Device interface library for multiple platforms including Mbed.

Dependents:   DeepCover Embedded Security in IoT MaximInterface MAXREFDES155#

Maxim Interface is a library framework focused on providing flexible and expressive hardware interfaces. Both communication interfaces such as I2C and 1-Wire and device interfaces such as DS18B20 are supported. Modern C++ concepts are used extensively while keeping compatibility with C++98/C++03 and requiring no external dependencies. The embedded-friendly design does not depend on exceptions or RTTI.

The full version of the project is hosted on GitLab: https://gitlab.com/iabenz/MaximInterface

MaximInterfaceDevices/DS2480B.cpp

Committer:
IanBenzMaxim
Date:
2019-07-22
Revision:
7:9cd16581b578
Child:
8:5ea891c7d1a1

File content as of revision 7:9cd16581b578:

/*******************************************************************************
* Copyright (C) 2017 Maxim Integrated Products, Inc., All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of Maxim Integrated
* Products, Inc. shall not be used except as stated in the Maxim Integrated
* Products, Inc. Branding Policy.
*
* The mere transfer of this software does not imply any licenses
* of trade secrets, proprietary technology, copyrights, patents,
* trademarks, maskwork rights, or any other form of intellectual
* property whatsoever. Maxim Integrated Products, Inc. retains all
* ownership rights.
*******************************************************************************/

#include <MaximInterfaceCore/Error.hpp>
#include "DS2480B.hpp"

// Mode Commands
#define MODE_DATA 0xE1
#define MODE_COMMAND 0xE3
#define MODE_STOP_PULSE 0xF1

// Return byte value
#define RB_CHIPID_MASK 0x1C
#define RB_RESET_MASK 0x03
#define RB_1WIRESHORT 0x00
#define RB_PRESENCE 0x01
#define RB_ALARMPRESENCE 0x02
#define RB_NOPRESENCE 0x03

#define RB_BIT_MASK 0x03
#define RB_BIT_ONE 0x03
#define RB_BIT_ZERO 0x00

// Masks for all bit ranges
#define CMD_MASK 0x80
#define FUNCTSEL_MASK 0x60
#define BITPOL_MASK 0x10
#define SPEEDSEL_MASK 0x0C
#define MODSEL_MASK 0x02
#define PARMSEL_MASK 0x70
#define PARMSET_MASK 0x0E

// Command or config bit
#define CMD_COMM 0x81
#define CMD_CONFIG 0x01

// Function select bits
#define FUNCTSEL_BIT 0x00
#define FUNCTSEL_SEARCHON 0x30
#define FUNCTSEL_SEARCHOFF 0x20
#define FUNCTSEL_RESET 0x40
#define FUNCTSEL_CHMOD 0x60

// Bit polarity/Pulse voltage bits
#define BITPOL_ONE 0x10
#define BITPOL_ZERO 0x00
#define BITPOL_5V 0x00
#define BITPOL_12V 0x10

// One Wire speed bits
#define SPEEDSEL_STD 0x00
#define SPEEDSEL_FLEX 0x04
#define SPEEDSEL_OD 0x08
#define SPEEDSEL_PULSE 0x0C

// Data/Command mode select bits
#define MODSEL_DATA 0x00
#define MODSEL_COMMAND 0x02

// 5V Follow Pulse select bits
#define PRIME5V_TRUE 0x02
#define PRIME5V_FALSE 0x00

// Parameter select bits
#define PARMSEL_PARMREAD 0x00
#define PARMSEL_SLEW 0x10
#define PARMSEL_12VPULSE 0x20
#define PARMSEL_5VPULSE 0x30
#define PARMSEL_WRITE1LOW 0x40
#define PARMSEL_SAMPLEOFFSET 0x50
#define PARMSEL_ACTIVEPULLUPTIME 0x60
#define PARMSEL_BAUDRATE 0x70

// Pull down slew rate.
#define PARMSET_Slew15Vus 0x00
#define PARMSET_Slew2p2Vus 0x02
#define PARMSET_Slew1p65Vus 0x04
#define PARMSET_Slew1p37Vus 0x06
#define PARMSET_Slew1p1Vus 0x08
#define PARMSET_Slew0p83Vus 0x0A
#define PARMSET_Slew0p7Vus 0x0C
#define PARMSET_Slew0p55Vus 0x0E

