MAX32620HSP (MAXREFDES100) RPC Example for Graphical User Interface

Dependencies:   USBDevice

Fork of HSP_Release by Jerry Bradshaw

This is an example program for the MAX32620HSP (MAXREFDES100 Health Sensor Platform). It demonstrates all the features of the platform and works with a companion graphical user interface (GUI) to help evaluate/configure/monitor the board. Go to the MAXREFDES100 product page and click on "design resources" to download the companion software. The GUI connects to the board through an RPC interface on a virtual serial port over the USB interface.

The RPC interface provides access to all the features of the board and is available to interface with other development environments such Matlab. This firmware provides realtime data streaming through the RPC interface over USB, and also provides the ability to log the data to flash for untethered battery operation. The data logging settings are configured through the GUI, and the GUI also provides the interface to download logged data.

Details on the RPC interface can be found here: HSP RPC Interface Documentation

Windows

With this program loaded, the MAX32620HSP will appear on your computer as a serial port. On Mac and Linux, this will happen by default. For Windows, you need to install a driver: HSP serial port windows driver

For more details about this platform and how to use it, see the MAXREFDES100 product page.

HSP/Devices/MAX30101/MAX30101/MAX30101.h

Committer:
jbradshaw
Date:
2016-10-25
Revision:
0:e4a10ed6eb92
Child:
1:9490836294ea

File content as of revision 0:e4a10ed6eb92:

/*******************************************************************************
/ * Copyright (C) 2015 Maxim Integrated Products, Inc., All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included
 * in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 * IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
 * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Except as contained in this notice, the name of Maxim Integrated
 * Products, Inc. shall not be used except as stated in the Maxim Integrated
 * Products, Inc. Branding Policy.
 *
 * The mere transfer of this software does not imply any licenses
 * of trade secrets, proprietary technology, copyrights, patents,
 * trademarks, maskwork rights, or any other form of intellectual
 * property whatsoever. Maxim Integrated Products, Inc. retains all
 * ownership rights.
 *******************************************************************************/
/*
 * max30101.h
 *
 *  Created on: Aug 26, 2015
 *      Author: faisal.tariq
 */

#ifndef _MAX30101_H_
#define _MAX30101_H_

#include "mbed.h"

#define MAX30101_RAW_DATA_SIZE 3 * 4 * 32
#define MAX30101_PROC_DATA_SIZE 4 * 32

#define MAX30101_OXIMETER_DATA 0x10

#define CHUNK_SIZE 252

// MAX30101 Register addresses

#define MAX30101_INT_PORT 4
#define MAX30101_INT_PIN 0
#define MAX30101_MASTER_NUM 2

/**
* Maxim Integrated MAX30101 Oximeter chip
*/
class MAX30101 {
public:
  float max30101_final_temp;                         // Global declaration
  uint32_t max30101_buffer[MAX30101_PROC_DATA_SIZE]; // final Processed data
  char max30101_rawData[MAX30101_RAW_DATA_SIZE];     //  raw data from the chip

  typedef enum { // MAX30101 Register addresses

    /*Status */
    REG_INT_STAT_1 = 0x00,
    REG_INT_STAT_2 = 0x01,
    REG_INT_EN_1   = 0x02,
    REG_INT_EN_2   = 0x03,

    REG_FIFO_W_PTR   = 0x04,
    REG_FIFO_OVF_CNT = 0x05,
    REG_FIFO_R_PTR   = 0x06,
    REG_FIFO_DATA    = 0x07,
    /* Configuration */
    REG_FIFO_CFG  = 0x08,
    REG_MODE_CFG  = 0x09,
    REG_SPO2_CFG  = 0x0A,
    REG_LED1_PA   = 0x0C,
    REG_LED2_PA   = 0x0D,
    REG_LED3_PA   = 0x0E,
    REG_PILOT_PA  = 0x10,
    REG_SLT2_SLT1 = 0x11,
    REG_SLT4_SLT3 = 0x12,
    /* Die Temp    */
    REG_TINT    = 0x1F,
    REG_TFRAC   = 0x20,
    REG_TEMP_EN = 0x21,
    /* Proximity Func */
    REG_PROX_INT_THR = 0x30,
    /* Part ID        */
    REG_REV_ID = 0xFE,
    REG_ID     = 0xFF,
  } MAX30101_REG_map_t;

