MAX32620HSP (MAXREFDES100) RPC Example for Graphical User Interface
Dependencies: USBDevice
Fork of HSP_Release by
MAX30001.cpp
00001 /******************************************************************************* 00002 * Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved. 00003 * 00004 * Permission is hereby granted, free of charge, to any person obtaining a 00005 * copy of this software and associated documentation files (the "Software"), 00006 * to deal in the Software without restriction, including without limitation 00007 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 00008 * and/or sell copies of the Software, and to permit persons to whom the 00009 * Software is furnished to do so, subject to the following conditions: 00010 * 00011 * The above copyright notice and this permission notice shall be included 00012 * in all copies or substantial portions of the Software. 00013 * 00014 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 00015 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 00016 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. 00017 * IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES 00018 * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 00019 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 00020 * OTHER DEALINGS IN THE SOFTWARE. 00021 * 00022 * Except as contained in this notice, the name of Maxim Integrated 00023 * Products, Inc. shall not be used except as stated in the Maxim Integrated 00024 * Products, Inc. Branding Policy. 00025 * 00026 * The mere transfer of this software does not imply any licenses 00027 * of trade secrets, proprietary technology, copyrights, patents, 00028 * trademarks, maskwork rights, or any other form of intellectual 00029 * property whatsoever. Maxim Integrated Products, Inc. retains all 00030 * ownership rights. 00031 ******************************************************************************* 00032 */ 00033 00034 #include "mbed.h" 00035 #include "MAX30001.h" 00036 #include "pwrseq_regs.h" 00037 00038 MAX30001 *MAX30001::instance = NULL; 00039 00040 //****************************************************************************** 00041 MAX30001::MAX30001(PinName mosi, PinName miso, PinName sclk, PinName cs) { 00042 spi = new SPI(mosi, miso, sclk, cs); 00043 spi->frequency(3000000); 00044 spi_owner = true; 00045 functionpointer.attach(&spiHandler); 00046 onDataAvailableCallback = NULL; 00047 xferFlag = 0; 00048 instance = this; 00049 } 00050 00051 //****************************************************************************** 00052 MAX30001::MAX30001(SPI *_spi) { 00053 spi = _spi; 00054 spi->frequency(3000000); 00055 spi_owner = false; 00056 functionpointer.attach(&spiHandler); 00057 onDataAvailableCallback = NULL; 00058 xferFlag = 0; 00059 instance = this; 00060 } 00061 00062 //****************************************************************************** 00063 MAX30001::~MAX30001(void) { 00064 if (spi_owner) { 00065 delete spi; 00066 } 00067 } 00068 00069 //****************************************************************************** 00070 void MAX30001::FCLK_MaximOnly(void){ 00071 00072 // Use RTC crystal clock for MAX30001 FCLK 00073 /* 00074 mxc_pwrseq_reg0_t pwr_reg0; 00075 mxc_pwrseq_reg4_t pwr_reg4; 00076 00077 // Set the port pin connected to the MAX30001 FCLK pin as an output 00078 GPIO_SetOutMode(MAX30001_INT_PORT_FCLK, MAX30001_INT_PIN_FCLK, MXC_E_GPIO_OUT_MODE_NORMAL); 00079 00080 // Enable Real Time Clock in Run and Sleep modes 00081 pwr_reg0 = MXC_PWRSEQ->reg0_f; 00082 pwr_reg0.pwr_rtcen_run = 1; 00083 pwr_reg0.pwr_rtcen_slp = 1; 00084 MXC_PWRSEQ->reg0_f = pwr_reg0; 00085 00086 // Enable the RTC clock output path on P1.7 00087 pwr_reg4 = MXC_PWRSEQ->reg4_f; 00088 pwr_reg4.pwr_pseq_32k_en = 1; 00089 MXC_PWRSEQ->reg4_f = pwr_reg4; 00090 */ 00091 00092 #define PORT_FCLK 1 00093 #define PIN_FCLK 7 00094 00095 // Set the Port pin connected to the MAX30001 FCLK pin as an output 00096 uint32_t temp = MXC_GPIO->out_mode[PORT_FCLK]; // Port 1 00097 00098 // temp = (temp & ~(0xF << (pin * 4))) | (val << (pin * 4)); 00099 /* pin 7 */ /* NORMAL MODE */ 00100 temp = (temp & ~(0xF << (PIN_FCLK * 4))) | (MXC_V_GPIO_OUT_MODE_NORMAL << (PIN_FCLK * 4)); 00101 00102 00103 // temp = (temp & ~(0xF << (7 * 4))) | (5 << (7 * 4)); 00104 00105 MXC_GPIO->out_mode[PORT_FCLK] = temp; 00106 00107 00108 // Enable Real Time Clock in Run and Sleep Modes 00109 MXC_PWRSEQ->reg0 = MXC_PWRSEQ->reg0 | MXC_F_PWRSEQ_REG0_PWR_RTCEN_RUN | MXC_F_PWRSEQ_REG0_PWR_RTCEN_SLP; 00110 00111 // Enable the RTC clock output path on P1.7 00112 MXC_PWRSEQ->reg4 = MXC_PWRSEQ->reg4 | MXC_F_PWRSEQ_REG4_PWR_PSEQ_32K_EN; 00113 00114 } 00115 00116 00117 //****************************************************************************** 00118 int MAX30001::Rbias_FMSTR_Init(uint8_t En_rbias, uint8_t Rbiasv, 00119 uint8_t Rbiasp, uint8_t Rbiasn, 00120 uint8_t Fmstr) { 00121 00122 max30001_cnfg_gen_t cnfg_gen; 00123 00124 if (reg_read(CNFG_GEN, &cnfg_gen.all) == -1) { 00125 return -1; 00126 } 00127 00128 cnfg_gen.bit.en_rbias = En_rbias; 00129 cnfg_gen.bit.rbiasv = Rbiasv; 00130 cnfg_gen.bit.rbiasp = Rbiasp; 00131 cnfg_gen.bit.rbiasn = Rbiasn; 00132 cnfg_gen.bit.fmstr = Fmstr; 00133 00134 if (reg_write(CNFG_GEN, cnfg_gen.all) == -1) { 00135 return -1; 00136 } 00137 return 0; 00138 } 00139 00140 //****************************************************************************** 00141 int MAX30001::CAL_InitStart(uint8_t En_Vcal, uint8_t Vmode, 00142 uint8_t Vmag, uint8_t Fcal, uint16_t Thigh, 00143 uint8_t Fifty) { 00144 00145 max30001_cnfg_cal_t cnfg_cal; 00146 00147 ///< CNFG_CAL 00148 if (reg_read(CNFG_CAL, &cnfg_cal.all) == -1) { 00149 return -1; 00150 } 00151 00152 cnfg_cal.bit.vmode = Vmode; 00153 cnfg_cal.bit.vmag = Vmag; 00154 cnfg_cal.bit.fcal = Fcal; 00155 cnfg_cal.bit.thigh = Thigh; 00156 cnfg_cal.bit.fifty = Fifty; 00157 00158 if (reg_write(CNFG_CAL, cnfg_cal.all) == -1) { 00159 return -1; 00160 } 00161 00162 /// @brief RTOS uses a 32768HZ clock. 