MAXREFDES143#: DeepCover Embedded Security in IoT Authenticated Sensing & Notification

Dependencies:   MaximInterface mbed

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers Display.cpp Source File

Display.cpp

00001 /*******************************************************************************
00002 * Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved.
00003 *
00004 * Permission is hereby granted, free of charge, to any person obtaining a
00005 * copy of this software and associated documentation files (the "Software"),
00006 * to deal in the Software without restriction, including without limitation
00007 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
00008 * and/or sell copies of the Software, and to permit persons to whom the
00009 * Software is furnished to do so, subject to the following conditions:
00010 *
00011 * The above copyright notice and this permission notice shall be included
00012 * in all copies or substantial portions of the Software.
00013 *
00014 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
00015 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
00016 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
00017 * IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
00018 * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
00019 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
00020 * OTHER DEALINGS IN THE SOFTWARE.
00021 *
00022 * Except as contained in this notice, the name of Maxim Integrated
00023 * Products, Inc. shall not be used except as stated in the Maxim Integrated
00024 * Products, Inc. Branding Policy.
00025 *
00026 * The mere transfer of this software does not imply any licenses
00027 * of trade secrets, proprietary technology, copyrights, patents,
00028 * trademarks, maskwork rights, or any other form of intellectual
00029 * property whatsoever. Maxim Integrated Products, Inc. retains all
00030 * ownership rights.
00031 *******************************************************************************/
00032 
00033 #include <sstream>
00034 #include <I2C.h>
00035 #include <wait_api.h>
00036 #include "Display.hpp"
00037 
00038 // LCD Commands
00039 // If the RS bit is set to logic 1, these display bytes are stored in the
00040 // display RAM at the address specified by the data pointer. The data pointer is
00041 // automatically updated and the data is directed to the intended ST7036i
00042 // device. If the RS bit of the last control byte is set to logic 0, these
00043 // command bytes will be decoded and the setting of the device will be changed
00044 // according to the received commands.
00045 enum LCD_Commands {
00046   // Only one control byte will be sent.
00047   // Only a stream of data bytes is allowed to follow.
00048   ControlByte = 0x00,
00049   // Only one control byte will be sent with the RS bit set.
00050   // Only a stream of data bytes is allowed to follow.
00051   ControlByte_RS_Set = 0x40,
00052   // Another control byte will follow, unless an I2C Stop condition is received.
00053   ControlBytes = 0x80, 
00054   // RS Set and another control byte will follow, unless an I2C Stop condition
00055   // is received.
00056   ControlBytes_RS_Set =0xC0
00057 };
00058 
00059 // LCD Instructions
00060 enum LCD_Instructions {
00061   ClearDisplay = 0x01,
00062   Display_OFF = 0x08, // Display off
00063   Display_ON = 0x0C,  // Display on, cursor off, cursor position off
00064   ReturnHome = 0x02,
00065   SetDdramAddress = 0x80
00066 };
00067 
00068 // LED Driver Port Registers
00069 // Initial port state 0x80
00070 enum LED_Driver_Ports {
00071   P1 = 0x01,
00072   P2 = 0x02, // Blue LED
00073   P3 = 0x03, // Green LED
00074   P4 = 0x04  // Red LED
00075 };
00076 
