Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed SDFileSystem ConfigFile
Matrix/Matrix.cpp
- Committer:
- ojan
- Date:
- 2015-06-24
- Revision:
- 23:79cdc1432160
- Parent:
- 3:5358a691a100
File content as of revision 23:79cdc1432160:
#include "myConstants.h"
#include "Matrix.h"
Matrix::Matrix(int row, int col) : row(row), col(col), components(0) {
components = new float[row*col];
if (!components) error("Memory Allocation Error");
for(int i=0; i<row*col; i++) components[i] = 0.0f;
if (row == col) {
for (int i = 0; i < row; i++) {
components[i * col + i] = 1.0f;
}
}
}
Matrix::Matrix(int row, int col, float* comps) : row(row), col(col), components(0) {
components = new float[row*col];
if (!components) error("Memory Allocation Error");
memcpy(components, comps, sizeof(float)*row*col);
}
Matrix::~Matrix() {
delete[] components;
}
Matrix::Matrix(const Matrix& m) : row(m.row), col(m.col), components(0) {
components = new float[row*col];
if (!components) error("Memory Allocation Error");
memcpy(components, m.GetpComponents(), sizeof(float)*row*col);
}
Matrix Matrix::operator-() const{
Matrix retMat(*this);
for (int i = 0; i < row * col; i++) {
retMat.components[i] = - this->components[i];
}
return retMat;
}
Matrix& Matrix::operator=(const Matrix& m) {
if (this == &m) return *this;
row = m.row;
col = m.col;
delete[] components;
components = new float[row*col];
if (!components) error("Memory Allocation Error");
memcpy(components, m.GetpComponents(), sizeof(float)*row*col);
return *this;
}
Matrix& Matrix::operator+=(const Matrix& m) {
if (row != m.GetRow() || col != m.GetCol()) error("Irregular Dimention");
for (int i = 0; i < row; i++) {
for (int j = 0; j < col; j++) {
components[i * col + j] += m.components[i * col + j];
}
}
this->CleanUp();
return *this;
}
Matrix& Matrix::operator-=(const Matrix& m) {
if (row != m.GetRow() || col != m.GetCol()) error("Irregular Dimention");
for (int i = 0; i < row; i++) {
for (int j = 0; j < col; j++) {
components[i * col + j] -= m.components[i * col + j];
}
}
this->CleanUp();
return *this;
}
/*
Matrix& Matrix::operator*=(const Matrix& m) {
if (col != m.GetRow()) error("Irregular Dimention");
Matrix temp = Matrix(*this);
col = m.GetCol();
delete[] components;
components = new float[row*col];
for (int i = 0; i < row; i++) {
for (int j = 0; j < col; j++) {
components[i*col + j] = 0.0f;
for (int k = 0; k < m.GetRow(); k++) {
components[i * col + j] += temp.components[i * col + k] * m.components[k * col + j];
}
}
}
this->CleanUp();
return *this;
}
*/
Matrix& Matrix::operator*=(float c) {
for (int i = 0; i < row; i++) {
for (int j = 0; j < col; j++) {
components[i*col + j] *= c;
}
}
return *this;
}
Matrix& Matrix::operator/=(float c) {
if (fabs(c) < NEARLY_ZERO) error("Division by Zero");
for (int i = 0; i < row; i++) {
for (int j = 0; j < col; j++) {
components[i*col + j] /= c;
}
}
return *this;
}
void Matrix::SetComp(int rowNo, int colNo, float val) {
if (rowNo > row || colNo > col) error("Index Out of Bounds Error");
components[(rowNo-1)*col + (colNo-1)] = val;
}
