Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of mbed-src by
targets/hal/TARGET_Freescale/TARGET_K20D5M/spi_api.c
- Committer:
- mbed_official
- Date:
- 2014-05-19
- Revision:
- 195:442092318da6
- Parent:
- 73:299c67215126
- Child:
- 227:7bd0639b8911
File content as of revision 195:442092318da6:
/* mbed Microcontroller Library
* Copyright (c) 2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "spi_api.h"
#include <math.h>
#include "cmsis.h"
#include "pinmap.h"
#include "error.h"
#include "clk_freqs.h"
static const PinMap PinMap_SPI_SCLK[] = {
{PTC5, SPI_0, 2},
{PTD1, SPI_0, 2},
{NC , NC , 0}
};
static const PinMap PinMap_SPI_MOSI[] = {
{PTD2, SPI_0, 2},
{PTC6, SPI_0, 2},
{NC , NC , 0}
};
static const PinMap PinMap_SPI_MISO[] = {
{PTD3, SPI_0, 2},
{PTC7, SPI_0, 2},
{NC , NC , 0}
};
static const PinMap PinMap_SPI_SSEL[] = {
{PTD0, SPI_0, 2},
{PTC4, SPI_0, 2},
{NC , NC , 0}
};
void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel) {
// determine the SPI to use
SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI);
SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO);
SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK);
SPIName spi_ssel = (SPIName)pinmap_peripheral(ssel, PinMap_SPI_SSEL);
SPIName spi_data = (SPIName)pinmap_merge(spi_mosi, spi_miso);
SPIName spi_cntl = (SPIName)pinmap_merge(spi_sclk, spi_ssel);
obj->spi = (SPI_Type*)pinmap_merge(spi_data, spi_cntl);
if ((int)obj->spi == NC) {
error("SPI pinout mapping failed");
}
SIM->SCGC5 |= SIM_SCGC5_PORTC_MASK | SIM_SCGC5_PORTD_MASK;
SIM->SCGC6 |= SIM_SCGC6_SPI0_MASK;
obj->spi->MCR &= ~(SPI_MCR_MDIS_MASK | SPI_MCR_HALT_MASK);
//obj->spi->MCR |= SPI_MCR_DIS_RXF_MASK | SPI_MCR_DIS_TXF_MASK;
// set default format and frequency
if (ssel == NC) {
spi_format(obj, 8, 0, 0); // 8 bits, mode 0, master
} else {
spi_format(obj, 8, 0, 1); // 8 bits, mode 0, slave
}
spi_frequency(obj, 1000000);
// not halt in the debug mode
obj->spi->SR |= SPI_SR_EOQF_MASK;
// pin out the spi pins
pinmap_pinout(mosi, PinMap_SPI_MOSI);
pinmap_pinout(miso, PinMap_SPI_MISO);
pinmap_pinout(sclk, PinMap_SPI_SCLK);
if (ssel != NC) {
pinmap_pinout(ssel, PinMap_SPI_SSEL);
}
}
void spi_free(spi_t *obj) {
// [TODO]
}
void spi_format(spi_t *obj, int bits, int mode, int slave) {
if ((bits < 4) || (bits > 16))
error("SPI: Only frames between 4 and 16-bit supported");
if ((mode < 0) || (mode > 3)) {
error("SPI mode unsupported");
}
uint32_t polarity = (mode & 0x2) ? 1 : 0;
uint32_t phase = (mode & 0x1) ? 1 : 0;
// set master/slave
obj->spi->MCR &= ~SPI_MCR_MSTR_MASK;
obj->spi->MCR |= ((!slave) << SPI_MCR_MSTR_SHIFT);
// CTAR0 is used
obj->spi->CTAR[0] &= ~(SPI_CTAR_CPHA_MASK | SPI_CTAR_CPOL_MASK | SPI_CTAR_FMSZ_MASK);
obj->spi->CTAR[0] |= (polarity << SPI_CTAR_CPOL_SHIFT) | (phase << SPI_CTAR_CPHA_SHIFT) | ((bits - 1) << SPI_CTAR_FMSZ_SHIFT);
}
static const uint8_t baudrate_prescaler[] = {2,3,5,7};
static const uint16_t baudrate_scaler[] = {2,4,6,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768};
void spi_frequency(spi_t *obj, int hz) {
uint32_t f_error = 0;
uint32_t p_error = 0xffffffff;
uint32_t ref = 0;
uint32_t br = 0;
uint32_t ref_spr = 0;
uint32_t ref_prescaler = 0;
uint32_t ref_dr = 0;
// bus clk
uint32_t PCLK = bus_frequency();
for (uint32_t i = 0; i < 4; i++) {
for (br = 0; br <= 15; br++) {
for (uint32_t dr = 0; dr < 2; dr++) {
ref = (PCLK * (1U + dr) / baudrate_prescaler[i]) / baudrate_scaler[br];
if (ref > (uint32_t)hz)
continue;
f_error = hz - ref;
if (f_error < p_error) {
ref_spr = br;
ref_prescaler = i;
ref_dr = dr;
p_error = f_error;
}
}
}
}
// set PBR and BR
obj->spi->CTAR[0] &= ~(SPI_CTAR_PBR_MASK | SPI_CTAR_BR_MASK | SPI_CTAR_DBR_MASK);
obj->spi->CTAR[0] |= (ref_prescaler << SPI_CTAR_PBR_SHIFT) | (ref_spr << SPI_CTAR_BR_SHIFT) | (ref_dr << SPI_CTAR_DBR_SHIFT);
}
static inline int spi_writeable(spi_t *obj) {
return (obj->spi->SR & SPI_SR_TFFF_MASK) ? 1 : 0;
}
static inline int spi_readable(spi_t *obj) {
return (obj->spi->SR & SPI_SR_RFDF_MASK) ? 1 : 0;
}
int spi_master_write(spi_t *obj, int value) {
//clear RX buffer flag
obj->spi->SR |= SPI_SR_RFDF_MASK;
// wait tx buffer empty
while(!spi_writeable(obj));
obj->spi->PUSHR = SPI_PUSHR_TXDATA(value & 0xffff) /*| SPI_PUSHR_EOQ_MASK*/;
// wait rx buffer full
while (!spi_readable(obj));
return obj->spi->POPR;
}
int spi_slave_receive(spi_t *obj) {
return spi_readable(obj);
}
int spi_slave_read(spi_t *obj) {
return obj->spi->POPR;
}
void spi_slave_write(spi_t *obj, int value) {
while (!spi_writeable(obj));
}