00077 // Convert a byte color value into the representation used by the MAX7306 PWM registers
00078 static uint8_t convertColorToPwmRegVal(uint8_t color) {
00079   const uint8_t staticOffRegVal = 0x80; // LED is static off by setting to input
00080   const uint8_t staticOnRegVal = 0x00;  // LED is static on
00081   const uint8_t minOnRegVal = 0x01;     // LED on for minimum duty cycle
00082 
00083   uint8_t regVal;
00084   if (color == 0x00) // Use static off for no color
00085   {
00086     regVal = staticOffRegVal;
00087   } else if (color == 0xFF) // Use static on for full color
00088   {
00089     regVal = staticOnRegVal;
00090   } else // Use standard PWN for all other values
00091   {
00092     // The 3 least significant bits cannot be rendered with the MAX7306
00093     regVal = color >> 3;
00094     if (regVal == staticOnRegVal)
00095       regVal = minOnRegVal;
00096   }
00097   return regVal;
00098 }
00099 
00100 Display::Display (mbed::I2C & I2C_intf, uint8_t LCD_I2C_addr,
00101                  uint8_t LED_driver_I2C_addr)
00102     : m_I2C_intf(I2C_intf), m_LCD_I2C_addr(LCD_I2C_addr),
00103       m_LED_driver_I2C_addr(LED_driver_I2C_addr) {}
00104 
00105 void Display::initialize() {
00106   initializeLCD();
00107   initializeLED_Driver();
00108 }
00109 
00110 void Display::initializeLED_Driver() {
00111   const uint8_t Configuration26 = 0x26; // Intial port state 0xEC
00112   const uint8_t Configuration27 = 0x27; // Intial port state 0x8F
00113 
00114   // Intial mode
00115   // Write to Configuration Register 0x26
00116   m_I2C_intf.start();
00117   m_I2C_intf.write(m_LED_driver_I2C_addr);
00118   m_I2C_intf.write(Configuration26);
00119   // RST resets registers to power-on-reset state
00120   // RST does reset PWM/blink counters, 
00121   m_I2C_intf.write(0x1F);
00122   m_I2C_intf.stop();
00123 
00124   // Write to Configuration Register 0x27
00125   m_I2C_intf.start();
00126   m_I2C_intf.write(m_LED_driver_I2C_addr);
00127   m_I2C_intf.write(Configuration27);
00128   // Enable bus time out, and set P1, P2, P3 to be controlled by their registers
00129   // (0x01, 0x02, 0x03)
00130   m_I2C_intf.write(0x0E);
00131   m_I2C_intf.stop();
00132 }
00133 
00134 void Display::setBackLightColor(const Color & color) {
00135   // Red
00136   m_I2C_intf.start();
00137   m_I2C_intf.write(m_LED_driver_I2C_addr);
00138   m_I2C_intf.write(P4);
00139   m_I2C_intf.write(convertColorToPwmRegVal(color.R));
00140   m_I2C_intf.stop();
00141 
00142   // Green
00143   m_I2C_intf.start();
00144   m_I2C_intf.write(m_LED_driver_I2C_addr);
00145   m_I2C_intf.write(P3);
00146   m_I2C_intf.write(convertColorToPwmRegVal(color.G));
00147   m_I2C_intf.stop();
00148 
00149   // Blue
00150   m_I2C_intf.start();
00151   m_I2C_intf.write(m_LED_driver_I2C_addr);
00152   m_I2C_intf.write(P2);
00153   m_I2C_intf.write(convertColorToPwmRegVal(color.B));
00154   m_I2C_intf.stop();
00155 }
00156 
00157 void Display::clearLine(Line line) {
00158   writeCompleteLine("", line);
00159   setCursorPosition(line);
00160 }
00161 
00162 void Display::clearDisplay() {
00163   m_I2C_intf.start();
00164   m_I2C_intf.write(m_LCD_I2C_addr);
00165   m_I2C_intf.write(ControlByte); //No more control bytes will be sent
00166   m_I2C_intf.write(ClearDisplay);
00167   m_I2C_intf.stop();
00168 }
00169 
00170 void Display::initializeLCD() {
00171   m_I2C_intf.start();
00172   m_I2C_intf.write(m_LCD_I2C_addr);
00173   m_I2C_intf.write(ControlByte); // No more control bytes will be sent
00174   // Function Set IS[2:1] = 0,0 (&h38 = Single height font, 0x3C = double height font)
00175   m_I2C_intf.write(0x38);
00176   m_I2C_intf.write(0x39); //Function Set IS[2:1] = (0,1)
00177   // When IS[2:1]=(0,0): normal instruction be selected(refer instruction table 0)
