Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
lwip_mem.c
00001 /** 00002 * @file 00003 * Dynamic memory manager 00004 * 00005 * This is a lightweight replacement for the standard C library malloc(). 00006 * 00007 * If you want to use the standard C library malloc() instead, define 00008 * MEM_LIBC_MALLOC to 1 in your lwipopts.h 00009 * 00010 * To let mem_malloc() use pools (prevents fragmentation and is much faster than 00011 * a heap but might waste some memory), define MEM_USE_POOLS to 1, define 00012 * MEM_USE_CUSTOM_POOLS to 1 and create a file "lwippools.h" that includes a list 00013 * of pools like this (more pools can be added between _START and _END): 00014 * 00015 * Define three pools with sizes 256, 512, and 1512 bytes 00016 * LWIP_MALLOC_MEMPOOL_START 00017 * LWIP_MALLOC_MEMPOOL(20, 256) 00018 * LWIP_MALLOC_MEMPOOL(10, 512) 00019 * LWIP_MALLOC_MEMPOOL(5, 1512) 00020 * LWIP_MALLOC_MEMPOOL_END 00021 */ 00022 00023 /* 00024 * Copyright (c) 2001-2004 Swedish Institute of Computer Science. 00025 * All rights reserved. 00026 * 00027 * Redistribution and use in source and binary forms, with or without modification, 00028 * are permitted provided that the following conditions are met: 00029 * 00030 * 1. Redistributions of source code must retain the above copyright notice, 00031 * this list of conditions and the following disclaimer. 00032 * 2. Redistributions in binary form must reproduce the above copyright notice, 00033 * this list of conditions and the following disclaimer in the documentation 00034 * and/or other materials provided with the distribution. 00035 * 3. The name of the author may not be used to endorse or promote products 00036 * derived from this software without specific prior written permission. 00037 * 00038 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 00039 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 00040 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT 00041 * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 00042 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 00043 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 00044 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 00045 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 00046 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY 00047 * OF SUCH DAMAGE. 00048 * 00049 * This file is part of the lwIP TCP/IP stack. 00050 * 00051 * Author: Adam Dunkels <adam@sics.se> 00052 * Simon Goldschmidt 00053 * 00054 */ 00055 00056 #include "lwip/opt.h" 00057 00058 #if !MEM_LIBC_MALLOC /* don't build if not configured for use in lwipopts.h */ 00059 00060 #include "lwip/def.h" 00061 #include "lwip/mem.h" 00062 #include "lwip/sys.h" 00063 #include "lwip/stats.h" 00064 #include "lwip/err.h" 00065 00066 #include <string.h> 00067 00068 #if MEM_USE_POOLS 00069 /* lwIP head implemented with different sized pools */ 00070 00071 /** 00072 * Allocate memory: determine the smallest pool that is big enough 00073 * to contain an element of 'size' and get an element from that pool. 00074 * 00075 * @param size the size in bytes of the memory needed 00076 * @return a pointer to the allocated memory or NULL if the pool is empty 00077 */ 00078 void * 00079 mem_malloc(mem_size_t size) 00080 { 00081 struct memp_malloc_helper *element; 00082 memp_t poolnr; 00083 mem_size_t required_size = size + sizeof(struct memp_malloc_helper); 00084 00085 for (poolnr = MEMP_POOL_FIRST; poolnr <= MEMP_POOL_LAST; poolnr = (memp_t)(poolnr + 1)) { 00086 #if MEM_USE_POOLS_TRY_BIGGER_POOL 00087 again: 00088 #endif /* MEM_USE_POOLS_TRY_BIGGER_POOL */ 00089 /* is this pool big enough to hold an element of the required size 00090 plus a struct memp_malloc_helper that saves the pool this element came from? */ 00091 if (required_size <= memp_sizes[poolnr]) { 00092 break; 00093 } 00094 } 00095 if (poolnr > MEMP_POOL_LAST) { 00096 LWIP_ASSERT("mem_malloc(): no pool is that big!", 0); 00097 return NULL; 00098 } 00099 element = (struct memp_malloc_helper*)memp_malloc(poolnr); 00100 if (element == NULL) { 00101 /* No need to DEBUGF or ASSERT: This error is already 00102 taken care of in memp.c */ 00103 #if MEM_USE_POOLS_TRY_BIGGER_POOL 00104 /** Try a bigger pool if this one is empty! */ 00105 if (poolnr < MEMP_POOL_LAST) { 00106 poolnr++; 00107 goto again; 00108 } 00109 #endif /* MEM_USE_POOLS_TRY_BIGGER_POOL */ 00110 return NULL; 00111 } 00112 00113 /* save the pool number this element came from */ 00114 element->poolnr = poolnr; 00115 /* and return a pointer to the memory directly after the struct memp_malloc_helper */ 00116 element++; 00117 00118 return element; 00119 } 00120 00121 /** 00122 * Free memory previously allocated by mem_malloc. Loads the pool number 00123 * and calls memp_free with that pool number to put the element back into 00124 * its pool 00125 * 00126 * @param rmem the memory element to free 00127 */ 00128 void 00129 mem_free(void *rmem) 00130 { 00131 struct memp_malloc_helper *hmem = (struct memp_malloc_helper*)rmem; 00132 00133 LWIP_ASSERT("rmem != NULL", (rmem != NULL)); 00134 LWIP_ASSERT("rmem == MEM_ALIGN(rmem)", (rmem == LWIP_MEM_ALIGN(rmem))); 00135 00136 /* get the original struct memp_malloc_helper */ 00137 hmem--; 00138 00139 LWIP_ASSERT("hmem != NULL", (hmem != NULL)); 00140 LWIP_ASSERT("hmem == MEM_ALIGN(hmem)", (hmem == LWIP_MEM_ALIGN(hmem))); 00141 LWIP_ASSERT("hmem->poolnr < MEMP_MAX", (hmem->poolnr < MEMP_MAX)); 00142 00143 /* and put it in the pool we saved earlier */ 00144 memp_free(hmem->poolnr, hmem); 00145 } 00146 00147 #else /* MEM_USE_POOLS */ 00148 /* lwIP replacement for your libc malloc() */ 00149 00150 /** 00151 * The heap is made up as a list of structs of this type. 00152 * This does not have to be aligned since for getting its size, 00153 * we only use the macro SIZEOF_STRUCT_MEM, which automatically alignes. 00154 */ 00155 struct mem { 00156 /** index (-> ram[next]) of the next struct */ 00157 mem_size_t next; 00158 /** index (-> ram[prev]) of the previous struct */ 00159 mem_size_t prev; 00160 /** 1: this area is used; 0: this area is unused */ 00161 u8_t used; 00162 }; 00163 00164 /** All allocated blocks will be MIN_SIZE bytes big, at least! 