  /**********/
  /* STATUS */
  /**********/
  /// @brief STATUS1 (0x00)
  union max30101_Interrupt_Status_1_reg {
    char all;
    struct {
      char pwr_rdy  : 1;
      char reserved : 3;
      char prox_int : 1;
      char alc_ovf  : 1;
      char ppg_rdy  : 1;
      char a_full   : 1;
    } bit;
  } max30101_Interrupt_Status_1;

  /// @brief STATUS2 (0x01)
  union max30101_Interrupt_Status_2_reg {
    char all;
    struct {
      char reserved1    : 1;
      char die_temp_rdy : 1;
      char reserved2    : 6;
    } bit;
  } max30101_Interrupt_Status_2;

  /// @brief INTERRUPT_ENABLE1 (0x02)
  volatile union max30101_Interrupt_Enable_1_reg {
    uint8_t all;
    struct {
      uint8_t reserved1   : 4;
      uint8_t prox_int_en : 1;
      uint8_t alc_ovf_en  : 1;
      uint8_t ppg_rdy_en  : 1;
      uint8_t a_full_en   : 1;
    } bit;
  } max30101_Interrupt_Enable_1;

  /// @brief INTERRUPT_ENABLE2 (0x03)
  volatile union max30101_Interrupt_Enable_2_reg {
    uint8_t all;
    struct {
      uint8_t reserved1       : 1;
      uint8_t die_temp_rdy_en : 1;
      uint8_t reserved2       : 6;
    } bit;
  } max30101_Interrupt_Enable_2;

  /*********/
  /* FIFO  */
  /*********/
  // 0x04
  /// @brief FIFO_WR_PTR (0x04)
  volatile union max30101_fifo_wr_ptr_reg {
    uint8_t all;
    struct {
      uint8_t fifo_wr_ptr : 5;
      uint8_t reserved1   : 3;
    } bit;
  } max30101_fifo_wr_ptr;

  /// @brief OVF_COUNTER (0x05)
  volatile union max30101_ovf_counter_reg {
    uint8_t all;
    struct {
      uint8_t fifo_ovf_counter : 5;
      uint8_t reserved1        : 3;
    } bit;
  } max30101_ovf_counter_reg;

  /// @brief FIFO_READ_PTR (0x06)
  volatile union max30101_fifo_rd_ptr_reg {
    uint8_t all;
    struct {
      uint8_t fifo_rd_ptr : 5;
      uint8_t reserved1   : 3;
    } bit;
  } max30101_fifo_rd_ptr;

  // 0x07
  uint8_t max30101_fifo_data;

  /********************/
  /* Configuration    */
  /********************/
  // 0x08
  /// @brief FIFO_CONFIGURATION (0x08)
  volatile union max30101_fifo_configuration_reg {
    uint8_t all;
    struct {
      uint8_t fifo_a_full       : 4;
      uint8_t fifo_roll_over_en : 1;
      uint8_t smp_ave           : 3;
    } bit;
  } max30101_fifo_configuration;

  /// @brief MODE_CONFIGURATION (0x09)
  volatile union max30101_mode_configuration_reg {
    uint8_t all;
    struct {
      uint8_t mode      : 3;
      uint8_t reserved1 : 3;
      uint8_t reset     : 1;
      uint8_t shdn      : 1;
    } bit;
  } max30101_mode_configuration;

  /// @brief SPO2_CONGIGURATION (0x0A)
  volatile union max30101_spo2_configuration_reg {
    uint8_t all;
    struct {
      uint8_t led_pw       : 2;
      uint8_t spo2_sr      : 3;
      uint8_t spo2_adc_rge : 2;
      uint8_t reserved1    : 1;
    } bit;
  } max30101_spo2_configuration;

  /// @brief LED1_PA (0x0C)
  uint8_t max30101_led1_pa;

  /// @brief LED2_PA (0x0D)
  uint8_t max30101_led2_pa;

  /// @brief LED3_PA (0x0E)
  uint8_t max30101_led3_pa;

  /// @brief PILOT_PA (0x10)
  uint8_t max30101_pilot_pa;

  volatile union max30101_multiLED_mode_ctrl_1_reg {
    uint8_t all;
    struct {
      uint8_t slot1     : 3;
      uint8_t reserved  : 1;
      uint8_t slot2     : 3;
      uint8_t reserved1 : 1;
    } bit;
  } max30101_multiLED_mode_ctrl_1;

  volatile union max30101_multiLED_mode_ctrl_2_reg {
    uint8_t all;
    struct {
      uint8_t slot3     : 3;
      uint8_t reserved  : 1;
      uint8_t slot4     : 3;
      uint8_t reserved1 : 1;
    } bit;
  } max30101_multiLED_mode_ctrl_2;