// 12V programming pulse time table
#define PARMSET_32us 0x00
#define PARMSET_64us 0x02
#define PARMSET_128us 0x04
#define PARMSET_256us 0x06
#define PARMSET_512us 0x08
#define PARMSET_1024us 0x0A
#define PARMSET_2048us 0x0C
#define PARMSET_infinite 0x0E

// 5V strong pull up pulse time table
#define PARMSET_16p4ms 0x00
#define PARMSET_65p5ms 0x02
#define PARMSET_131ms 0x04
#define PARMSET_262ms 0x06
#define PARMSET_524ms 0x08
#define PARMSET_1p05s 0x0A
#define PARMSET_dynamic 0x0C
#define PARMSET_infinite 0x0E

// Write 1 low time
#define PARMSET_Write8us 0x00
#define PARMSET_Write9us 0x02
#define PARMSET_Write10us 0x04
#define PARMSET_Write11us 0x06
#define PARMSET_Write12us 0x08
#define PARMSET_Write13us 0x0A
#define PARMSET_Write14us 0x0C
#define PARMSET_Write15us 0x0E

// Data sample offset and Write 0 recovery time
#define PARMSET_SampOff3us 0x00
#define PARMSET_SampOff4us 0x02
#define PARMSET_SampOff5us 0x04
#define PARMSET_SampOff6us 0x06
#define PARMSET_SampOff7us 0x08
#define PARMSET_SampOff8us 0x0A
#define PARMSET_SampOff9us 0x0C
#define PARMSET_SampOff10us 0x0E

// Active pull up on time
#define PARMSET_PullUp0p0us 0x00
#define PARMSET_PullUp0p5us 0x02
#define PARMSET_PullUp1p0us 0x04
#define PARMSET_PullUp1p5us 0x06
#define PARMSET_PullUp2p0us 0x08
#define PARMSET_PullUp2p5us 0x0A
#define PARMSET_PullUp3p0us 0x0C
#define PARMSET_PullUp3p5us 0x0E

// Baud rate bits
#define PARMSET_9600 0x00
#define PARMSET_19200 0x02
#define PARMSET_57600 0x04
#define PARMSET_115200 0x06

// DS2480B program voltage available
#define DS2480BPROG_MASK 0x20

namespace MaximInterfaceDevices {

using namespace Core;

error_code DS2480B::initialize() {
  level = NormalLevel;
  mode = MODSEL_COMMAND;
  speed = SPEEDSEL_STD;

  // Send a break to reset the DS2480B.
  // Switch to lower baud rate to ensure break is longer than 2 ms.
  error_code result = uart->setBaudRate(4800);
  if (result) {
    return result;
  }
  result = uart->sendBreak();
  if (result) {
    return result;
  }
  result = uart->setBaudRate(9600);
  if (result) {
    return result;
  }

  // Wait for master reset.
  sleep->invoke(1);

  // Flush the read buffer.
  result = uart->clearReadBuffer();
  if (result) {
    return result;
  }

  // Send the timing byte.
  result = uart->writeByte(CMD_COMM | FUNCTSEL_RESET | SPEEDSEL_STD);
  if (result) {
    return result;
  }

  // Change the DS2480 baud rate.
  result = uart->writeByte(CMD_CONFIG | PARMSEL_BAUDRATE | PARMSET_115200);
  if (result) {
    return result;
  }

  // Change our baud rate.
  result = uart->setBaudRate(115200);
  if (result) {
    return result;
  }

  uint_least8_t response;

  // Verify response.
  result = uart->readByte(response);
  if (result) {
    return result;
  }
  if ((response & (PARMSEL_MASK | PARMSET_MASK)) !=
      (PARMSEL_BAUDRATE | PARMSET_115200)) {
    return make_error_code(HardwareError);
  }

  // Set the SPUD time value.
  result = uart->writeByte(CMD_CONFIG | PARMSEL_5VPULSE | PARMSET_infinite);
  if (result) {
    return result;
  }