00165 * MIN_SIZE can be overridden to suit your needs. Smaller values save space, 00166 * larger values could prevent too small blocks to fragment the RAM too much. */ 00167 #ifndef MIN_SIZE 00168 #define MIN_SIZE 12 00169 #endif /* MIN_SIZE */ 00170 /* some alignment macros: we define them here for better source code layout */ 00171 #define MIN_SIZE_ALIGNED LWIP_MEM_ALIGN_SIZE(MIN_SIZE) 00172 #define SIZEOF_STRUCT_MEM LWIP_MEM_ALIGN_SIZE(sizeof(struct mem)) 00173 #define MEM_SIZE_ALIGNED LWIP_MEM_ALIGN_SIZE(MEM_SIZE) 00174 00175 /** If you want to relocate the heap to external memory, simply define 00176 * LWIP_RAM_HEAP_POINTER as a void-pointer to that location. 00177 * If so, make sure the memory at that location is big enough (see below on 00178 * how that space is calculated). */ 00179 #ifndef LWIP_RAM_HEAP_POINTER 00180 00181 #if defined(TARGET_LPC4088) || defined(TARGET_LPC4088_DM) 00182 # if defined (__ICCARM__) 00183 # define ETHMEM_SECTION 00184 # elif defined(TOOLCHAIN_GCC_CR) 00185 # define ETHMEM_SECTION __attribute__((section(".data.$RamPeriph32"))) 00186 # else 00187 # define ETHMEM_SECTION __attribute__((section("AHBSRAM1"),aligned)) 00188 # endif 00189 #elif defined(TARGET_LPC1768) 00190 # if defined (__ICCARM__) 00191 # define ETHMEM_SECTION 00192 # elif defined(TOOLCHAIN_GCC_CR) 00193 # define ETHMEM_SECTION __attribute__((section(".data.$RamPeriph32"))) 00194 # else 00195 # define ETHMEM_SECTION __attribute__((section("AHBSRAM0"),aligned)) 00196 # endif 00197 #else 00198 #define ETHMEM_SECTION 00199 #endif 00200 00201 /** the heap. we need one struct mem at the end and some room for alignment */ 00202 #if defined (__ICCARM__) 00203 #pragma location = ".ethusbram" 00204 #endif 00205 u8_t ram_heap[MEM_SIZE_ALIGNED + (2*SIZEOF_STRUCT_MEM) + MEM_ALIGNMENT] ETHMEM_SECTION; 00206 #define LWIP_RAM_HEAP_POINTER ram_heap 00207 #endif /* LWIP_RAM_HEAP_POINTER */ 00208 00209 /** pointer to the heap (ram_heap): for alignment, ram is now a pointer instead of an array */ 00210 static u8_t *ram; 00211 /** the last entry, always unused! */ 00212 static struct mem *ram_end; 00213 /** pointer to the lowest free block, this is used for faster search */ 00214 static struct mem *lfree; 00215 00216 /** concurrent access protection */ 00217 static sys_mutex_t mem_mutex; 00218 00219 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT 00220 00221 static volatile u8_t mem_free_count; 00222 00223 /* Allow mem_free from other (e.g. interrupt) context */ 00224 #define LWIP_MEM_FREE_DECL_PROTECT() SYS_ARCH_DECL_PROTECT(lev_free) 00225 #define LWIP_MEM_FREE_PROTECT() SYS_ARCH_PROTECT(lev_free) 00226 #define LWIP_MEM_FREE_UNPROTECT() SYS_ARCH_UNPROTECT(lev_free) 00227 #define LWIP_MEM_ALLOC_DECL_PROTECT() SYS_ARCH_DECL_PROTECT(lev_alloc) 00228 #define LWIP_MEM_ALLOC_PROTECT() SYS_ARCH_PROTECT(lev_alloc) 00229 #define LWIP_MEM_ALLOC_UNPROTECT() SYS_ARCH_UNPROTECT(lev_alloc) 00230 00231 #else /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ 00232 00233 /* Protect the heap only by using a semaphore */ 00234 #define LWIP_MEM_FREE_DECL_PROTECT() 00235 #define LWIP_MEM_FREE_PROTECT() sys_mutex_lock(&mem_mutex) 00236 #define LWIP_MEM_FREE_UNPROTECT() sys_mutex_unlock(&mem_mutex) 00237 /* mem_malloc is protected using semaphore AND LWIP_MEM_ALLOC_PROTECT */ 00238 #define LWIP_MEM_ALLOC_DECL_PROTECT() 00239 #define LWIP_MEM_ALLOC_PROTECT() 00240 #define