  /********************/
  /* Die Temperature  */
  /********************/

  uint8_t max30101_tinit;

  uint8_t max30101_tfrac;

  volatile union max30101_die_temp_config {
    uint8_t all;
    struct {
      uint8_t temp_en  : 1;
      uint8_t reserved : 7;
    } bit;
  } max30101_die_temp_config;
  /*******************************/
  /***** Function Prototypes *****/
  /*******************************/

  uint8_t max30101_prox_int_thresh;

  /**
  * MAX30101 constructor.
  *
  * @param sda mbed pin to use for SDA line of I2C interface.
  * @param scl mbed pin to use for SCL line of I2C interface.
  */
  MAX30101(PinName sda, PinName scl, int slaveAddress);

  /**
  *  MAX30101 constructor.
  *
  * @param i2c I2C object to use.
  */
  MAX30101(I2C *i2c, int slaveAddress);

  /**
  * MAX30101 destructor.
  */
  ~MAX30101(void);

  /**
       * @brief Allows reading from MAX30101 register
   * @param reg: is the register address, to read from (look at max30101.h and the
   *             data sheet for details)
   * @param value: is the pointer to the value read from the register
   * @returns  0-if no error.  A non-zero value indicates an error.
   */
  int i2c_reg_read(MAX30101_REG_map_t reg, char *value);

  /**
   * @brief Allows writing to MAX30101 register
   * @param reg: is the register address, to read from (look at max30101.h and
   * the
   *        data sheet for details)
   * @param value: is the value to write to the register
   * @returns  0-if if no error.  A non-zero value indicates an error.
   */
  int i2c_reg_write(MAX30101_REG_map_t reg, char value);

  /**
   * @brief This function sets up for the SpO2 mode.  The data is returned in
   * the callback function
   * @brief max30101_int_handler in global array: buffer[].  SP mode handles two LED (Red,IR) data.  Hence it
   * @brief can fill up the FIFO up to a maximum of 3bytes/sample x 32 x 2 = 192bytes.
   * @param fifo_waterlevel_mark: corresponds to FIFO_A_FULL, In FIFO Configuration Register (0x08)
   * @param sample_avg: corresponds to SMP_AVE, in FIFO Configuration Register (0x08)
   * @param sample_rate: corresponds to SPO2_SR, IN SpO2 Configuration Register (0x0A)
   * @param pulse_width: corresponds to LED_PW in SpO2 Configuration register(0x0A)
   * @param red_led_current: corresponds to LED1_PA register (0x0C).  Please see data sheet for values
   * @param ir_led_current: corresponds to LED2_PA register (0x0D).  Please see data sheet for values
   * @returns 0-if everything is good.  A non-zero value indicates an error.
   */
  int SpO2mode_init(uint8_t fifo_waterlevel_mark, uint8_t sample_avg,
                    uint8_t sample_rate, uint8_t pulse_width,
                    uint8_t red_led_current, uint8_t ir_led_current);

  /**
   * @brief This function will stop the SpO2 mode and turn off all operating LEDâs.
   * @return  0-if if no error.  A non-zero value indicates an error.
   */
  int SpO2mode_stop(void);

  /**
   * @brief This function sets up for the HR mode.  The data is returned in thecallback function
   * @brief max30101_int_handler in global array: buffer[].HR mode handles one LED (Red) data.  Hence it can fill
   * @brief up the FIFO up to a maximum of 3bytes/sample x 32 = 96bytes.
   * @brief fifo_waterlevel_mark: corresponds to FIFO_A_FULL, In FIFO Configuration Register (0x08)
   * @param sample_avg: corresponds to SMP_AVE, in FIFO Configuration Register (0x08)
   * @param sample_rate:corresponds to SPO2_SR, IN SpO2 Configuration Register (0x0A)
   * @param pulse_width: corresponds to LED_PW in SpO2 Configuration Register(0x0A)
   * @param red_led_current: corresponds to LED1_PA register (0x0C).  Please see data sheet for values
   * @returns  0-if if no error.  A non-zero value indicates an error.
   */
  int HRmode_init(uint8_t fifo_waterlevel_mark, uint8_t sample_avg,
                  uint8_t sample_rate, uint8_t pulse_width,
                  uint8_t red_led_current);

  /**
   * @brief This function will stop the HR mode and turn off all operating
   * LED’s.
   * @return  0-if if no error.  A non-zero value indicates an error.
   */
  int HRmode_stop(void);