void Matrix::SetComps(float* pComps) {
memcpy(components, pComps, sizeof(float) * row * col);
}
float Matrix::Determinant() const{
if (row != col) error("failed to calculate det. : matrix is not square");
int decSign = 0;
float retVal = 1.0f;
// 行列のLU分解
Matrix LU(this->LU_Decompose(&decSign));
for (int i = 0; i < LU.row; i++) {
retVal *= LU.components[i * LU.col + i];
}
return retVal*decSign;
}
float Matrix::det() const {
if (row != col) error("failed to calculate det : matrix is not square");
Matrix temp(*this);
int decSign = 1;
for (int j = 0; j < col - 1; j++) {
// 列内のみで最大の要素を探す
int maxNo = j;
for (int k = j; k < row; k++) {
if (temp.components[maxNo * col + j] < temp.components[k * col + j]) maxNo = k;
}
if (maxNo != j) {
temp.SwapRow(j + 1, maxNo + 1);
decSign *= -1;
}
// 列内の最大要素が小さ過ぎる場合、行内の最大要素も探す
if (fabs(temp.components[j * col + j]) < NEARLY_ZERO) {
maxNo = j;
for (int k = j; k < col; k++) {
if (temp.components[j * col + maxNo] < temp.components[j * col + k])maxNo = k;
}
if (maxNo != j) {
temp.SwapCol(j + 1, maxNo + 1);
decSign *= -1;
}
// 列内、行内の最大要素を選んでも小さすぎる場合はエラー
if (fabs(temp.components[j * col + j]) < NEARLY_ZERO) {
if (row != col) error("failed to calculate det : Division by Zero");
}
}
float c1 = 1.0f / temp.components[j * col + j];
for (int i = j + 1; i < row; i++) {
float c2 = temp.components[i * col + j] * c1;
for (int k = j; k < col; k++) {
temp.components[i * col + k] = temp.components[i * col + k] - c2 * temp.components[j * col + k];
}
}
}
if (fabs(temp.components[(row - 1) * col + (col - 1)]) < NEARLY_ZERO) return 0.0f;
float retVal = 1.0f;
for (int i = 0; i < row; i++) {
retVal *= temp.components[i * col + i];
}
return retVal * decSign;
}
Matrix Matrix::LU_Decompose(int* sign, Matrix* p) const{
if (row != col) error("failed to LU decomposition: matrix is not square");
if (sign != 0) *sign = 1;
if (p != 0) {
if (p->row != row || p->row != p->col) error("failed to LU decomposition: permitation matrix is incorrect");
// 置換行列は最初に単位行列にしておく
memset(p->components, 0, sizeof(float) * row * col);
for (int i = 0; i < row; i++) {
p->components[i * col + i] = 1.0f;
}
}
Matrix retVal(*this);
for (int d = 0; d < row - 1; d++) { // 1行1列ずつ分解を行う
// d列目の最大の要素を探索し、見つけた要素の行とd行目を交換する
int maxNo = d;
for (int i = d; i < row; i++) {
if (retVal.components[i * col + d] > retVal.components[maxNo * col + d]) maxNo = i;
}
if (maxNo != d) {
retVal.SwapRow(d + 1, maxNo + 1);
if (sign != 0) *sign *= -1;
if (p != 0) {
p->SwapRow(d + 1, maxNo + 1);
}
}
float c = retVal.components[d * col + d];
if (fabs(c) < NEARLY_ZERO) error("failed to LU decomposition: Division by Zero");
// d行d列目以降の行列について計算
for (int i = d+1; i < row; i++) {
retVal.components[i * col + d] /= c;
for (int j = d+1; j < col; j++) {
retVal.components[i * col + j] -= retVal.components[d * col + j] * retVal.components[i * col + d];
}
}
}
retVal.CleanUp();
return retVal;
}
float Matrix::Inverse(Matrix& invm) const{
if (row != col) error("failed to get Inv. : matrix is not square");
Matrix P(*this);
Matrix LU(LU_Decompose(0, &P));
// 分解した行列の対角成分の積から行列式を求める
// det = 0 ならfalse