32768ticks represents 1secs. 1sec/10 = 00163 /// 100msecs. 00164 wait(1.0 / 10.0); 00165 00166 if (reg_read(CNFG_CAL, &cnfg_cal.all) == -1) { 00167 return -1; 00168 } 00169 00170 cnfg_cal.bit.en_vcal = En_Vcal; 00171 00172 if (reg_write(CNFG_CAL, cnfg_cal.all) == -1) { 00173 return -1; 00174 } 00175 00176 /// @brief RTOS uses a 32768HZ clock. 32768ticks represents 1secs. 1sec/10 = 00177 /// 100msecs. 00178 wait(1.0 / 10.0); 00179 00180 return 0; 00181 } 00182 00183 //****************************************************************************** 00184 int MAX30001::CAL_Stop(void) { 00185 00186 max30001_cnfg_cal_t cnfg_cal; 00187 00188 if (reg_read(CNFG_CAL, &cnfg_cal.all) == -1) { 00189 return -1; 00190 } 00191 00192 cnfg_cal.bit.en_vcal = 0; // Disable VCAL, all other settings are left unaffected 00193 00194 if (reg_write(CNFG_CAL, cnfg_cal.all) == -1) { 00195 return -1; 00196 } 00197 00198 return 0; 00199 } 00200 //****************************************************************************** 00201 int MAX30001::INT_assignment(max30001_intrpt_Location_t en_enint_loc, max30001_intrpt_Location_t en_eovf_loc, max30001_intrpt_Location_t en_fstint_loc, 00202 max30001_intrpt_Location_t en_dcloffint_loc, max30001_intrpt_Location_t en_bint_loc, max30001_intrpt_Location_t en_bovf_loc, 00203 max30001_intrpt_Location_t en_bover_loc, max30001_intrpt_Location_t en_bundr_loc, max30001_intrpt_Location_t en_bcgmon_loc, 00204 max30001_intrpt_Location_t en_pint_loc, max30001_intrpt_Location_t en_povf_loc, max30001_intrpt_Location_t en_pedge_loc, 00205 max30001_intrpt_Location_t en_lonint_loc, max30001_intrpt_Location_t en_rrint_loc, max30001_intrpt_Location_t en_samp_loc, 00206 max30001_intrpt_type_t intb_Type, max30001_intrpt_type_t int2b_Type) 00207 00208 00209 { 00210 00211 max30001_en_int_t en_int; 00212 max30001_en_int2_t en_int2; 00213 00214 ///< INT1 00215 00216 if (reg_read(EN_INT, &en_int.all) == -1) { 00217 return -1; 00218 } 00219 00220 // max30001_en_int2.bit.en_pint = 0b1; // Keep this off... 00221 00222 en_int.bit.en_eint = 0b1 & en_enint_loc; 00223 en_int.bit.en_eovf = 0b1 & en_eovf_loc; 00224 en_int.bit.en_fstint = 0b1 & en_fstint_loc; 00225 00226 en_int.bit.en_dcloffint = 0b1 & en_dcloffint_loc; 00227 en_int.bit.en_bint = 0b1 & en_bint_loc; 00228 en_int.bit.en_bovf = 0b1 & en_bovf_loc; 00229 00230 en_int.bit.en_bover = 0b1 & en_bover_loc; 00231 en_int.bit.en_bundr = 0b1 & en_bundr_loc; 00232 en_int.bit.en_bcgmon = 0b1 & en_bcgmon_loc; 00233 00234 en_int.bit.en_pint = 0b1 & en_pint_loc; 00235 en_int.bit.en_povf = 0b1 & en_povf_loc; 00236 en_int.bit.en_pedge = 0b1 & en_pedge_loc; 00237 00238 en_int.bit.en_lonint = 0b1 & en_lonint_loc; 00239 en_int.bit.en_rrint = 0b1 & en_rrint_loc; 00240 en_int.bit.en_samp = 0b1 & en_samp_loc; 00241 00242 en_int.bit.intb_type = int2b_Type; 00243 00244 if (reg_write(EN_INT, en_int.all) == -1) { 00245 return -1; 00246 } 00247 00248 ///< INT2 00249 00250 if (reg_read(EN_INT2, &en_int2.all) == -1) { 00251 return -1; 00252 } 00253 00254 en_int2.bit.en_eint = 0b1 & (en_enint_loc >> 1); 00255 en_int2.bit.en_eovf = 0b1 & (en_eovf_loc >> 1); 00256 en_int2.bit.en_fstint = 0b1 & (en_fstint_loc >> 1); 00257 00258 en_int2.bit.en_dcloffint = 0b1 & (en_dcloffint_loc >> 1); 00259 en_int2.bit.en_bint = 0b1 & (en_bint_loc >> 1); 00260 en_int2.bit.en_bovf = 0b1 & (en_bovf_loc >> 1); 00261 00262 en_int2.bit.en_bover = 0b1 & (en_bover_loc >> 1); 00263 en_int2.bit.en_bundr = 0b1 & (en_bundr_loc >> 1); 00264 en_int2.bit.en_bcgmon = 0b1 & (en_bcgmon_loc >> 1); 00265 00266 en_int2.bit.en_pint = 0b1 & (en_pint_loc >> 1); 00267 en_int2.bit.en_povf = 0b1 & (en_povf_loc >> 1); 00268 en_int2.bit.en_pedge = 0b1 & (en_pedge_loc >> 1); 00269 00270 en_int2.bit.en_lonint = 0b1 & (en_lonint_loc >> 1); 00271 en_int2.bit.en_rrint = 0b1 & (en_rrint_loc >> 1); 00272 en_int2.bit.en_samp = 0b1 & (en_samp_loc >> 1); 00273 00274 en_int2.bit.intb_type = intb_Type; 00275 00276 if (reg_write(EN_INT2, en_int2.all) == -1) { 00277 return -1; 00278 } 00279 00280 return 0; 00281 } 00282 00283 //****************************************************************************** 00284 int MAX30001::ECG_InitStart(uint8_t En_ecg, uint8_t Openp, 00285 uint8_t Openn, uint8_t Pol, 00286 uint8_t Calp_sel, uint8_t Caln_sel, 00287 uint8_t E_fit, uint8_t Rate, uint8_t Gain, 00288 uint8_t Dhpf, uint8_t Dlpf) { 00289 00290 max30001_cnfg_emux_t cnfg_emux; 00291 max30001_cnfg_gen_t cnfg_gen; 00292 max30001_status_t status; 00293 max30001_mngr_int_t mngr_int; 00294 max30001_cnfg_ecg_t cnfg_ecg; 00295 00296 ///< CNFG_EMUX 00297 00298 if (reg_read(CNFG_EMUX, &cnfg_emux.all) == -1) { 00299 return -1; 00300 } 00301 00302 cnfg_emux.bit.openp = Openp; 00303 cnfg_emux.bit.openn = Openn; 00304 cnfg_emux.bit.pol = Pol; 00305 cnfg_emux.bit.calp_sel = Calp_sel; 00306 cnfg_emux.bit.caln_sel = Caln_sel; 00307 00308 if (reg_write(CNFG_EMUX, cnfg_emux.all) == -1) { 