250     // IN endpt -> device to host (TX)
00251     if (IN_EP(endpoint)) {
00252         USB0->ENDPOINT[log_endpoint].ENDPT |= handshake_flag |        // ep handshaking (not if iso endpoint)
00253                                               USB_ENDPT_EPTXEN_MASK;  // en TX (IN) tran
00254         bdt[EP_BDT_IDX(log_endpoint, TX, ODD )].address = (uint32_t) buf;
00255         bdt[EP_BDT_IDX(log_endpoint, TX, EVEN)].address = 0;
00256     }
00257     // OUT endpt -> host to device (RX)
00258     else {
00259         USB0->ENDPOINT[log_endpoint].ENDPT |= handshake_flag |        // ep handshaking (not if iso endpoint)
00260                                               USB_ENDPT_EPRXEN_MASK;  // en RX (OUT) tran.
00261         bdt[EP_BDT_IDX(log_endpoint, RX, ODD )].byte_count = maxPacket;
00262         bdt[EP_BDT_IDX(log_endpoint, RX, ODD )].address    = (uint32_t) buf;
00263         bdt[EP_BDT_IDX(log_endpoint, RX, ODD )].info       = BD_OWN_MASK | BD_DTS_MASK;
00264         bdt[EP_BDT_IDX(log_endpoint, RX, EVEN)].info       = 0;
00265     }
00266 
00267     Data1 |= (1 << endpoint);
00268 
00269     return true;
00270 }
00271 
00272 // read setup packet
00273 void USBHAL::EP0setup(uint8_t *buffer) {
00274     uint32_t sz;
00275     endpointReadResult(EP0OUT, buffer, &sz);
00276 }
00277 
00278 void USBHAL::EP0readStage(void) {
00279     Data1 &= ~1UL;  // set DATA0
00280     bdt[0].info = (BD_DTS_MASK | BD_OWN_MASK);
00281 }
00282 
00283 void USBHAL::EP0read(void) {
00284     uint32_t idx = EP_BDT_IDX(PHY_TO_LOG(EP0OUT), RX, 0);
00285     bdt[idx].byte_count = MAX_PACKET_SIZE_EP0;
00286 }
00287 
00288 uint32_t USBHAL::EP0getReadResult(uint8_t *buffer) {
00289     uint32_t sz;
00290     endpointReadResult(EP0OUT, buffer, &sz);
00291     return sz;
00292 }
00293 
00294 void USBHAL::EP0write(uint8_t *buffer, uint32_t size) {
00295     endpointWrite(EP0IN, buffer, size);
00296 }
00297 
00298 void USBHAL::EP0getWriteResult(void) {
00299 }
00300 
00301 void USBHAL::EP0stall(void) {
00302     stallEndpoint(EP0OUT);
00303 }
00304 
00305 EP_STATUS USBHAL::endpointRead(uint8_t endpoint, uint32_t maximumSize) {
00306     endpoint = PHY_TO_LOG(endpoint);
00307     uint32_t idx = EP_BDT_IDX(endpoint, RX, 0);
00308     bdt[idx].byte_count = maximumSize;
00309     return EP_PENDING;
00310 }
00311 
00312 EP_STATUS USBHAL::endpointReadResult(uint8_t endpoint, uint8_t * buffer, uint32_t *bytesRead) {
00313     uint32_t n, sz, idx, setup = 0;
00314     uint8_t not_iso;
00315     uint8_t * ep_buf;
00316 
00317     uint32_t log_endpoint = PHY_TO_LOG(endpoint);
00318 
00319     if (endpoint > NUMBER_OF_PHYSICAL_ENDPOINTS - 1) {
00320         return EP_INVALID;
00321     }
00322 
00323     // if read on a IN endpoint -> error
00324     if (IN_EP(endpoint)) {
00325         return EP_INVALID;
00326     }
00327 
00328     idx = EP_BDT_IDX(log_endpoint, RX, 0);
00329     sz  = bdt[idx].byte_count;
00330     not_iso = USB0->ENDPOINT[log_endpoint].ENDPT & USB_ENDPT_EPHSHK_MASK;
00331 
00332     //for isochronous endpoint, we don't wait an interrupt
00333     if ((log_endpoint != 0) && not_iso && !(epComplete & EP(endpoint))) {
00334         return EP_PENDING;
00335     }
00336 
00337     if ((log_endpoint == 0) && (TOK_PID(idx) == SETUP_TOKEN)) {
00338         setup = 1;
00339     }
00340 
00341     // non iso endpoint
00342     if (not_iso) {
