Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: MAX30003 max32630fthr
main.cpp
- Committer:
- parthsagar2010
- Date:
- 2020-08-19
- Revision:
- 9:24ecf16eab0f
- Parent:
- 8:6b9359f81cc0
- Child:
- 10:54aa50490b15
File content as of revision 9:24ecf16eab0f:
#include "MAX30003.h"
#include "mbed.h"
#include "max32630fthr.h"
#include "ds1307.h"
Timer timer_fast;
MAX32630FTHR pegasus(MAX32630FTHR::VIO_3V3);
void task_fast(void);
DigitalOut ledA(LED2);
void ecg_config(MAX30003 &ecgAFE);
volatile bool ecgFIFOIntFlag = 0;
volatile int16_t onesec_counter = 0;
volatile bool timerflag = 0;
void ecgFIFO_callback_1() { // Triggered when the ECG FIFO is about to be full
ecgFIFOIntFlag = 1;
}
int main()
{
// Constants
const int EINT_STATUS_MASK = 1 << 23;
const int FIFO_OVF_MASK = 0x7;
const int FIFO_VALID_SAMPLE_MASK = 0x0;
const int FIFO_FAST_SAMPLE_MASK = 0x1;
const int ETAG_BITS_MASK = 0x7;
timer_fast.start();
DigitalOut rLed(LED1, LED_OFF);
Serial pc(USBTX, USBRX); // Use USB debug probe for serial link
pc.baud(115200); // Baud rate = 115200
InterruptIn ecgFIFO_int(P5_4); // Config P5_4 as int. in for the
ecgFIFO_int.fall(&ecgFIFO_callback_1); // ecg FIFO interrupt at falling edge
SPI spiBus(SPI2_MOSI, SPI2_MISO, SPI2_SCK); // SPI bus, P5_1 = MOSI,
// P5_2 = MISO, P5_0 = SCK
MAX30003 ecgAFE(spiBus, P5_3); // New MAX30003 on spiBus, CS = P5_3
ecg_config(ecgAFE); // Config ECG
ecgAFE.writeRegister( MAX30003::SYNCH , 0);
uint32_t ecgFIFO, readECGSamples, idx, ETAG[32], status;
int16_t ecgSample[32];
//bool timerflag = false;
int16_t ecgSample_1sec[700];
int16_t onesec_counter = 0;
int16_t sample = 300;
while(1)
{
if (timer_fast.read() > 1)
{
//timerflag = 1;
ledA = !ledA;
timer_fast.reset();
int8_t header_device_id[3] = {0,0,210};
int8_t header_packet_type[2] = {0,2};
int8_t header_packet_id[4] = {0,0,0,0};
int8_t header_ecg_datalen[2] = {0,onesec_counter};
int8_t header_ecg_checksum[2] = {0,0};
//pc.printf("%6d\r\n", sample);
//pc.printf("%6d\r\n", onesec_counter);
onesec_counter = 0;
}
// Read back ECG samples from the FIFO
else if( (ecgFIFOIntFlag==1))// && (timerflag == 0))
{
ecgFIFOIntFlag = 0;
status = ecgAFE.readRegister( MAX30003::STATUS ); // Read the STATUS register
// Check if EINT interrupt asserted
if ( ( status & EINT_STATUS_MASK ) == EINT_STATUS_MASK )
{
readECGSamples = 0; // Reset sample counter
do {
ecgFIFO = ecgAFE.readRegister( MAX30003::ECG_FIFO ); // Read FIFO
ecgSample[readECGSamples] = ecgFIFO >> 8; // Isolate voltage data
ETAG[readECGSamples] = ( ecgFIFO >> 3 ) & ETAG_BITS_MASK; // Isolate ETAG
readECGSamples++; // Increment sample counter
// Check that sample is not last sample in FIFO
} while ( ETAG[readECGSamples-1] == FIFO_VALID_SAMPLE_MASK ||
ETAG[readECGSamples-1] == FIFO_FAST_SAMPLE_MASK );