LWIP_MEM_ALLOC_UNPROTECT() 00241 00242 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ 00243 00244 00245 /** 00246 * "Plug holes" by combining adjacent empty struct mems. 00247 * After this function is through, there should not exist 00248 * one empty struct mem pointing to another empty struct mem. 00249 * 00250 * @param mem this points to a struct mem which just has been freed 00251 * @internal this function is only called by mem_free() and mem_trim() 00252 * 00253 * This assumes access to the heap is protected by the calling function 00254 * already. 00255 */ 00256 static void 00257 plug_holes(struct mem *mem) 00258 { 00259 struct mem *nmem; 00260 struct mem *pmem; 00261 00262 LWIP_ASSERT("plug_holes: mem >= ram", (u8_t *)mem >= ram); 00263 LWIP_ASSERT("plug_holes: mem < ram_end", (u8_t *)mem < (u8_t *)ram_end); 00264 LWIP_ASSERT("plug_holes: mem->used == 0", mem->used == 0); 00265 00266 /* plug hole forward */ 00267 LWIP_ASSERT("plug_holes: mem->next <= MEM_SIZE_ALIGNED", mem->next <= MEM_SIZE_ALIGNED); 00268 00269 nmem = (struct mem *)(void *)&ram[mem->next]; 00270 if (mem != nmem && nmem->used == 0 && (u8_t *)nmem != (u8_t *)ram_end) { 00271 /* if mem->next is unused and not end of ram, combine mem and mem->next */ 00272 if (lfree == nmem) { 00273 lfree = mem; 00274 } 00275 mem->next = nmem->next; 00276 ((struct mem *)(void *)&ram[nmem->next])->prev = (mem_size_t)((u8_t *)mem - ram); 00277 } 00278 00279 /* plug hole backward */ 00280 pmem = (struct mem *)(void *)&ram[mem->prev]; 00281 if (pmem != mem && pmem->used == 0) { 00282 /* if mem->prev is unused, combine mem and mem->prev */ 00283 if (lfree == mem) { 00284 lfree = pmem; 00285 } 00286 pmem->next = mem->next; 00287 ((struct mem *)(void *)&ram[mem->next])->prev = (mem_size_t)((u8_t *)pmem - ram); 00288 } 00289 } 00290 00291 /** 00292 * Zero the heap and initialize start, end and lowest-free 00293 */ 00294 void 00295 mem_init(void) 00296 { 00297 struct mem *mem; 00298 00299 LWIP_ASSERT("Sanity check alignment", 00300 (SIZEOF_STRUCT_MEM & (MEM_ALIGNMENT-1)) == 0); 00301 00302 /* align the heap */ 00303 ram = (u8_t *)LWIP_MEM_ALIGN(LWIP_RAM_HEAP_POINTER); 00304 /* initialize the start of the heap */ 00305 mem = (struct mem *)(void *)ram; 00306 mem->next = MEM_SIZE_ALIGNED; 00307 mem->prev = 0; 00308 mem->used = 0; 00309 /* initialize the end of the heap */ 00310 ram_end = (struct mem *)(void *)&ram[MEM_SIZE_ALIGNED]; 00311 ram_end->used = 1; 00312 ram_end->next = MEM_SIZE_ALIGNED; 00313 ram_end->prev = MEM_SIZE_ALIGNED; 00314 00315 /* initialize the lowest-free pointer to the start of the heap */ 00316 lfree = (struct mem *)(void *)ram; 00317 00318 MEM_STATS_AVAIL(avail, MEM_SIZE_ALIGNED); 00319 00320 if(sys_mutex_new(&mem_mutex) != ERR_OK) { 00321 LWIP_ASSERT("failed to create mem_mutex", 0); 00322 } 00323 } 00324 00325 /** 00326 * Put a struct mem back on the heap 00327 * 00328 * @param rmem is the data portion of a struct mem as returned by a previous 00329 * call to mem_malloc() 00330 */ 00331 void 00332 mem_free(void *rmem) 00333 { 00334 struct mem *mem; 00335 LWIP_MEM_FREE_DECL_PROTECT(); 00336 00337 if (rmem == NULL) { 00338 LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_TRACE | LWIP_DBG_LEVEL_SERIOUS, ("mem_free(p == NULL) was called.