00343         ep_buf = endpoint_buffer[idx];
00344     } else {
00345         ep_buf = endpoint_buffer_iso[0];
00346     }
00347 
00348     for (n = 0; n < sz; n++) {
00349         buffer[n] = ep_buf[n];
00350     }
00351 
00352     if (((Data1 >> endpoint) & 1) == ((bdt[idx].info >> 6) & 1)) {
00353         if (setup && (buffer[6] == 0))  // if no setup data stage,
00354             Data1 &= ~1UL;              // set DATA0
00355         else
00356             Data1 ^= (1 << endpoint);
00357     }
00358 
00359     if (((Data1 >> endpoint) & 1)) {
00360         bdt[idx].info = BD_DTS_MASK | BD_DATA01_MASK | BD_OWN_MASK;
00361     }
00362     else {
00363         bdt[idx].info = BD_DTS_MASK | BD_OWN_MASK;
00364     }
00365 
00366     USB0->CTL &= ~USB_CTL_TXSUSPENDTOKENBUSY_MASK;
00367     *bytesRead = sz;
00368 
00369     epComplete &= ~EP(endpoint);
00370     return EP_COMPLETED;
00371 }
00372 
00373 EP_STATUS USBHAL::endpointWrite(uint8_t endpoint, uint8_t *data, uint32_t size) {
00374     uint32_t idx, n;
00375     uint8_t * ep_buf;
00376 
00377     if (endpoint > NUMBER_OF_PHYSICAL_ENDPOINTS - 1) {
00378         return EP_INVALID;
00379     }
00380 
00381     // if write on a OUT endpoint -> error
00382     if (OUT_EP(endpoint)) {
00383         return EP_INVALID;
00384     }
00385 
00386     idx = EP_BDT_IDX(PHY_TO_LOG(endpoint), TX, 0);
00387     bdt[idx].byte_count = size;
00388 
00389 
00390     // non iso endpoint
00391     if (USB0->ENDPOINT[PHY_TO_LOG(endpoint)].ENDPT & USB_ENDPT_EPHSHK_MASK) {
00392         ep_buf = endpoint_buffer[idx];
00393     } else {
00394         ep_buf = endpoint_buffer_iso[2];
00395     }
00396 
00397     for (n = 0; n < size; n++) {
00398         ep_buf[n] = data[n];
00399     }
00400 
00401     if ((Data1 >> endpoint) & 1) {
00402         bdt[idx].info = BD_OWN_MASK | BD_DTS_MASK;
00403     } else {
00404         bdt[idx].info = BD_OWN_MASK | BD_DTS_MASK | BD_DATA01_MASK;
00405     }
00406 
00407     Data1 ^= (1 << endpoint);
00408 
00409     return EP_PENDING;
00410 }
00411 
00412 EP_STATUS USBHAL::endpointWriteResult(uint8_t endpoint) {
00413     if (epComplete & EP(endpoint)) {
00414         epComplete &= ~EP(endpoint);
00415         return EP_COMPLETED;
00416     }
00417 
00418     return EP_PENDING;
00419 }
00420 
00421 void USBHAL::stallEndpoint(uint8_t endpoint) {
00422     USB0->ENDPOINT[PHY_TO_LOG(endpoint)].ENDPT |= USB_ENDPT_EPSTALL_MASK;
00423 }
00424 
00425 void USBHAL::unstallEndpoint(uint8_t endpoint) {
00426     USB0->ENDPOINT[PHY_TO_LOG(endpoint)].ENDPT &= ~USB_ENDPT_EPSTALL_MASK;
00427 }
00428 
00429 bool USBHAL::getEndpointStallState(uint8_t endpoint) {
00430     uint8_t stall = (USB0->ENDPOINT[PHY_TO_LOG(endpoint)].ENDPT & USB_ENDPT_EPSTALL_MASK);
00431     return (stall) ? true : false;
00432 }
00433 
00434 void USBHAL::remoteWakeup(void) {
00435     // [TODO]
00436 }
00437 
00438 
00439 void USBHAL::_usbisr(void) {
00440     instance->usbisr();
00441 }
00442 
00443 
00444 void USBHAL::usbisr(void) {
00445     uint8_t i;
00446     uint8_t istat = USB0->ISTAT;
00447 
00448     // reset interrupt
00449     if (istat & USB_ISTAT_USBRST_MASK) {
00450         // disable all endpt
00451         for(i = 0; i < 16; i++) {
00452             USB0->ENDPOINT[i].ENDPT = 0x00;
00453         }
00454 
00455         // enable control endpoint
00456         realiseEndpoint(EP0OUT, MAX_PACKET_SIZE_EP0, 0);