00309 return -1; 00310 } 00311 00312 /**** ENABLE CHANNELS ****/ 00313 ///< CNFG_GEN 00314 00315 if (reg_read(CNFG_GEN, &cnfg_gen.all) == -1) { 00316 return -1; 00317 } 00318 00319 cnfg_gen.bit.en_ecg = En_ecg; // 0b1 00320 00321 ///< fmstr is default 00322 00323 if (reg_write(CNFG_GEN, cnfg_gen.all) == -1) { 00324 return -1; 00325 } 00326 00327 ///< Wait for PLL Lock & References to settle down 00328 00329 max30001_timeout = 0; 00330 00331 do { 00332 if (reg_read(STATUS, &status.all) == -1) {// Wait and spin for PLL to lock... 00333 00334 return -1; 00335 } 00336 } while (status.bit.pllint == 1 && max30001_timeout++ <= 1000); 00337 00338 ///< MNGR_INT 00339 00340 if (reg_read(MNGR_INT, &mngr_int.all) == -1) { 00341 return -1; 00342 } 00343 00344 mngr_int.bit.e_fit = E_fit; // 31 00345 00346 if (reg_write(MNGR_INT, mngr_int.all) == -1) { 00347 return -1; 00348 } 00349 00350 ///< CNFG_ECG 00351 00352 if (reg_read(CNFG_ECG, &cnfg_ecg.all) == -1) { 00353 return -1; 00354 } 00355 00356 cnfg_ecg.bit.rate = Rate; 00357 cnfg_ecg.bit.gain = Gain; 00358 cnfg_ecg.bit.dhpf = Dhpf; 00359 cnfg_ecg.bit.dlpf = Dlpf; 00360 00361 if (reg_write(CNFG_ECG, cnfg_ecg.all) == -1) { 00362 return -1; 00363 } 00364 00365 return 0; 00366 } 00367 00368 //****************************************************************************** 00369 int MAX30001::ECGFast_Init(uint8_t Clr_Fast, uint8_t Fast, uint8_t Fast_Th) { 00370 00371 max30001_mngr_int_t mngr_int; 00372 max30001_mngr_dyn_t mngr_dyn; 00373 00374 if (reg_read(MNGR_INT, &mngr_int.all) == -1) { 00375 return -1; 00376 } 00377 00378 mngr_int.bit.clr_fast = Clr_Fast; 00379 00380 if (reg_write(MNGR_INT, mngr_int.all) == -1) { 00381 return -1; 00382 } 00383 00384 if (reg_read(MNGR_DYN, &mngr_dyn.all) == -1) { 00385 return -1; 00386 } 00387 00388 mngr_dyn.bit.fast = Fast; 00389 mngr_dyn.bit.fast_th = Fast_Th; 00390 00391 if (reg_write(MNGR_INT, mngr_dyn.all) == -1) { 00392 return -1; 00393 } 00394 00395 return 0; 00396 } 00397 00398 //****************************************************************************** 00399 int MAX30001::Stop_ECG(void) { 00400 00401 max30001_cnfg_gen_t cnfg_gen; 00402 00403 if (reg_read(CNFG_GEN, &cnfg_gen.all) == -1) { 00404 return -1; 00405 } 00406 00407 cnfg_gen.bit.en_ecg = 0; ///< Stop ECG 00408 00409 ///< fmstr is default 00410 00411 if (reg_write(CNFG_GEN, cnfg_gen.all) == -1) { 00412 return -1; 00413 } 00414 00415 return 0; 00416 } 00417 00418 //****************************************************************************** 00419 int MAX30001::PACE_InitStart(uint8_t En_pace, uint8_t Clr_pedge, 00420 uint8_t Pol, uint8_t Gn_diff_off, 00421 uint8_t Gain, uint8_t Aout_lbw, 00422 uint8_t Aout, uint8_t Dacp, 00423 uint8_t Dacn) { 00424 00425 /**** SET MASTER FREQUENCY, ENABLE CHANNELS ****/ 00426 00427 max30001_cnfg_gen_t cnfg_gen; 00428 max30001_status_t status; 00429 max30001_mngr_int_t mngr_int; 00430 max30001_cnfg_pace_t cnfg_pace; 00431 00432 ///< CNFG_GEN 00433 00434 if (reg_read(CNFG_GEN, &cnfg_gen.all) == -1) { 00435 return -1; 00436 } 00437 00438 cnfg_gen.bit.en_pace = En_pace; // 0b1; 00439 00440 if (reg_write(CNFG_GEN, cnfg_gen.all) == -1) { 00441 return -1; 00442 } 00443 00444 /**** Wait for PLL Lock & References to settle down ****/ 00445 max30001_timeout = 0; 00446 00447 do { 00448 if (reg_read(STATUS, &status.all) == 00449 -1) // Wait and spin for PLL to lock... 00450 { 00451 return -1; 00452 } 00453 00454 } while (status.bit.pllint == 1 && max30001_timeout++ <= 1000); 00455 00456 ///< MNGR_INT 00457 00458 if (reg_read(MNGR_INT, &mngr_int.all) == -1) { 00459 return -1; 00460 } 00461 00462 mngr_int.bit.clr_pedge = Clr_pedge; // 0b0; 00463 00464 if (reg_write(MNGR_INT, mngr_int.all) == -1) { 00465 return -1; 00466 } 00467 00468 ///< CNFG_PACE 00469 00470 reg_read(CNFG_PACE, &cnfg_pace.all); 00471 00472 cnfg_pace.bit.pol = Pol; 00473 cnfg_pace.bit.gn_diff_off = Gn_diff_off; 00474 cnfg_pace.bit.gain = Gain; 00475 cnfg_pace.bit.aout_lbw = Aout_lbw; 00476 cnfg_pace.bit.aout = Aout; 00477 cnfg_pace.bit.dacp = Dacp; 00478 cnfg_pace.bit.dacn = Dacn; 00479 00480 reg_write(CNFG_PACE, cnfg_pace.all); 00481 00482 return 0; 00483 } 00484 00485 //****************************************************************************** 00486 int MAX30001::Stop_PACE(void) { 00487 00488 max30001_cnfg_gen_t cnfg_gen; 00489 00490 if (reg_read(CNFG_GEN, &cnfg_gen.all) == -1) { 00491 return -1; 00492 } 00493 00494 cnfg_gen.bit.en_pace = 0; ///< Stop PACE 00495 00496 if (reg_write(CNFG_GEN, cnfg_gen.all) == -1) { 00497 return -1; 00498 } 00499 00500 return 0; 00501 } 00502 00503 //****************************************************************************** 00504 int MAX30001::BIOZ_InitStart( 00505 uint8_t En_bioz, uint8_t Openp, uint8_t Openn, uint8_t Calp_sel, 00506 uint8_t Caln_sel, uint8_t CG_mode, uint8_t B_fit, uint8_t Rate, 00507 uint8_t Ahpf, uint8_t Ext_rbias, uint8_t Gain, uint8_t Dhpf, uint8_t Dlpf, 00508 uint8_t Fcgen, uint8_t Cgmon, uint8_t Cgmag, uint8_t Phoff) { 00509 00510 max30001_cnfg_bmux_t cnfg_bmux; 00511 max30001_cnfg_gen_t cnfg_gen; 00512 max30001_status_t status; 00513 max30001_mngr_int_t mngr_int; 00514 max30001_cnfg_bioz_t cnfg_bioz; 00515 00516 00517 // CNFG_BMUX 00518 00519 if (reg_read(CNFG_BMUX, &cnfg_bmux.all) == -1) { 00520 return -1; 00521 } 00522 00523 cnfg_bmux.bit.openp = Openp; 00524 cnfg_bmux.bit.openn = Openn; 00525 cnfg_bmux.bit.calp_sel = Calp_sel; 00526 cnfg_bmux.bit.caln_sel = Caln_sel; 00527 cnfg_bmux.bit.cg_mode = CG_mode; 00528 00529 if (reg_write(CNFG_BMUX, cnfg_bmux.all) == -1) { 00530 return -1; 00531 } 00532 00533 /**** SET MASTER FREQUENCY, ENABLE CHANNELS ****/ 00534 00535 ///< CNFG_GEN 00536 00537 if (reg_read(CNFG_GEN, &cnfg_gen.all) == -1) { 00538 return -1; 00539 } 00540 00541 cnfg_gen.bit.en_bioz = En_bioz; 00542 00543 ///< fmstr is default 00544 00545 if (reg_write(CNFG_GEN, cnfg_gen.all) == -1) { 00546 return -1; 00547 } 00548 00549 /**** Wait for PLL Lock & References to settle down ****/ 00550 00551 max30001_timeout = 0; 00552 00553 do { 00554 if (reg_read(STATUS, &status.all) == -1) { // Wait and spin for PLL to lock... 00555 return -1; 00556 } 00557 00558 } while (status.bit.pllint == 1 && max30001_timeout++ <= 1000); 00559 00560 /**** Start of CNFG_BIOZ ****/ 00561 00562 ///< MNGR_INT 00563 00564 if (reg_read(MNGR_INT, &mngr_int.all) == -1) { 00565 return -1; 00566 } 00567 00568 mngr_int.bit.b_fit = B_fit; //; 00569 00570 if (reg_write(MNGR_INT, mngr_int.all) == -1) { 00571 return -1; 00572 } 00573 00574 ///< CNFG_BIOZ 00575 00576 if (reg_read(CNFG_BIOZ, &cnfg_bioz.all) == -1) { 00577 return -1; 00578 } 00579 00580 cnfg_bioz.bit.rate = Rate; 00581 cnfg_bioz.bit.ahpf = Ahpf; 00582 cnfg_bioz.bit.ext_rbias = Ext_rbias; 00583 cnfg_bioz.bit.gain = Gain; 00584 cnfg_bioz.bit.dhpf = Dhpf; 00585 cnfg_bioz.bit.dlpf = Dlpf; 00586 cnfg_bioz.bit.fcgen = Fcgen; 00587 cnfg_bioz.bit.cgmon = Cgmon; 00588 cnfg_bioz.bit.cgmag = Cgmag; 00589 cnfg_bioz.bit.phoff = Phoff; 00590 00591 if (reg_write(CNFG_BIOZ, cnfg_bioz.all) == -1) { 00592 return -1; 00593 } 00594 00595 return 0; 00596 } 00597 00598 //****************************************************************************** 00599 int MAX30001::Stop_BIOZ(void) { 00600 00601 max30001_cnfg_gen_t cnfg_gen; 00602 00603 ///< CNFG_GEN 00604 00605 if (reg_read(CNFG_GEN, &cnfg_gen.all) == -1) { 00606 return -1; 00607 } 00608 00609 cnfg_gen.bit.en_bioz = 0; // Stop BIOZ 00610 00611 if (reg_write(CNFG_GEN, cnfg_gen.all) == -1) { 00612 return -1; 00613 } 00614 00615 return 0; 00616 } 00617 00618 //****************************************************************************** 00619 int MAX30001::BIOZ_InitBist(uint8_t En_bist, uint8_t Rnom, 00620 uint8_t Rmod, uint8_t Fbist) { 00621 00622 max30001_cnfg_bmux_t cnfg_bmux; 00623 00624 ///< CNFG_BMUX 00625 00626 if (reg_read(CNFG_BMUX, &cnfg_bmux.all) == -1) { 00627 return -1; 00628 } 00629 00630 cnfg_bmux.bit.en_bist = En_bist; 00631 cnfg_bmux.bit.rnom = Rnom; 00632 cnfg_bmux.bit.rmod = Rmod; 00633 cnfg_bmux.bit.fbist = Fbist; 00634 00635 if (reg_write(CNFG_BMUX, cnfg_bmux.all) == -1) { 00636 return -1; 00637 } 00638 00639 return 0; 00640 } 00641 //****************************************************************************** 00642 int MAX30001::RtoR_InitStart(uint8_t En_rtor, uint8_t Wndw, 00643 uint8_t Gain, uint8_t Pavg, uint8_t Ptsf, 00644 uint8_t Hoff, uint8_t Ravg, uint8_t Rhsf, 00645 uint8_t Clr_rrint) { 00646 00647 max30001_mngr_int_t mngr_int; 00648 max30001_cnfg_rtor1_t cnfg_rtor1; 00649 max30001_cnfg_rtor2_t cnfg_rtor2; 00650 00651 ///< MNGR_INT 00652 if (reg_read(MNGR_INT, &mngr_int.all) == -1) { 00653 return -1; 00654 } 00655 00656 mngr_int.bit.clr_rrint = Clr_rrint; 00657 ///< 0b01 & 0b00 are for interrupt mode... 00658 ///< 0b10 is for monitoring mode... it just overwrites the data... 00659 00660 if (reg_write(MNGR_INT, mngr_int.all) == -1) { 00661 return -1; 00662 } 00663 00664 ///< RTOR1 00665 if (reg_read(CNFG_RTOR1, &cnfg_rtor1.all) == -1) { 00666 return -1; 00667 } 00668 00669 cnfg_rtor1.bit.wndw = Wndw; 00670 cnfg_rtor1.bit.gain = Gain; 00671 cnfg_rtor1.bit.en_rtor = En_rtor; 00672 cnfg_rtor1.bit.pavg = Pavg; 00673 cnfg_rtor1.bit.ptsf = Ptsf; 00674 00675 if (reg_write(CNFG_RTOR1, cnfg_rtor1.all) == -1) { 00676 return -1; 00677 } 00678 00679 ///< RTOR2 00680 if (reg_read(CNFG_RTOR2, &cnfg_rtor2.all) == -1) { 00681 return -1; 00682 } 00683 cnfg_rtor2.bit.hoff = Hoff; 00684 cnfg_rtor2.bit.ravg = Ravg; 00685 cnfg_rtor2.bit.rhsf = Rhsf; 00686 00687 if (reg_write(CNFG_RTOR2, cnfg_rtor2.all) == -1) { 00688 return -1; 00689 } 00690 00691 return 0; 00692 } 00693 00694 //****************************************************************************** 00695 int MAX30001::Stop_RtoR(void) { 00696 00697 max30001_cnfg_rtor1_t cnfg_rtor1; 00698 00699 if (reg_read(CNFG_RTOR1, &cnfg_rtor1.all) == -1) { 00700 return -1; 00701 } 00702 00703 cnfg_rtor1.bit.en_rtor = 0; ///< Stop RtoR 00704 00705 if (reg_write(CNFG_RTOR1, cnfg_rtor1.all) == -1) { 00706 return -1; 00707 } 00708 00709 return 0; 00710 } 00711 00712 //****************************************************************************** 00713 int MAX30001::PLL_lock(void) { 00714 ///< Spin to see PLLint become zero to indicate a lock. 00715 00716 max30001_status_t status; 00717 00718 max30001_timeout = 0; 00719 00720 do { 00721 if (reg_read(STATUS, &status.all) == -1) { ///< Wait and spin for PLL to lock... 00722 00723 return -1; 00724 } 00725 00726 } while (status.bit.pllint == 1 && max30001_timeout++ <= 1000); 00727 00728 return 0; 00729 } 00730 00731 //****************************************************************************** 00732 int MAX30001::sw_rst(void) { 00733 ///< SW reset for the MAX30001 chip 00734 00735 if (reg_write(SW_RST, 0x000000) == -1) { 00736 return -1; 00737 } 00738 00739 return 0; 00740 } 00741 00742 //****************************************************************************** 