\n")); 00339 return; 00340 } 00341 LWIP_ASSERT("mem_free: sanity check alignment", (((mem_ptr_t)rmem) & (MEM_ALIGNMENT-1)) == 0); 00342 00343 LWIP_ASSERT("mem_free: legal memory", (u8_t *)rmem >= (u8_t *)ram && 00344 (u8_t *)rmem < (u8_t *)ram_end); 00345 00346 if ((u8_t *)rmem < (u8_t *)ram || (u8_t *)rmem >= (u8_t *)ram_end) { 00347 SYS_ARCH_DECL_PROTECT(lev); 00348 LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SEVERE, ("mem_free: illegal memory\n")); 00349 /* protect mem stats from concurrent access */ 00350 SYS_ARCH_PROTECT(lev); 00351 MEM_STATS_INC(illegal); 00352 SYS_ARCH_UNPROTECT(lev); 00353 return; 00354 } 00355 /* protect the heap from concurrent access */ 00356 LWIP_MEM_FREE_PROTECT(); 00357 /* Get the corresponding struct mem ... */ 00358 mem = (struct mem *)(void *)((u8_t *)rmem - SIZEOF_STRUCT_MEM); 00359 /* ... which has to be in a used state ... */ 00360 LWIP_ASSERT("mem_free: mem->used", mem->used); 00361 /* ... and is now unused. */ 00362 mem->used = 0; 00363 00364 if (mem < lfree) { 00365 /* the newly freed struct is now the lowest */ 00366 lfree = mem; 00367 } 00368 00369 MEM_STATS_DEC_USED(used, mem->next - (mem_size_t)(((u8_t *)mem - ram))); 00370 00371 /* finally, see if prev or next are free also */ 00372 plug_holes(mem); 00373 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT 00374 mem_free_count = 1; 00375 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ 00376 LWIP_MEM_FREE_UNPROTECT(); 00377 } 00378 00379 /** 00380 * Shrink memory returned by mem_malloc(). 00381 * 00382 * @param rmem pointer to memory allocated by mem_malloc the is to be shrinked 00383 * @param newsize required size after shrinking (needs to be smaller than or 00384 * equal to the previous size) 00385 * @return for compatibility reasons: is always == rmem, at the moment 00386 * or NULL if newsize is > old size, in which case rmem is NOT touched 00387 * or freed! 00388 */ 00389 void * 00390 mem_trim(void *rmem, mem_size_t newsize) 00391 { 00392 mem_size_t size; 00393 mem_size_t ptr, ptr2; 00394 struct mem *mem, *mem2; 00395 /* use the FREE_PROTECT here: it protects with sem OR SYS_ARCH_PROTECT */ 00396 LWIP_MEM_FREE_DECL_PROTECT(); 00397 00398 /* Expand the size of the allocated memory region so that we can 00399 adjust for alignment. */ 00400 newsize = LWIP_MEM_ALIGN_SIZE(newsize); 00401 00402 if(newsize < MIN_SIZE_ALIGNED) { 00403 /* every data block must be at least MIN_SIZE_ALIGNED long */ 00404 newsize = MIN_SIZE_ALIGNED; 00405 } 00406 00407 if (newsize > MEM_SIZE_ALIGNED) { 00408 return NULL; 00409 } 00410 00411 LWIP_ASSERT("mem_trim: legal memory", (u8_t *)rmem >= (u8_t *)ram && 00412 (u8_t *)rmem < (u8_t *)ram_end); 00413 00414 if ((u8_t *)rmem < (u8_t *)ram || (u8_t *)rmem >= (u8_t *)ram_end) { 00415 SYS_ARCH_DECL_PROTECT(lev); 00416 LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SEVERE, ("mem_trim: illegal memory\n")); 00417 /* protect mem stats from concurrent access */ 00418 SYS_ARCH_PROTECT(lev); 00419 MEM_STATS_INC(illegal); 00420 SYS_ARCH_UNPROTECT(lev); 00421 return rmem; 00422 } 00423 /* Get the corresponding struct mem ... */ 00424 mem = (struct mem *)(void *)((u8_t *)rmem - SIZEOF_STRUCT_MEM); 00425 /* ... and its offset pointer */ 00426 ptr = (mem_size_t)((u8_t *)mem - ram); 00427 00428 size = mem->next - ptr - SIZEOF_STRUCT_MEM; 00429 LWIP_ASSERT("mem_trim can only shrink memory", newsize <= size); 00430 if (newsize > size) { 00431 /* not supported */ 00432 return NULL; 00433 } 00434 if (newsize == size) { 00435 /* No change in size, simply return */ 00436 return rmem; 00437 } 00438 00439 /* protect the heap from concurrent access */ 00440 LWIP_MEM_FREE_PROTECT(); 00441 00442 mem2 = (struct mem *)(void *)&ram[mem->next]; 00443 if(mem2->used == 0) { 00444 /* The next struct is unused, we can simply move it at little */ 00445 mem_size_t next; 00446 /* remember the old next pointer */ 00447 next = mem2->next; 00448 /* create new struct mem which is moved directly after the shrinked mem */ 00449 ptr2 = ptr + SIZEOF_STRUCT_MEM + newsize; 00450 if (lfree == mem2) { 00451 lfree = (struct mem *)(void *)&ram[ptr2]; 00452 } 00453 mem2 = (struct mem *)(void *)&ram[ptr2]; 00454 mem2->used = 0; 00455 /* restore the next pointer */ 00456 mem2->next = next; 00457 /* link it back to mem */ 00458 mem2->prev = ptr; 00459 /* link mem to it */ 00460 mem->next = ptr2; 00461 /* last thing to restore linked list: as we have moved mem2, 00462 * let 'mem2->next->prev' point to mem2 again. but only if mem2->next is not 00463 * the end of the heap */ 00464 if (mem2->next != MEM_SIZE_ALIGNED) { 00465 ((struct mem *)(void *)&ram[mem2->next])->prev = ptr2; 00466 } 00467 MEM_STATS_DEC_USED(used, (size - newsize)); 00468 /* no need to plug holes, we've already done that */ 00469 } else if (newsize + SIZEOF_STRUCT_MEM + MIN_SIZE_ALIGNED <= size) { 00470 /* Next struct is used but there's room for another struct mem with 00471 * at least MIN_SIZE_ALIGNED of data. 00472 * Old size ('size') must be big enough to contain at least 'newsize' plus a struct mem 00473 * ('SIZEOF_STRUCT_MEM') with some data ('MIN_SIZE_ALIGNED'). 00474 * @todo we could leave out MIN_SIZE_ALIGNED. We would create an empty 00475 * region that couldn't hold data, but when mem->next gets freed, 00476 * the 2 regions would be combined, resulting in more free memory */ 00477 ptr2 = ptr + SIZEOF_STRUCT_MEM + newsize; 00478 mem2 = (struct mem *)(void *)&ram[ptr2]; 00479 if (mem2 < lfree) { 00480 lfree = mem2; 00481 } 00482 mem2->used = 0; 00483 mem2->next = mem->next; 00484 mem2->prev = ptr; 00485 mem->next = ptr2; 00486 if (mem2->next != MEM_SIZE_ALIGNED) { 00487 ((struct mem *)(void *)&ram[mem2->next])->prev = ptr2; 00488 } 00489 MEM_STATS_DEC_USED(used, (size - newsize)); 00490 /* the original mem->next is used, so no need to plug holes! */ 00491 } 00492 /* else { 00493 next struct mem is used but size between mem and mem2 is not big enough 00494 to create another struct mem 00495 -> don't do anyhting. 00496 -> the remaining space stays unused since it is too small 00497 } */ 00498 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT 00499 mem_free_count = 1; 00500 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ 00501 LWIP_MEM_FREE_UNPROTECT(); 00502 return rmem; 00503 } 00504 00505 /** 00506 * Adam's mem_malloc() plus solution for bug #17922 00507 * Allocate a block of memory with a minimum of 'size' bytes. 