00457         realiseEndpoint(EP0IN, MAX_PACKET_SIZE_EP0, 0);
00458 
00459         Data1 = 0x55555555;
00460         USB0->CTL |=  USB_CTL_ODDRST_MASK;
00461 
00462         USB0->ISTAT   =  0xFF;  // clear all interrupt status flags
00463         USB0->ERRSTAT =  0xFF;  // clear all error flags
00464         USB0->ERREN   =  0xFF;  // enable error interrupt sources
00465         USB0->ADDR    =  0x00;  // set default address
00466 
00467         return;
00468     }
00469 
00470     // resume interrupt
00471     if (istat & USB_ISTAT_RESUME_MASK) {
00472         USB0->ISTAT = USB_ISTAT_RESUME_MASK;
00473     }
00474 
00475     // SOF interrupt
00476     if (istat & USB_ISTAT_SOFTOK_MASK) {
00477         USB0->ISTAT = USB_ISTAT_SOFTOK_MASK;
00478         // SOF event, read frame number
00479         SOF(frameNumber());
00480     }
00481 
00482     // stall interrupt
00483     if (istat & 1<<7) {
00484         if (USB0->ENDPOINT[0].ENDPT & USB_ENDPT_EPSTALL_MASK)
00485             USB0->ENDPOINT[0].ENDPT &= ~USB_ENDPT_EPSTALL_MASK;
00486         USB0->ISTAT |= USB_ISTAT_STALL_MASK;
00487     }
00488 
00489     // token interrupt
00490     if (istat & 1<<3) {
00491         uint32_t num  = (USB0->STAT >> 4) & 0x0F;
00492         uint32_t dir  = (USB0->STAT >> 3) & 0x01;
00493         uint32_t ev_odd = (USB0->STAT >> 2) & 0x01;
00494         int endpoint = (num << 1) | dir;
00495 
00496         // setup packet
00497         if ((num == 0) && (TOK_PID((EP_BDT_IDX(num, dir, ev_odd))) == SETUP_TOKEN)) {
00498             Data1 &= ~0x02;
00499             bdt[EP_BDT_IDX(0, TX, EVEN)].info &= ~BD_OWN_MASK;
00500             bdt[EP_BDT_IDX(0, TX, ODD)].info  &= ~BD_OWN_MASK;
00501 
00502             // EP0 SETUP event (SETUP data received)
00503             EP0setupCallback();
00504 
00505         } else {
00506             // OUT packet
00507             if (TOK_PID((EP_BDT_IDX(num, dir, ev_odd))) == OUT_TOKEN) {
00508                 if (num == 0)
00509                     EP0out();
00510                 else {
00511                     epComplete |= EP(endpoint);
00512                     if ((instance->*(epCallback[endpoint - 2]))()) {
00513                         epComplete &= ~EP(endpoint);
00514                     }
00515                 }
00516             }
00517 
00518             // IN packet
00519             if (TOK_PID((EP_BDT_IDX(num, dir, ev_odd))) == IN_TOKEN) {
00520                 if (num == 0) {
00521                     EP0in();
00522                     if (set_addr == 1) {
00523                         USB0->ADDR = addr & 0x7F;
00524                         set_addr = 0;
00525                     }
00526                 }
00527                 else {
00528                     epComplete |= EP(endpoint);
00529                     if ((instance->*(epCallback[endpoint - 2]))()) {
00530                         epComplete &= ~EP(endpoint);
00531                     }
00532                 }
00533             }
00534         }
00535 
00536         USB0->ISTAT = USB_ISTAT_TOKDNE_MASK;
00537     }
00538 
00539     // sleep interrupt
00540     if (istat & 1<<4) {
00541         USB0->ISTAT |= USB_ISTAT_SLEEP_MASK;
00542     }
00543 
00544     // error interrupt
00545     if (istat & USB_ISTAT_ERROR_MASK) {
00546         USB0->ERRSTAT = 0xFF;
00547         USB0->ISTAT |= USB_ISTAT_ERROR_MASK;
00548     }
00549 }
00550 
00551 
00552 #endif