  /**
   *@brief This function sets up for the Multi-mode.  The data is returned in the callback function max30101_int_handler in global array:
   *@brief buffer[].  Multi-LED mode can handle 1 to 4 LED combinations.  Hence it can fill up the FIFO up to a maximum of
   *@brief 3bytes/sample x 32 x 4 = 384bytes.
   *@param fifo_waterlevel_mark: corresponds to FIFO_A_FULL, In FIFO Configuration Register (0x08)
   *@param sample_avg: corresponds to SMP_AVE, in FIFO Configuration Register (0x08)
   *@param sample_rate:corresponds to SPO2_SR, IN SpO2 Configuration Register (0x0A)
   *@param pulse_width: corresponds to LED_PW in SpO2 Configuration register(0x0A)
   *@param red_led_current: corresponds to LED1_PA register (0x0C).  Please see data sheet for values
   *@param ir_led_current: corresponds to LED2_PA register (0x0D).  Please see data sheet for values
   *@param green_led_current: corresponds to LED3_PA register (0x0E).  Please see data sheet for values
   *@param slot_1,…,slot_4: corresponds to Multi-LED Mode control Registers (0x11-0x12).
   *@returns  0-if if no error.  A non-zero value indicates an error.
   */
  int Multimode_init(uint8_t fifo_waterlevel_mark, uint8_t sample_avg,
                     uint8_t sample_rate, uint8_t pulse_width,
                     uint8_t red_led_current, uint8_t ir_led_current,
                     uint8_t green_led_current, uint8_t slot_1, uint8_t slot_2,
                     uint8_t slot_3, uint8_t slot_4);

  /**
   * @brief This function will stop the Multi-mode and turn off all operating LED’s.
   * @returns  0-if if no error.  A non-zero value indicates an error.
   */
  int Multimode_stop(void);

  /**
   * @brief This is a function that sets up for temperature read and should be called after one of the mode
   * @brief has been setup.  The data is returned in the callback function max30101_int_handler.  This
   * @brief function needs to be called every time temperature reading is required.
   * @brief Call the temp function after one of the MODES have been started
   * @brief Note that the temp is disabled after one read... also, it is not necessary
   * @brief to read the temp frequently...
   * @returns  0-if if no error.  A non-zero value indicates an error.
   */
  int tempread(void);

  /**
   *@brief This is a callback function which collects the data from the FIFO of the MAX30101 in a 32-bit
   *@brief unsigned global array called max30101_buffer[].  Upon every interrupt from the MAX30101, this
   *@brief function is called to service the FIFO of the MAX30101.  This callback function also services the
   *@brief interrupt for the temp data.  The temp data is collected in a floating point global variable
   *@brief final_temp.
   *@param max30101_buffer[], global uint32_t
   *@returns  0-if everything is good.  A non-zero value indicates an error.
   */
  int int_handler(void);
  /**
  * @brief type definition for data interrupt
  */
  typedef void (*DataCallbackFunction)(uint32_t id, uint32_t *buffer,
                                       uint32_t length);
  /**
  * @brief type definition for general interrupt
  */
  typedef void (*InterruptFunction)();

  /**
  * @brief Used to connect a callback for when interrupt data is available
  */
  void onInterrupt(InterruptFunction _onInterrupt);

  /**
  * @brief Used to connect a callback for when interrupt data is available
  */
  void onDataAvailable(DataCallbackFunction _onDataAvailable);

  static MAX30101 *instance;

private:
  /// called when interrupt data is available
  void dataAvailable(uint32_t id, uint32_t *buffer, uint32_t length);
  /// callback function at the end of the interrupt
  void interruptPostCallback(void);
  /// callback function when interrupt data is available
  DataCallbackFunction onDataAvailableCallback;
  /// callback function when interrupt data is available
  InterruptFunction onInterruptCallback;
  /// Read I2c wrapper method
  int I2CM_Read(int slaveAddress, char *writeData, char writeCount, char *readData, char readCount);
  /// Write I2c wrapper method
  int I2CM_Write(int slaveAddress, char *writeData1, char writeCount1, char *writeData2, char writeCount2);
  /// pointer to I2C object
  I2C *i2c;
  /// flag to track if this object is the owner (created) the I2C object
  bool i2c_owner;
  /// Device slave address
  int slaveAddress;
};

/**
*  @brief Resets the I2C block, when needed
*/
extern void I2CM_Init_Reset(uint8_t index, int speed);

 /**
  * @brief Used for debugging, if needed
  */
void MAX30101MidIntHandler(void);

#endif /* _MAX30101_H_ */