00743 int MAX30001::synch(void) { ///< For synchronization 00744 if (reg_write(SYNCH, 0x000000) == -1) { 00745 return -1; 00746 } 00747 return 0; 00748 } 00749 00750 //****************************************************************************** 00751 int MAX30001::fifo_rst(void) { ///< Resets the FIFO 00752 if (reg_write(FIFO_RST, 0x000000) == -1) { 00753 return -1; 00754 } 00755 return 0; 00756 } 00757 00758 //****************************************************************************** 00759 int MAX30001::reg_write(MAX30001_REG_map_t addr, uint32_t data) { 00760 00761 uint8_t result[4]; 00762 uint8_t data_array[4]; 00763 int32_t success = 0; 00764 00765 data_array[0] = (addr << 1) & 0xff; 00766 00767 data_array[3] = data & 0xff; 00768 data_array[2] = (data >> 8) & 0xff; 00769 data_array[1] = (data >> 16) & 0xff; 00770 00771 success = SPI_Transmit(&data_array[0], 4, &result[0], 4); 00772 00773 if (success != 0) { 00774 return -1; 00775 } else { 00776 return 0; 00777 } 00778 } 00779 00780 //****************************************************************************** 00781 int MAX30001::reg_read(MAX30001_REG_map_t addr, 00782 uint32_t *return_data) { 00783 uint8_t result[4]; 00784 uint8_t data_array[1]; 00785 int32_t success = 0; 00786 00787 data_array[0] = ((addr << 1) & 0xff) | 1; // For Read, Or with 1 00788 success = SPI_Transmit(&data_array[0], 1, &result[0], 4); 00789 *return_data = /*result[0] + */ (uint32_t)(result[1] << 16) + 00790 (result[2] << 8) + result[3]; 00791 if (success != 0) { 00792 return -1; 00793 } else { 00794 return 0; 00795 } 00796 } 00797 00798 //****************************************************************************** 00799 int MAX30001::Enable_DcLeadOFF_Init(int8_t En_dcloff, int8_t Ipol, 00800 int8_t Imag, int8_t Vth) { 00801 ///< the leads are not touching the body 00802 00803 max30001_cnfg_gen_t cnfg_gen; 00804 00805 ///< CNFG_EMUX, Set ECGP and ECGN for external hook up... 00806 00807 if (reg_read(CNFG_GEN, &cnfg_gen.all) == -1) { 00808 return -1; 00809 } 00810 00811 cnfg_gen.bit.en_dcloff = En_dcloff; 00812 cnfg_gen.bit.ipol = Ipol; 00813 cnfg_gen.bit.imag = Imag; 00814 cnfg_gen.bit.vth = Vth; 00815 00816 if (reg_write(CNFG_GEN, cnfg_gen.all) == -1) { 00817 return -1; 00818 } 00819 00820 return 0; 00821 } 00822 00823 //****************************************************************************** 00824 int MAX30001::Disable_DcLeadOFF(void) { 00825 00826 max30001_cnfg_gen_t cnfg_gen; 00827 00828 ///< CNFG_GEN 00829 if (reg_read(CNFG_GEN, &cnfg_gen.all) == -1) { 00830 return -1; 00831 } 00832 00833 cnfg_gen.bit.en_dcloff = 0; // Turned off the dc lead off. 00834 00835 if (reg_write(CNFG_GEN, cnfg_gen.all) == -1) { 00836 return -1; 00837 } 00838 00839 return 0; 00840 } 00841 00842 //****************************************************************************** 00843 int MAX30001::BIOZ_Enable_ACLeadOFF_Init(uint8_t En_bloff, uint8_t Bloff_hi_it, 00844 uint8_t Bloff_lo_it) { 00845 00846 max30001_cnfg_gen_t cnfg_gen; 00847 max30001_mngr_dyn_t mngr_dyn; 00848 00849 ///< CNFG_GEN 00850 if (reg_read(CNFG_GEN, &cnfg_gen.all) == -1) { 00851 return -1; 00852 } 00853 00854 cnfg_gen.bit.en_bloff = En_bloff; 00855 00856 if (reg_write(CNFG_GEN, cnfg_gen.all) == -1) { 00857 return -1; 00858 } 00859 00860 ///< MNGR_DYN 00861 if (reg_read(MNGR_DYN, &mngr_dyn.all) == -1) { 00862 return -1; 00863 } 00864 00865 mngr_dyn.bit.bloff_hi_it = Bloff_hi_it; 00866 mngr_dyn.bit.bloff_lo_it = Bloff_lo_it; 00867 00868 if (reg_write(MNGR_DYN, mngr_dyn.all) == -1) { 00869 return -1; 00870 } 00871 00872 return 0; 00873 } 00874 00875 //****************************************************************************** 00876 int MAX30001::BIOZ_Disable_ACleadOFF(void) { 00877 00878 max30001_cnfg_gen_t cnfg_gen; 00879 00880 ///< CNFG_GEN 00881 if (reg_read(CNFG_GEN, &cnfg_gen.all) == -1) { 00882 return -1; 00883 } 00884 00885 cnfg_gen.bit.en_bloff = 0b0; // Turns of the BIOZ AC Lead OFF feature 00886 00887 if (reg_write(CNFG_GEN, cnfg_gen.all) == -1) { 00888 return -1; 00889 } 00890 00891 return 0; 00892 } 00893 00894 //****************************************************************************** 00895 int MAX30001::BIOZ_Enable_BCGMON(void) { 00896 00897 max30001_cnfg_bioz_t cnfg_bioz; 00898 00899 ///< CNFG_BIOZ 00900 if (reg_read(CNFG_BIOZ, &cnfg_bioz.all) == -1) { 00901 return -1; 00902 } 00903 00904 cnfg_bioz.bit.cgmon = 1; 00905 00906 if (reg_write(CNFG_BIOZ, cnfg_bioz.all) == -1) { 00907 return -1; 00908 } 00909 00910 return 0; 00911 } 00912 00913 00914 //****************************************************************************** 00915 int MAX30001::Enable_LeadON(int8_t Channel) // Channel: ECG = 0b01, BIOZ = 0b10, Disable = 0b00 00916 { 00917 00918 max30001_cnfg_gen_t cnfg_gen; 00919 00920 ///< CNFG_GEN 00921 if (reg_read(CNFG_GEN, &cnfg_gen.all) == -1) { 00922 return -1; 00923 } 00924 00925 cnfg_gen.bit.en_ecg = 0b0; 00926 cnfg_gen.bit.en_bioz = 0b0; 00927 cnfg_gen.bit.en_pace = 0b0; 00928 00929 cnfg_gen.bit.en_ulp_lon = Channel; ///< BIOZ ULP lead on detection... 