00178   // When IS[2:1]=(0,1): extension instruction be selected(refer instruction table 1)
00179   // When IS[2:1]=(1,0): extension instruction be selected(refer instruction table 2)
00180   m_I2C_intf.write(0x14); // BIAS SET
00181   m_I2C_intf.write(0x70); // CONTRAST (was 0x78)
00182   m_I2C_intf.write(0x5E); // POWER/ICON CONTROL/CONTRAST (upper two bits)
00183   m_I2C_intf.write(0x6D); // FOLLOWER CONTROL
00184   m_I2C_intf.stop();
00185   wait_ms(200); // Wait for power stable
00186   m_I2C_intf.start();
00187   m_I2C_intf.write(m_LCD_I2C_addr);
00188   m_I2C_intf.write(ControlByte);  // No more control bytes will be sent
00189   m_I2C_intf.write(Display_ON);   // Display on, cursor on, cursor position on
00190   m_I2C_intf.write(ClearDisplay); // Clear Display
00191   m_I2C_intf.write(0x06);         // ENTRY MODE
00192   m_I2C_intf.stop();
00193 }
00194 
00195 void Display::writeCharacter(uint8_t character) {
00196   m_I2C_intf.start();
00197   m_I2C_intf.write(m_LCD_I2C_addr);
00198   m_I2C_intf.write(ControlByte_RS_Set); // No more control bytes will be sent
00199   m_I2C_intf.write(character); // Display on, cursor on, cursor position on
00200   m_I2C_intf.stop();
00201 }
00202 
00203 void Display::writeText(const std::string & text) {
00204   const char RETURN_CHAR = 0x16;
00205 
00206   size_t length = text.length();
00207   if (length > lineLength)
00208     length = lineLength;
00209 
00210   //Write to LCD
00211   m_I2C_intf.start();
00212   m_I2C_intf.write(m_LCD_I2C_addr);
00213   m_I2C_intf.write(ControlByte_RS_Set);
00214 
00215   for (size_t i = 0; i < length; i++) {
00216     if (text[i] != RETURN_CHAR)
00217       m_I2C_intf.write(text[i]);
00218   }
00219 
00220   m_I2C_intf.stop();
00221 }
00222 
00223 void Display::setCursorPosition(Line line, size_t position) {
00224   // Set to last line character for values outside the upper bound
00225   if (position > (lineLength - 1))
00226     position = (lineLength - 1);
00227 
00228   m_I2C_intf.start();
00229   m_I2C_intf.write(m_LCD_I2C_addr);
00230   m_I2C_intf.write(ControlByte); // No more control bytes will be sent
00231   if (line == SecondLine)        // Offset for second line
00232     position += 0x40;
00233   m_I2C_intf.write(SetDdramAddress | position);
00234   m_I2C_intf.stop();
00235 }
00236 
00237 void Display::writeLine(const std::string & text, Line line) {
00238   setCursorPosition(line);
00239   writeText(text);
00240 }
00241 
00242 void Display::writeCompleteLine(const std::string & text, Line line) {
00243   // Add padding to user's string
00244   std::string writeText(text);
00245   if (writeText.length() < lineLength)
00246     writeText.append(lineLength - writeText.length(), ' ');
00247 
00248   writeLine(writeText, line);
00249 }
00250 
00251 void Display::writeMessage(const std::string & message) {
00252   if (message.length() > lineLength) {
00253     // Find split point
00254     std::istringstream messageStream(message);
00255     std::string word;
00256     size_t splitIndex = 0;
00257     do {
00258       if (word.length() > 0)
00259         splitIndex += (word.length() + 1);
00260       std::getline(messageStream, word, ' ');
00261     } while ((splitIndex + word.length()) <= lineLength);
00262     if (splitIndex == 0) // First word is too long
00263     {
00264       writeCompleteLine(message.substr(0, lineLength), FirstLine);
00265       writeCompleteLine(message.substr(lineLength), SecondLine);
00266     } else {
00267       writeCompleteLine(message.substr(0, splitIndex - 1), FirstLine);
00268       writeCompleteLine(message.substr(splitIndex), SecondLine);
00269     }
00270   } else {
00271     writeCompleteLine(message, FirstLine);
00272     writeCompleteLine("", SecondLine);
00273   }
00274 }