// Check if FIFO has overflowed
if( ETAG[readECGSamples - 1] == FIFO_OVF_MASK )
{
ecgAFE.writeRegister( MAX30003::FIFO_RST , 0); // Reset FIFO
rLed = 1;//notifies the user that an over flow occured
}
// Print results
for( idx = 0; idx < readECGSamples; idx++ )
{
//pc.printf("%6d\r\n", ecgSample[idx]);
ecgSample_1sec[onesec_counter] = ecgSample[idx];
onesec_counter++;
}
}
// else
// {
// timerflag = 0;
// }
//else if (timerflag == 1)
//{
//timerflag = 0;
//pc.printf("1 sec ends :\n");
//onesec_counter = 0;
//timer_fast.reset();
//timer_fast.start();
//delete[] ecgSample_1sec;
//}
}
}
}
void ecg_config(MAX30003& ecgAFE) {
// Reset ECG to clear registers
ecgAFE.writeRegister( MAX30003::SW_RST , 0);
// General config register setting
MAX30003::GeneralConfiguration_u CNFG_GEN_r;
CNFG_GEN_r.bits.en_ecg = 1; // Enable ECG channel
CNFG_GEN_r.bits.rbiasn = 1; // Enable resistive bias on negative input
CNFG_GEN_r.bits.rbiasp = 1; // Enable resistive bias on positive input
CNFG_GEN_r.bits.en_rbias = 1; // Enable resistive bias
CNFG_GEN_r.bits.imag = 2; // Current magnitude = 10nA
CNFG_GEN_r.bits.en_dcloff = 1; // Enable DC lead-off detection
ecgAFE.writeRegister( MAX30003::CNFG_GEN , CNFG_GEN_r.all);
// ECG Config register setting
MAX30003::ECGConfiguration_u CNFG_ECG_r;
CNFG_ECG_r.bits.dlpf = 1; // Digital LPF cutoff = 40Hz
CNFG_ECG_r.bits.dhpf = 1; // Digital HPF cutoff = 0.5Hz
CNFG_ECG_r.bits.gain = 3; // ECG gain = 160V/V
CNFG_ECG_r.bits.rate = 2; // Sample rate = 128 sps
ecgAFE.writeRegister( MAX30003::CNFG_ECG , CNFG_ECG_r.all);
//R-to-R configuration
MAX30003::RtoR1Configuration_u CNFG_RTOR_r;
CNFG_RTOR_r.bits.en_rtor = 1; // Enable R-to-R detection
ecgAFE.writeRegister( MAX30003::CNFG_RTOR1 , CNFG_RTOR_r.all);
//Manage interrupts register setting
MAX30003::ManageInterrupts_u MNG_INT_r;
MNG_INT_r.bits.efit = 0b00011; // Assert EINT w/ 4 unread samples
MNG_INT_r.bits.clr_rrint = 0b01; // Clear R-to-R on RTOR reg. read back
ecgAFE.writeRegister( MAX30003::MNGR_INT , MNG_INT_r.all);
//Enable interrupts register setting
MAX30003::EnableInterrupts_u EN_INT_r;
EN_INT_r.all = 0;
EN_INT_r.bits.en_eint = 1; // Enable EINT interrupt
EN_INT_r.bits.en_rrint = 0; // Disable R-to-R interrupt
EN_INT_r.bits.intb_type = 3; // Open-drain NMOS with internal pullup
ecgAFE.writeRegister( MAX30003::EN_INT , EN_INT_r.all);
//Dyanmic modes config
MAX30003::ManageDynamicModes_u MNG_DYN_r;
MNG_DYN_r.bits.fast = 0; // Fast recovery mode disabled
ecgAFE.writeRegister( MAX30003::MNGR_DYN , MNG_DYN_r.all);
// MUX Config
MAX30003::MuxConfiguration_u CNFG_MUX_r;
CNFG_MUX_r.bits.openn = 0; // Connect ECGN to AFE channel
CNFG_MUX_r.bits.openp = 0; // Connect ECGP to AFE channel
ecgAFE.writeRegister( MAX30003::CNFG_EMUX , CNFG_MUX_r.all);
return;
}