00930 00931 if (reg_write(CNFG_GEN, cnfg_gen.all) == -1) { 00932 return -1; 00933 } 00934 00935 return 0; 00936 } 00937 00938 //****************************************************************************** 00939 int MAX30001::Disable_LeadON(void) { 00940 00941 max30001_cnfg_gen_t cnfg_gen; 00942 ///< CNFG_GEN 00943 if (reg_read(CNFG_GEN, &cnfg_gen.all) == -1) { 00944 return -1; 00945 } 00946 00947 cnfg_gen.bit.en_ulp_lon = 0b0; 00948 00949 if (reg_write(CNFG_GEN, cnfg_gen.all) == -1) { 00950 return -1; 00951 } 00952 00953 return 0; 00954 } 00955 00956 //****************************************************************************** 00957 #define LEADOFF_SERVICE_TIME 0x2000 ///< 0x1000 = 1 second 00958 #define LEADOFF_NUMSTATES 2 00959 uint32_t leadoffState = 0; 00960 uint32_t max30001_LeadOffoldTime = 0; 00961 void MAX30001::ServiceLeadoff(uint32_t currentTime) { 00962 00963 uint32_t delta_Time; 00964 00965 delta_Time = currentTime - max30001_LeadOffoldTime; 00966 00967 if (delta_Time > LEADOFF_SERVICE_TIME) { 00968 switch (leadoffState) { 00969 case 0: ///< switch to ECG DC Lead OFF 00970 Enable_DcLeadOFF_Init(0b01, 0b0, 0b001, 0b00); 00971 break; 00972 00973 case 1: ///< switch to BIOZ DC Lead OFF 00974 Enable_DcLeadOFF_Init(0b10, 0b0, 0b001, 0b00); 00975 break; 00976 } 00977 00978 leadoffState++; 00979 leadoffState %= LEADOFF_NUMSTATES; 00980 00981 max30001_LeadOffoldTime = currentTime; 00982 } 00983 } 00984 //****************************************************************************** 00985 #define LEADON_SERVICE_TIME 0x2000 // 0x1000 = 1 second 00986 #define LEADON_NUMSTATES 2 00987 uint32_t leadOnState = 0; 00988 uint32_t max30001_LeadOnoldTime = 0; 00989 void MAX30001::ServiceLeadON(uint32_t currentTime) { 00990 00991 uint32_t delta_Time; 00992 00993 delta_Time = currentTime - max30001_LeadOnoldTime; 00994 00995 if (delta_Time > LEADON_SERVICE_TIME) { 00996 switch (leadOnState) { 00997 case 0: ///< switch to ECG DC Lead ON 00998 Enable_LeadON(0b01); 00999 break; 01000 01001 case 1: ///< switch to BIOZ DC Lead ON 01002 Enable_LeadON(0b10); 01003 break; 01004 } 01005 01006 leadOnState++; 01007 leadOnState %= LEADON_NUMSTATES; 01008 01009 max30001_LeadOnoldTime = currentTime; 01010 } 01011 } 01012 01013 //****************************************************************************** 01014 int MAX30001::FIFO_LeadONOff_Read(void) { 01015 01016 uint8_t result[32 * 3]; ///< 32words - 3bytes each 01017 uint8_t data_array[4]; 01018 int32_t success = 0; 01019 int i, j; 01020 01021 uint32_t total_databytes; 01022 uint8_t i_index; 01023 uint8_t data_chunk; 01024 uint8_t loop_logic; 01025 01026 uint8_t etag, ptag, btag; 01027 01028 uint8_t adr; 01029 01030 int8_t ReadAllPaceOnce; 01031 01032 static uint8_t dcloffint_OneShot = 0; 01033 static uint8_t acloffint_OneShot = 0; 01034 static uint8_t bcgmon_OneShot = 0; 01035 static uint8_t acleadon_OneShot = 0; 01036 01037 max30001_mngr_int_t mngr_int; 01038 max30001_cnfg_gen_t cnfg_gen; 01039 01040 int8_t ret_val; 01041 01042 etag = 0; 01043 if (global_status.bit.eint == 1 || global_status.bit.pint == 1) { 01044 adr = ECG_FIFO_BURST; 01045 data_array[0] = ((adr << 1) & 0xff) | 1; 01046 01047 ///< The SPI routine only sends out data of 32 bytes in size. Therefore the 01048 ///< data is being read in 01049 ///< smaller chunks in this routine... 01050 01051 ///< READ mngr_int AND cnfg_gen; 01052 01053 if (reg_read(MNGR_INT, &mngr_int.all) == -1) { 01054 return -1; 01055 } 01056 01057 if (reg_read(CNFG_GEN, &cnfg_gen.all) == -1) { 01058 return -1; 01059 } 01060 01061 total_databytes = (mngr_int.bit.e_fit + 1) * 3; 01062 01063 i_index = 0; 01064 loop_logic = 1; 01065 01066 while (loop_logic) { 01067 if (total_databytes > 30) { 01068 data_chunk = 30; 01069 total_databytes = total_databytes - 30; 01070 } else { 01071 data_chunk = total_databytes; 01072 loop_logic = 0; 01073 } 01074 01075 ///< The extra 1 byte is for the extra byte that comes out of the SPI 01076 success = SPI_Transmit(&data_array[0], 1, &result[i_index], (data_chunk + 1)); // Make a copy of the FIFO over here... 01077 01078 if (success != 0) { 01079 return -1; 01080 } 01081 01082 ///< This is important, because every transaction above creates an empty 01083 ///< redundant data at result[0] 01084 for (j = i_index; j < (data_chunk + i_index); j++) /* get rid of the 1 extra byte by moving the whole array up one */ 01085 { 01086 result[j] = result[j + 1]; 01087 } 01088 01089 i_index = i_index + 30; /* point to the next array location to put the data in */ 01090 } 01091 01092 ReadAllPaceOnce = 0; 01093 01094 ///< Put the content of the FIFO based on the EFIT value, We ignore the 01095 ///< result[0] and start concatenating indexes: 1,2,3 - 4,5,6 - 7,8,9 - 01096 for (i = 0, j = 0; i < mngr_int.bit.e_fit + 1; i++, j = j + 3) ///< index1=23-16 bit, index2=15-8 bit, index3=7-0 bit 01097 { 01098 max30001_ECG_FIFO_buffer[i] = ((uint32_t)result[j] << 16) + (result[j + 1] << 8) + result[j + 2]; 01099 01100 etag = (0b00111000 & result[j + 2]) >> 3; 01101 ptag = 0b00000111 & result[j + 2]; 01102 01103 if (ptag != 0b111 && ReadAllPaceOnce == 0) { 01104 01105 ReadAllPaceOnce = 1; ///< This will prevent extra read of PACE, once group 01106 ///< 0-5 is read ONCE. 01107 01108 adr = PACE0_FIFO_BURST; 01109 01110 data_array[0] = ((adr << 1) & 0xff) | 1; ///< For Read Or with 1 01111 01112 success = SPI_Transmit(&data_array[0], 1, &result[0], 10); 01113 01114 max30001_PACE[0] = (uint32_t)(result[1] << 16) + (result[2] << 8) + result[3]; 01115 max30001_PACE[1] = (uint32_t)(result[4] << 16) + (result[5] << 8) + result[6]; 01116 max30001_PACE[2] = (uint32_t)(result[7] << 16) + (result[8] << 8) + result[9]; 01117 01118 adr = PACE1_FIFO_BURST; 01119 01120 data_array[0] = ((adr << 1) & 0xff) | 1; ///< For Read Or with 1 