  // Verify response.
  result = uart->readByte(response);
  if (result) {
    return result;
  }
  if ((response & (PARMSEL_MASK | PARMSET_MASK)) !=
      (PARMSEL_5VPULSE | PARMSET_infinite)) {
    return make_error_code(HardwareError);
  }

  return result;
}

error_code DS2480B::reset() {
  if (level != NormalLevel) {
    return make_error_code(InvalidLevelError);
  }

  uint_least8_t packet[2];
  int packetLen = 0;

  // Check for correct mode.
  if (mode != MODSEL_COMMAND) {
    mode = MODSEL_COMMAND;
    packet[packetLen++] = MODE_COMMAND;
  }

  // Construct the command.
  packet[packetLen++] = CMD_COMM | FUNCTSEL_RESET | speed;

  // Send the packet.
  error_code result = uart->writeBlock(make_span(packet, packetLen));
  if (result) {
    return result;
  }

  // Read back the response.
  result = uart->readByte(packet[0]);
  if (result) {
    return result;
  }

  // Make sure this byte looks like a reset byte.
  if ((packet[0] & RB_RESET_MASK) == RB_1WIRESHORT) {
    result = make_error_code(ShortDetectedError);
  } else if ((packet[0] & RB_RESET_MASK) == RB_NOPRESENCE) {
    result = make_error_code(NoSlaveError);
  }
  return result;
}

error_code DS2480B::touchBitSetLevel(bool & sendRecvBit, Level afterLevel) {
  if (level != NormalLevel) {
    return make_error_code(InvalidLevelError);
  }

  uint_least8_t packet[3];
  int packetLen = 0;

  // Check for correct mode.
  if (mode != MODSEL_COMMAND) {
    mode = MODSEL_COMMAND;
    packet[packetLen++] = MODE_COMMAND;
  }

  // Construct the command.
  packet[packetLen++] = CMD_COMM | FUNCTSEL_BIT |
                        (sendRecvBit ? BITPOL_ONE : BITPOL_ZERO) | speed;
  switch (afterLevel) {
  case NormalLevel:
    break;

  case StrongLevel:
    // Add the command to begin the pulse.
    packet[packetLen++] =
        CMD_COMM | FUNCTSEL_CHMOD | SPEEDSEL_PULSE | BITPOL_5V | PRIME5V_FALSE;
    break;

  default:
    return make_error_code(InvalidLevelError);
  }

  // Send the packet.
  error_code result = uart->writeBlock(make_span(packet, packetLen));
  if (result) {
    return result;
  }

  // Read back the response.
  result = uart->readByte(packet[0]);
  if (result) {
    return result;
  }

  // Interpret the response.
  if ((packet[0] & 0xE0) == 0x80) {
    sendRecvBit = ((packet[0] & RB_BIT_MASK) == RB_BIT_ONE);
    level = afterLevel;
  } else {
    result = make_error_code(HardwareError);
  }
  return result;
}

error_code DS2480B::writeByteSetLevel(uint_least8_t sendByte,
                                      Level afterLevel) {
  if (level != NormalLevel) {
    return make_error_code(InvalidLevelError);
  }

  switch (afterLevel) {
  case NormalLevel:
    break;

  case StrongLevel:
    return OneWireMaster::writeByteSetLevel(sendByte, afterLevel);

  default:
    return make_error_code(InvalidLevelError);
  }

  uint_least8_t packet[3];
  int packetLen = 0;

  // Check for correct mode.
  if (mode != MODSEL_DATA) {
    mode = MODSEL_DATA;
    packet[packetLen++] = MODE_DATA;
  }

  // Add the byte to send.
  packet[packetLen++] = sendByte;

  // Check for duplication of data that looks like COMMAND mode.
  if (sendByte == MODE_COMMAND) {
    packet[packetLen++] = sendByte;
  }

  // Send the packet.
  error_code result = uart->writeBlock(make_span(packet, packetLen));
  if (result) {
    return result;
  }

  // Read back the response.
  result = uart->readByte(packet[0]);
  if (result) {
    return result;
  }