00508 * 00509 * @param size is the minimum size of the requested block in bytes. 00510 * @return pointer to allocated memory or NULL if no free memory was found. 00511 * 00512 * Note that the returned value will always be aligned (as defined by MEM_ALIGNMENT). 00513 */ 00514 void * 00515 mem_malloc(mem_size_t size) 00516 { 00517 mem_size_t ptr, ptr2; 00518 struct mem *mem, *mem2; 00519 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT 00520 u8_t local_mem_free_count = 0; 00521 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ 00522 LWIP_MEM_ALLOC_DECL_PROTECT(); 00523 00524 if (size == 0) { 00525 return NULL; 00526 } 00527 00528 /* Expand the size of the allocated memory region so that we can 00529 adjust for alignment. */ 00530 size = LWIP_MEM_ALIGN_SIZE(size); 00531 00532 if(size < MIN_SIZE_ALIGNED) { 00533 /* every data block must be at least MIN_SIZE_ALIGNED long */ 00534 size = MIN_SIZE_ALIGNED; 00535 } 00536 00537 if (size > MEM_SIZE_ALIGNED) { 00538 return NULL; 00539 } 00540 00541 /* protect the heap from concurrent access */ 00542 sys_mutex_lock(&mem_mutex); 00543 LWIP_MEM_ALLOC_PROTECT(); 00544 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT 00545 /* run as long as a mem_free disturbed mem_malloc */ 00546 do { 00547 local_mem_free_count = 0; 00548 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ 00549 00550 /* Scan through the heap searching for a free block that is big enough, 00551 * beginning with the lowest free block. 00552 */ 00553 for (ptr = (mem_size_t)((u8_t *)lfree - ram); ptr < MEM_SIZE_ALIGNED - size; 00554 ptr = ((struct mem *)(void *)&ram[ptr])->next) { 00555 mem = (struct mem *)(void *)&ram[ptr]; 00556 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT 00557 mem_free_count = 0; 00558 LWIP_MEM_ALLOC_UNPROTECT(); 00559 /* allow mem_free to run */ 00560 LWIP_MEM_ALLOC_PROTECT(); 00561 if (mem_free_count != 0) { 00562 local_mem_free_count = mem_free_count; 00563 } 00564 mem_free_count = 0; 00565 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ 00566 00567 if ((!mem->used) && 00568 (mem->next - (ptr + SIZEOF_STRUCT_MEM)) >= size) { 00569 /* mem is not used and at least perfect fit is possible: 00570 * mem->next - (ptr + SIZEOF_STRUCT_MEM) gives us the 'user data size' of mem */ 00571 00572 if (mem->next - (ptr + SIZEOF_STRUCT_MEM) >= (size + SIZEOF_STRUCT_MEM + MIN_SIZE_ALIGNED)) { 00573 /* (in addition to the above, we test if another struct mem (SIZEOF_STRUCT_MEM) containing 00574 * at least MIN_SIZE_ALIGNED of data also fits in the 'user data space' of 'mem') 00575 * -> split large block, create empty remainder, 00576 * remainder must be large enough to contain MIN_SIZE_ALIGNED data: if 00577 * mem->next - (ptr + (2*SIZEOF_STRUCT_MEM)) == size, 00578 * struct mem would fit in but no data between mem2 and mem2->next 00579 * @todo we could leave out MIN_SIZE_ALIGNED. We would create an empty 00580 * region that couldn't hold data, but when mem->next gets freed, 00581 * the 2 regions would be combined, resulting in more free memory 00582 */ 00583 ptr2 = ptr + SIZEOF_STRUCT_MEM + size; 00584 /* create mem2 struct */ 00585 mem2 = (struct mem *)(void *)&ram[ptr2]; 00586 mem2->used = 0; 00587 mem2->next = mem->next; 00588 mem2->prev = ptr; 00589 /* and insert it between mem and mem->next */ 00590 mem->next = ptr2; 00591 mem->used = 1; 00592 00593 if (mem2->next != MEM_SIZE_ALIGNED) { 00594 ((struct mem *)(void *)&ram[mem2->next])->prev = ptr2; 00595 } 00596 MEM_STATS_INC_USED(used, (size + SIZEOF_STRUCT_MEM)); 00597 } else { 00598 /* (a mem2 struct does no fit into the user data space of mem and mem->next will always 00599 * be used at this point: if not we have 2 unused structs in a row, plug_holes should have 00600 * take care of this). 00601 * -> near fit or excact fit: do not split, no mem2 creation 00602 * also can't move mem->next directly behind mem, since mem->next 00603 * will always be used at this point! 00604 */ 00605 mem->used = 1; 00606 MEM_STATS_INC_USED(used, mem->next - (mem_size_t)((u8_t *)mem - ram)); 00607 } 00608 00609 if (mem == lfree) { 00610 /* Find next free block after mem and update lowest free pointer */ 00611 while (lfree->used && lfree != ram_end) { 00612 LWIP_MEM_ALLOC_UNPROTECT(); 00613 /* prevent high interrupt latency... */ 00614 LWIP_MEM_ALLOC_PROTECT(); 00615 lfree = (struct mem *)(void *)&ram[lfree->next]; 00616 } 00617 LWIP_ASSERT("mem_malloc: !lfree->used", ((lfree == ram_end) || (!lfree->used))); 00618 } 00619 LWIP_MEM_ALLOC_UNPROTECT(); 00620 sys_mutex_unlock(&mem_mutex); 00621 LWIP_ASSERT("mem_malloc: allocated memory not above ram_end.", 00622 (mem_ptr_t)mem + SIZEOF_STRUCT_MEM + size <= (mem_ptr_t)ram_end); 00623 LWIP_ASSERT("mem_malloc: allocated memory properly aligned.", 00624 ((mem_ptr_t)mem + SIZEOF_STRUCT_MEM) % MEM_ALIGNMENT == 0); 00625 LWIP_ASSERT("mem_malloc: sanity check alignment", 00626 (((mem_ptr_t)mem) & (MEM_ALIGNMENT-1)) == 0); 00627 00628 return (u8_t *)mem + SIZEOF_STRUCT_MEM; 00629 } 00630 } 00631 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT 00632 /* if we got interrupted by a mem_free, try again */ 00633 } while(local_mem_free_count != 0); 00634 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ 00635 LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SERIOUS, ("mem_malloc: could not allocate %"S16_F" bytes\n", (s16_t)size)); 00636 MEM_STATS_INC(err); 00637 LWIP_MEM_ALLOC_UNPROTECT(); 00638 sys_mutex_unlock(&mem_mutex); 00639 return NULL; 00640 } 00641 00642 #endif /* MEM_USE_POOLS */ 00643 /** 00644 * Contiguously allocates enough space for count objects that are size bytes 00645 * of memory each and returns a pointer to the allocated memory. 00646 * 00647 * The allocated memory is filled with bytes of value zero. 00648 * 00649 * @param count number of objects to allocate 00650 * @param size size of the objects to allocate 00651 * @return pointer to allocated memory / NULL pointer if there is an error 00652 */ 00653 void *mem_calloc(mem_size_t count, mem_size_t size) 00654 { 00655 void *p; 00656 00657 /* allocate 'count' objects of size 'size' */ 00658 p = mem_malloc(count * size); 00659 if (p) { 00660 /* zero the memory */ 00661 memset(p, 0, count * size); 00662 } 00663 return p; 00664 } 00665 00666 #endif /* !MEM_LIBC_MALLOC */
Generated on Tue Jul 12 2022 12:58:26 by