01121 01122 success = SPI_Transmit(&data_array[0], 1, &result[0], 10); 01123 01124 max30001_PACE[3] = (uint32_t)(result[1] << 16) + (result[2] << 8) + result[3]; 01125 max30001_PACE[4] = (uint32_t)(result[4] << 16) + (result[5] << 8) + result[6]; 01126 max30001_PACE[5] = (uint32_t)(result[7] << 16) + (result[8] << 8) + result[9]; 01127 01128 adr = PACE2_FIFO_BURST; 01129 01130 data_array[0] = ((adr << 1) & 0xff) | 1; ///< For Read Or with 1 01131 01132 success = SPI_Transmit(&data_array[0], 1, &result[0], 10); 01133 01134 max30001_PACE[6] = (uint32_t)(result[1] << 16) + (result[2] << 8) + result[3]; 01135 max30001_PACE[7] = (uint32_t)(result[4] << 16) + (result[5] << 8) + result[6]; 01136 max30001_PACE[8] = (uint32_t)(result[7] << 16) + (result[8] << 8) + result[9]; 01137 01138 adr = PACE3_FIFO_BURST; 01139 01140 data_array[0] = ((adr << 1) & 0xff) | 1; ///< For Read Or with 1 01141 01142 success = SPI_Transmit(&data_array[0], 1, &result[0], 10); 01143 01144 max30001_PACE[9] = (uint32_t)(result[1] << 16) + (result[2] << 8) + result[3]; 01145 max30001_PACE[10] = (uint32_t)(result[4] << 16) + (result[5] << 8) + result[6]; 01146 max30001_PACE[11] = (uint32_t)(result[7] << 16) + (result[8] << 8) + result[9]; 01147 01148 adr = PACE4_FIFO_BURST; 01149 01150 data_array[0] = ((adr << 1) & 0xff) | 1; ///< For Read Or with 1 01151 01152 success = SPI_Transmit(&data_array[0], 1, &result[0], 10); 01153 01154 max30001_PACE[12] = (uint32_t)(result[1] << 16) + (result[2] << 8) + result[3]; 01155 max30001_PACE[13] = (uint32_t)(result[4] << 16) + (result[5] << 8) + result[6]; 01156 max30001_PACE[14] = (uint32_t)(result[7] << 16) + (result[8] << 8) + result[9]; 01157 01158 adr = PACE5_FIFO_BURST; 01159 01160 data_array[0] = ((adr << 1) & 0xff) | 1; ///< For Read Or with 1 01161 01162 success = SPI_Transmit(&data_array[0], 1, &result[0], 10); 01163 01164 max30001_PACE[15] = (uint32_t)(result[1] << 16) + (result[2] << 8) + result[3]; 01165 max30001_PACE[16] = (uint32_t)(result[4] << 16) + (result[5] << 8) + result[6]; 01166 max30001_PACE[17] = (uint32_t)(result[7] << 16) + (result[8] << 8) + result[9]; 01167 01168 dataAvailable(MAX30001_DATA_PACE, max30001_PACE, 18); ///< Send out the Pace data once only 01169 } 01170 } 01171 01172 if (etag != 0b110) { 01173 01174 dataAvailable(MAX30001_DATA_ECG, max30001_ECG_FIFO_buffer, (mngr_int.bit.e_fit + 1)); 01175 } 01176 01177 } /* End of ECG init */ 01178 01179 /* RtoR */ 01180 01181 if (global_status.bit.rrint == 1) { 01182 if (reg_read(RTOR, &max30001_RtoR_data) == -1) { 01183 return -1; 01184 } 01185 01186 max30001_RtoR_data = (0x00FFFFFF & max30001_RtoR_data) >> 10; 01187 01188 hspValMax30001.R2R = (uint16_t)max30001_RtoR_data; 01189 hspValMax30001.fmstr = (uint16_t)cnfg_gen.bit.fmstr; 01190 01191 dataAvailable(MAX30001_DATA_RTOR, &max30001_RtoR_data, 1); 01192 } 01193 01194 ///< Handling BIOZ data... 01195 01196 if (global_status.bit.bint == 1) { 01197 adr = 0x22; 01198 data_array[0] = ((adr << 1) & 0xff) | 1; 01199 01200 ///< [(BFIT+1)*3byte]+1extra byte due to the addr 01201 01202 if (SPI_Transmit(&data_array[0], 1, &result[0],((mngr_int.bit.b_fit + 1) * 3) + 1) == -1) { ///< Make a copy of the FIFO over here... 01203 return -1; 01204 } 01205 01206 btag = 0b00000111 & result[3]; 01207 01208 ///< Put the content of the FIFO based on the BFIT value, We ignore the 01209 ///< result[0] and start concatenating indexes: 1,2,3 - 4,5,6 - 7,8,9 - 01210 for (i = 0, j = 0; i < mngr_int.bit.b_fit + 1; i++, j = j + 3) ///< index1=23-16 bit, index2=15-8 bit, index3=7-0 bit 01211 { 01212 max30001_BIOZ_FIFO_buffer[i] = ((uint32_t)result[j + 1] << 16) + (result[j + 2] << 8) + result[j + 3]; 01213 } 01214 01215 if (btag != 0b110) { 01216 dataAvailable(MAX30001_DATA_BIOZ, max30001_BIOZ_FIFO_buffer, 8); 01217 } 01218 } 01219 01220 ret_val = 0; 01221 01222 if (global_status.bit.dcloffint == 1) { ///< ECG/BIOZ Lead Off 01223 dcloffint_OneShot = 1; 01224 max30001_DCLeadOff = 0; 01225 max30001_DCLeadOff = max30001_DCLeadOff | (cnfg_gen.bit.en_dcloff << 8) | (global_status.all & 0x00000F); 01226 dataAvailable(MAX30001_DATA_LEADOFF_DC, &max30001_DCLeadOff, 1); 01227 ///< Do a FIFO Reset 01228 reg_write(FIFO_RST, 0x000000); 01229 01230 ret_val = 0b100; 01231 01232 } else if (dcloffint_OneShot == 1 && global_status.bit.dcloffint == 0) { ///< Just send once when it comes out of dc lead off 01233 max30001_DCLeadOff = 0; 01234 max30001_DCLeadOff = max30001_DCLeadOff | (cnfg_gen.bit.en_dcloff << 8) | (global_status.all & 0x00000F); 01235 dataAvailable(MAX30001_DATA_LEADOFF_DC, &max30001_DCLeadOff, 1); 01236 dcloffint_OneShot = 0; 01237 } 01238 01239 if (global_status.bit.bover == 1 || global_status.bit.bundr == 1) { ///< BIOZ AC Lead Off 01240 acloffint_OneShot = 1; 01241 max30001_ACLeadOff = 0; 01242 max30001_ACLeadOff = 01243 max30001_ACLeadOff | ((global_status.all & 0x030000) >> 16); 01244 dataAvailable(MAX30001_DATA_LEADOFF_AC, &max30001_ACLeadOff, 1); 01245 ///< Do a FIFO Reset 01246 reg_write(FIFO_RST, 0x000000); 01247 01248 ret_val = 0b1000; 01249 } else if (acloffint_OneShot == 1 && global_status.bit.bover == 0 && global_status.bit.bundr == 0) { ///< Just send once when it comes out of ac lead off 01250 max30001_ACLeadOff = 0; 01251 max30001_ACLeadOff = max30001_ACLeadOff | ((global_status.all & 0x030000) >> 16); 01252 dataAvailable(MAX30001_DATA_LEADOFF_AC, &max30001_ACLeadOff, 1); 01253 acloffint_OneShot = 0; 01254 } 01255 01256 if (global_status.bit.bcgmon == 1) {///< BIOZ BCGMON check 01257 bcgmon_OneShot = 1; 01258 max30001_bcgmon = 0; 01259 max30001_bcgmon = max30001_bcgmon | ((global_status.all & 0x000030) >> 4); 01260 dataAvailable(MAX30001_DATA_BCGMON, &max30001_bcgmon, 1); 01261 // Do a FIFO Reset 01262 reg_write(FIFO_RST, 0x000000); 01263 01264 ret_val = 0b10000; 01265 } else if (bcgmon_OneShot == 1 && global_status.bit.bcgmon == 0) { 01266 max30001_bcgmon = 0; 01267 max30001_bcgmon = max30001_bcgmon | ((global_status.all & 0x000030) >> 4); 01268 bcgmon_OneShot = 0; 01269 dataAvailable(MAX30001_DATA_BCGMON, &max30001_bcgmon, 1); 01270 } 01271 01272 if (global_status.bit.lonint == 1 && acleadon_OneShot == 0) {///< AC LeadON Check, when lead is on 01273 max30001_LeadOn = 0; 01274 reg_read(STATUS, &global_status.all); 01275 max30001_LeadOn = 01276 max30001_LeadOn | (cnfg_gen.bit.en_ulp_lon << 8) | 01277 ((global_status.all & 0x000800) >> 01278 11); ///< 0b01 will mean ECG Lead On, 0b10 will mean BIOZ Lead On 01279 01280 // LEAD ON has been detected... Now take actions 01281 acleadon_OneShot = 1; 01282 dataAvailable(MAX30001_DATA_ACLEADON, &max30001_LeadOn, 1); ///< One shot data will be sent... 01283 } else if (global_status.bit.lonint == 0 && acleadon_OneShot == 1) { 01284 max30001_LeadOn = 0; 01285 reg_read(STATUS, &global_status.all); 01286 max30001_LeadOn = 01287 max30001_LeadOn | (cnfg_gen.bit.en_ulp_lon << 8) | ((global_status.all & 0x000800) >> 11); ///< 0b01 will mean ECG Lead On, 0b10 will mean BIOZ Lead On 01288 dataAvailable(MAX30001_DATA_ACLEADON, &max30001_LeadOn, 1); ///< One shot data will be sent... 01289 acleadon_OneShot = 0; 01290 } 01291 01292 return ret_val; 01293 } 01294 01295 //****************************************************************************** 01296 int MAX30001::int_handler(void) { 01297 01298 static uint32_t InitReset = 0; 01299 01300 int8_t return_value; 01301 01302 reg_read(STATUS, &global_status.all); 01303 01304 ///< Inital Reset and any FIFO over flow invokes a FIFO reset 01305 if (InitReset == 0 || global_status.bit.eovf == 1 || global_status.bit.bovf == 1 || global_status.bit.povf == 1) { 01306 ///< Do a FIFO Reset 01307 reg_write(FIFO_RST, 0x000000); 01308 01309 InitReset++; 01310 return 2; 01311 } 01312 01313 return_value = 0; 01314 01315 ///< The four data handling goes on over here 01316 if (global_status.bit.eint == 1 || global_status.bit.pint == 1 || global_status.bit.bint == 1 || global_status.bit.rrint == 1) { 01317 return_value = return_value | FIFO_LeadONOff_Read(); 01318 } 01319 01320 ///< ECG/BIOZ DC Lead Off test 01321 if (global_status.bit.dcloffint == 1) { 01322 return_value = return_value | FIFO_LeadONOff_Read(); 01323 } 01324 01325 ///< BIOZ AC Lead Off test 01326 if (global_status.bit.bover == 1 || global_status.bit.bundr == 1) { 01327 return_value = return_value | FIFO_LeadONOff_Read(); 01328 } 01329 01330 ///< BIOZ DRVP/N test using BCGMON. 01331 if (global_status.bit.bcgmon == 1) { 01332 return_value = return_value | FIFO_LeadONOff_Read(); 01333 } 01334 01335 if (global_status.bit.lonint == 1) ///< ECG Lead ON test: i.e. the leads are touching the body... 01336 { 01337 01338 FIFO_LeadONOff_Read(); 01339 } 01340 01341 return return_value; 01342 } 01343 01344 01345 event_callback_t MAX30001::functionpointer; 01346 01347 01348 volatile int MAX30001::xferFlag = 0; 01349 01350 01351 //****************************************************************************** 01352 int MAX30001::SPI_Transmit(const uint8_t *tx_buf, uint32_t tx_size, uint8_t *rx_buf, uint32_t rx_size) { 01353 xferFlag = 0; 01354 unsigned int i; 01355 for (i = 0; i < sizeof(buffer); i++) { 01356 if (i < tx_size) { 01357 buffer[i] = tx_buf[i]; 01358 } 01359 else { 01360 buffer[i] = 0xFF; 01361 } 01362 } 01363 spi->transfer<uint8_t>(buffer, (int)rx_size, rx_buf, (int)rx_size, spiHandler); 01364 while (xferFlag == 0); 01365 return 0; 01366 } 01367 01368 //****************************************************************************** 01369 void MAX30001::ReadHeartrateData(max30001_bledata_t *_hspValMax30001) { 01370 _hspValMax30001->R2R = hspValMax30001.R2R; 01371 _hspValMax30001->fmstr = hspValMax30001.fmstr; 01372 } 01373 01374 //****************************************************************************** 01375 void MAX30001::onDataAvailable(PtrFunction _onDataAvailable) { 01376 onDataAvailableCallback = _onDataAvailable; 01377 } 01378 01379 //****************************************************************************** 01380 void MAX30001::dataAvailable(uint32_t id, uint32_t *buffer, uint32_t length) { 01381 if (onDataAvailableCallback != NULL) { 01382 (*onDataAvailableCallback)(id, buffer, length); 01383 } 01384 } 01385 01386 //****************************************************************************** 01387 void MAX30001::spiHandler(int events) { 01388 xferFlag = 1; 01389 } 01390 01391 //****************************************************************************** 01392 static int allowInterrupts = 0; 01393 01394 void MAX30001::Mid_IntB_Handler(void) { 01395 if (allowInterrupts == 0) { 01396 return; 01397 } 01398 MAX30001::instance->int_handler(); 01399 } 01400 01401 void MAX30001::Mid_Int2B_Handler(void) { 01402 if (allowInterrupts == 0) { 01403 return; 01404 } 01405 MAX30001::instance->int_handler(); 01406 } 01407 01408 void MAX30001::AllowInterrupts(int state) { 01409 allowInterrupts = state; 01410 }
Generated on Tue Jul 12 2022 17:59:19 by 1.7.2