  // Interpret the response.
  if (packet[0] != sendByte) {
    result = make_error_code(HardwareError);
  }
  return result;
}

error_code DS2480B::readByteSetLevel(uint_least8_t & recvByte,
                                     Level afterLevel) {
  if (level != NormalLevel) {
    return make_error_code(InvalidLevelError);
  }

  switch (afterLevel) {
  case NormalLevel:
    break;

  case StrongLevel:
    return OneWireMaster::readByteSetLevel(recvByte, afterLevel);

  default:
    return make_error_code(InvalidLevelError);
  }

  uint_least8_t packet[2];
  int packetLen = 0;

  // Check for correct mode.
  if (mode != MODSEL_DATA) {
    mode = MODSEL_DATA;
    packet[packetLen++] = MODE_DATA;
  }

  // Add the byte to send.
  packet[packetLen++] = 0xFF;

  // Send the packet.
  error_code result = uart->writeBlock(make_span(packet, packetLen));
  if (result) {
    return result;
  }

  // Read back the response.
  result = uart->readByte(recvByte);
  return result;
}

error_code DS2480B::setSpeed(Speed newSpeed) {
  uint_least8_t newSpeedByte;
  switch (newSpeed) {
  case OverdriveSpeed:
    newSpeedByte = SPEEDSEL_OD;
    break;

  case StandardSpeed:
    newSpeedByte = SPEEDSEL_STD;
    break;

  default:
    return make_error_code(InvalidSpeedError);
  }
  if (speed == newSpeedByte) {
    return error_code();
  }
  speed = newSpeedByte;

  uint_least8_t packet[2];
  int packetLen = 0;

  // Check for correct mode.
  if (mode != MODSEL_COMMAND) {
    mode = MODSEL_COMMAND;
    packet[packetLen++] = MODE_COMMAND;
  }

  // Change DS2480 speed.
  packet[packetLen++] = CMD_COMM | FUNCTSEL_SEARCHOFF | speed;

  // Send the packet.
  return uart->writeBlock(make_span(packet, packetLen));
}

error_code DS2480B::setLevel(Level newLevel) {
  if (level == newLevel) {
    return error_code();
  }

  uint_least8_t packet[2];
  int packetLen = 0;

  switch (newLevel) {
  case NormalLevel:
    // Stop pulse command.
    packet[packetLen++] = MODE_STOP_PULSE;
    break;

  case StrongLevel:
    // Check for correct mode.
    if (mode != MODSEL_COMMAND) {
      mode = MODSEL_COMMAND;
      packet[packetLen++] = MODE_COMMAND;
    }

    // Add the command to begin the pulse.
    packet[packetLen++] =
        CMD_COMM | FUNCTSEL_CHMOD | SPEEDSEL_PULSE | BITPOL_5V | PRIME5V_FALSE;
    break;

  default:
    return make_error_code(InvalidLevelError);
  }

  // Send the packet.
  error_code result = uart->writeBlock(make_span(packet, packetLen));
  if (result) {
    return result;
  }

  if (newLevel == NormalLevel) {
    // Read back the response.
    result = uart->readByte(packet[0]);
    if (result) {
      return result;
    }

    // Interpret the response.
    if ((packet[0] & 0xE0) != 0xE0) {
      return make_error_code(HardwareError);
    }
  }

  level = newLevel;
  return result;
}

error_code DS2480B::sendCommand(uint_least8_t command) {
  uint_least8_t packet[2];
  int packetLen = 0;

  // Check for correct mode.
  if (mode != MODSEL_COMMAND) {
    mode = MODSEL_COMMAND;
    packet[packetLen++] = MODE_COMMAND;
  }

  // Add command.
  packet[packetLen++] = command;

  // Send the packet.
  return uart->writeBlock(make_span(packet, packetLen));
}

const error_category & DS2480B::errorCategory() {
  static class : public error_category {
  public:
    virtual const char * name() const { return "DS2480B"; }

    virtual std::string message(int condition) const {
      switch (condition) {
      case HardwareError:
        return "Hardware Error";

      default:
        return defaultErrorMessage(condition);
      }
    }
  } instance;
  return instance;
}

} // namespace MaximInterfaceDevices