float det = 1.0f;
for (int i = 0; i < row; i++) {
det *= LU.components[i * col + i];
}
if (fabs(det) < NEARLY_ZERO) {
return fabs(det);
}
// U、Lそれぞれの逆行列を計算する
Matrix U_inv = Matrix(row, col);
Matrix L_inv = Matrix(row, col);
for (int j = 0; j < col; j++) {
for (int i = 0; i <= j; i++) {
int i_U = j - i; // U行列の逆行列は対角成分から上へ向かって
// 左から順番に値を計算する
int j_L = col - 1 - j; // L行列の逆行列は右から順番に
int i_L = j_L + i; // 対角成分から下へ向かって計算する
if (i_U != j) { // 非対角成分
float temp_U = 0.0f;
float temp_L = 0.0f;
for (int k = 0; k < i; k++) {
temp_U -= U_inv.components[(j - k) * col + j] * LU.components[i_U * col + (j - k)];
if (k == 0) {
temp_L -= LU.components[i_L * col + j_L];
} else {
temp_L -= L_inv.components[(j_L + k) * col + j_L] * LU.components[i_L * col + j_L + k];
}
}
U_inv.components[i_U * col + j] = temp_U / LU.components[i_U * col + i_U];
L_inv.components[i_L * col + j_L] = temp_L;
} else { // 対角成分
if (fabs(LU.components[i_U * col + i_U]) >= NEARLY_ZERO) {
U_inv.components[i_U * col + i_U] = 1.0f / LU.components[i_U * col + i_U];
}
}
}
}
invm = U_inv * L_inv * P;
return -1.0f;
}
Matrix Matrix::Transpose() const{
//if (row != col) error("failed to get Trans. : matrix is not square");
Matrix retVal(col, row);
for (int i = 0; i < row; i++) {
for (int j = 0; j < col; j++) {
retVal.components[j * row + i] = this->components[i * col + j];
}
}
return retVal;
}
Matrix operator+(const Matrix& lhm, const Matrix& rhm) {
Matrix temp = Matrix(lhm);
temp += rhm;
return temp;
}
Matrix operator-(const Matrix& lhm, const Matrix& rhm) {
Matrix temp = Matrix(lhm);
temp -= rhm;
return temp;
}
Matrix operator*(const Matrix& lhm, const Matrix& rhm) {
if(lhm.GetCol() != rhm.GetRow()) error("Matrix product Error: Irregular Dimention.");
int row = lhm.GetRow();
int col = rhm.GetCol();
int sum = lhm.GetCol();
Matrix temp(row, col);
for (int i = 1; i <= row; i++) {
for (int j = 1; j <= col; j++) {
float temp_c = 0.0f;
for (int k = 1; k <= sum; k++) {
temp_c += lhm.GetComp(i, k) * rhm.GetComp(k, j);
}
temp.SetComp(i, j, temp_c);
}
}
return temp;
}
void Matrix::CleanUp() {
int num = row*col;
float maxComp = 0.0f;
for (int i = 0; i < num; i++) {
if (maxComp < fabs(components[i])) maxComp = fabs(components[i]);
}
if (maxComp > NEARLY_ZERO) {
for (int i = 0; i < num; i++) {
if (fabs(components[i]) / maxComp < ZERO_TOLERANCE) components[i] = 0.0f;
}
}
}
void Matrix::SwapRow(int rowNo1, int rowNo2) {
if (rowNo1 > row || rowNo2 > row) error("Index Out of Bounds Error !!");
float* temp = new float[col];
memcpy(temp, components + (rowNo1 - 1) * col, sizeof(float) * col);
memcpy(components + (rowNo1 - 1) * col, components + (rowNo2 - 1) * col, sizeof(float) * col);
memcpy(components + (rowNo2 - 1) * col, temp, sizeof(float) * col);
delete[] temp;
}
void Matrix::SwapCol(int colNo1, int colNo2) {
if (colNo1 > col || colNo2 > col) error("Index Out of Bounds Error !!");
float temp = 0.0f;
for (int i = 0; i < row; i++) {
temp = components[i * col + colNo1];
components[i * col + colNo1] = components[i * col + colNo2];
components[i * col + colNo2] = temp;
}
}