MAX32620HSP (MAXREFDES100) RPC Example for Graphical User Interface

Dependencies:   USBDevice

Fork of HSP_Release by Jerry Bradshaw

This is an example program for the MAX32620HSP (MAXREFDES100 Health Sensor Platform). It demonstrates all the features of the platform and works with a companion graphical user interface (GUI) to help evaluate/configure/monitor the board. Go to the MAXREFDES100 product page and click on "design resources" to download the companion software. The GUI connects to the board through an RPC interface on a virtual serial port over the USB interface.

The RPC interface provides access to all the features of the board and is available to interface with other development environments such Matlab. This firmware provides realtime data streaming through the RPC interface over USB, and also provides the ability to log the data to flash for untethered battery operation. The data logging settings are configured through the GUI, and the GUI also provides the interface to download logged data.

Details on the RPC interface can be found here: HSP RPC Interface Documentation

Windows

With this program loaded, the MAX32620HSP will appear on your computer as a serial port. On Mac and Linux, this will happen by default. For Windows, you need to install a driver: HSP serial port windows driver

For more details about this platform and how to use it, see the MAXREFDES100 product page.

Revision:
0:e4a10ed6eb92
Child:
1:9490836294ea
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/HSP/RpcServer/StringInOut.cpp	Tue Oct 25 15:22:11 2016 +0000
@@ -0,0 +1,195 @@
+/*******************************************************************************
+ * Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included
+ * in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+ * IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
+ * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
+ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+ * OTHER DEALINGS IN THE SOFTWARE.
+ *
+ * Except as contained in this notice, the name of Maxim Integrated
+ * Products, Inc. shall not be used except as stated in the Maxim Integrated
+ * Products, Inc. Branding Policy.
+ *
+ * The mere transfer of this software does not imply any licenses
+ * of trade secrets, proprietary technology, copyrights, patents,
+ * trademarks, maskwork rights, or any other form of intellectual
+ * property whatsoever. Maxim Integrated Products, Inc. retains all
+ * ownership rights.
+ *******************************************************************************
+ */
+#include "mbed.h"
+#include "USBSerial.h"
+#include "RpcFifo.h"
+#include "RpcServer.h"
+#include "StringInOut.h"
+#include "Peripherals.h"
+
+/// a running index that keeps track of where an incoming string has been
+/// buffered to
+static int lineBuffer_index = 0;
+/// a flag that keeps track of the state of accumulating a string
+static int getLine_State = GETLINE_WAITING;
+
+/**
+* @brief Place incoming USB characters into a fifo
+* @param data_IN buffer of characters
+* @param len length of data
+*/
+int fifoIncomingChars(uint8_t data_IN[], unsigned int len) {
+  int i;
+  for (i = 0; i < len; i++) {
+    fifo_put8(GetUSBIncomingFifo(), data_IN[i]);
+  }
+  return 0;
+}
+
+/**
+* @brief Check the USB incoming fifo to see if there is data to be read
+* @return 1 if there is data to be read, 0 if data is not available
+*/
+int isReadReady(void) {
+  if (fifo_empty(GetUSBIncomingFifo()) == 0)
+    return 1;
+  return 0;
+}
+
+/**
+* @brief Clear the incoming USB read fifo
+*/
+void clearOutReadFifo(void) { fifo_clear(GetUSBIncomingFifo()); }
+
+/**
+* @brief Block until a character can be read from the USB
+* @return the character read
+*/
+char getch(void) {
+  uint8_t ch;
+  // block until char is ready
+  while (isReadReady() == 0) {
+  }
+  // read a char from buffer
+  fifo_get8(GetUSBIncomingFifo(), &ch);
+  return ch;
+}
+
+/**
+* @brief Place incoming USB characters into a fifo
+* @param lineBuffer buffer to place the incoming characters
+* @param bufferLength length of buffer
+* @return GETLINE_WAITING if still waiting for a CRLF, GETLINE_DONE
+*/
+int getLine(char *lineBuffer, int bufferLength) {
+  uint8_t ch;
+
+  USBSerial *serial = Peripherals::usbSerial();
+  if (getLine_State == GETLINE_DONE) {
+    getLine_State = GETLINE_WAITING;
+  }
+  if (serial->available() != 0) {
+    ch = serial->_getc();
+    if (ch != 0x0A && ch != 0x0D) {
+      lineBuffer[lineBuffer_index++] = ch;
+    }
+    if (ch == 0x0D) {
+      lineBuffer[lineBuffer_index++] = 0;
+      lineBuffer_index = 0;
+      getLine_State = GETLINE_DONE;
+    }
+    if (lineBuffer_index > bufferLength) {
+      lineBuffer[bufferLength - 1] = 0;
+      getLine_State = GETLINE_DONE;
+    }
+  }
+  return getLine_State;
+}
+
+/**
+* @brief Block until a fixed number of characters has been accumulated from the
+* incoming USB
+* @param lineBuffer buffer to place the incoming characters
+* @param maxLength length of buffer
+*/
+void getStringFixedLength(uint8_t *lineBuffer, int maxLength) {
+  uint8_t ch;
+  int index = 0;
+  // block until maxLength is captured
+  while (1) {
+    ch = getch();
+    lineBuffer[index++] = ch;
+    if (index == maxLength)
+      return;
+  }
+}
+
+/**
+* @brief Output a string out the USB serial port
+* @param str output this str the USB channel
+*/
+int putStr(const char *str) {
+  Peripherals::usbSerial()->printf("%s", str); // fflush(stdout);
+  // uint8_t *ptr;
+  // uint8_t buffer[256];
+  // int index = 0;
+  /*	int length;
+          ptr = (uint8_t *)str;
+          length = strlen(str);
+
+          Peripherals::usbSerial()->writeBlock(ptr,length);	*/
+  return 0;
+}
+
+/**
+* @brief Outut an array of bytes out the USB serial port
+* @param data buffer to output
+* @param length length of buffer
+*/
+int putBytes(uint8_t *data, uint32_t length) {
+  int sendThis = 64;
+  int sent = 0;
+  int thisLeft;
+  uint8_t *ptr = data;
+  if (length < 64)
+    sendThis = length;
+  do {
+    Peripherals::usbSerial()->writeBlock(ptr, sendThis);
+    sent += sendThis;
+    ptr += sendThis;
+    thisLeft = length - sent;
+    sendThis = 64;
+    if (thisLeft < 64)
+      sendThis = thisLeft;
+  } while (sent != length);
+  return 0;
+}
+
+/**
+* @brief Outut 256 byte blocks out the USB serial using writeBlock bulk
+* transfers
+* @param data buffer of blocks to output
+* @param length length of 256-byte blocks
+*/
+int putBytes256Block(uint8_t *data, int numberBlocks) {
+  int i;
+  uint8_t *ptr;
+  ptr = data;
+  const int BLOCK_SIZE = 32;
+  const int FLASH_PAGE_SIZE = 256;
+  for (i = 0; i < numberBlocks * (FLASH_PAGE_SIZE / BLOCK_SIZE); i++) {
+    Peripherals::usbSerial()->writeBlock(ptr, BLOCK_SIZE);
+    ptr += BLOCK_SIZE;
+  }
+  return 0;
+}