Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependents: ton-bot_teste ton-bot_seguidor_linha ton-bot_seguidor_parede
Fork of IOTON-API by
Diff: BMX055.h
- Revision:
- 0:cbba28a205fa
- Child:
- 2:b3c3bf0b9101
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/BMX055.h Tue Nov 08 00:17:12 2016 +0000
@@ -0,0 +1,883 @@
+/* IMU chipset BMX055 Library
+ * Copyright (c) 2016 Ioton Technology
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef BMX055_H_
+#define BMX055_H_
+
+/* Includes ------------------------------------------------------------------*/
+#include "mbed.h"
+
+
+#ifndef M_PI
+#define M_PI 3.1415927
+#endif
+
+// Accelerometer registers
+#define BMX055_ACC_WHOAMI 0x00 // should return 0xFA
+//#define BMX055_ACC_Reserved 0x01
+#define BMX055_ACC_D_X_LSB 0x02
+#define BMX055_ACC_D_X_MSB 0x03
+#define BMX055_ACC_D_Y_LSB 0x04
+#define BMX055_ACC_D_Y_MSB 0x05
+#define BMX055_ACC_D_Z_LSB 0x06
+#define BMX055_ACC_D_Z_MSB 0x07
+#define BMX055_ACC_D_TEMP 0x08
+#define BMX055_ACC_INT_STATUS_0 0x09
+#define BMX055_ACC_INT_STATUS_1 0x0A
+#define BMX055_ACC_INT_STATUS_2 0x0B
+#define BMX055_ACC_INT_STATUS_3 0x0C
+//#define BMX055_ACC_Reserved 0x0D
+#define BMX055_ACC_FIFO_STATUS 0x0E
+#define BMX055_ACC_PMU_RANGE 0x0F
+#define BMX055_ACC_PMU_BW 0x10
+#define BMX055_ACC_PMU_LPW 0x11
+#define BMX055_ACC_PMU_LOW_POWER 0x12
+#define BMX055_ACC_D_HBW 0x13
+#define BMX055_ACC_BGW_SOFTRESET 0x14
+//#define BMX055_ACC_Reserved 0x15
+#define BMX055_ACC_INT_EN_0 0x16
+#define BMX055_ACC_INT_EN_1 0x17
+#define BMX055_ACC_INT_EN_2 0x18
+#define BMX055_ACC_INT_MAP_0 0x19
+#define BMX055_ACC_INT_MAP_1 0x1A
+#define BMX055_ACC_INT_MAP_2 0x1B
+//#define BMX055_ACC_Reserved 0x1C
+//#define BMX055_ACC_Reserved 0x1D
+#define BMX055_ACC_INT_SRC 0x1E
+//#define BMX055_ACC_Reserved 0x1F
+#define BMX055_ACC_INT_OUT_CTRL 0x20
+#define BMX055_ACC_INT_RST_LATCH 0x21
+#define BMX055_ACC_INT_0 0x22
+#define BMX055_ACC_INT_1 0x23
+#define BMX055_ACC_INT_2 0x24
+#define BMX055_ACC_INT_3 0x25
+#define BMX055_ACC_INT_4 0x26
+#define BMX055_ACC_INT_5 0x27
+#define BMX055_ACC_INT_6 0x28
+#define BMX055_ACC_INT_7 0x29
+#define BMX055_ACC_INT_8 0x2A
+#define BMX055_ACC_INT_9 0x2B
+#define BMX055_ACC_INT_A 0x2C
+#define BMX055_ACC_INT_B 0x2D
+#define BMX055_ACC_INT_C 0x2E
+#define BMX055_ACC_INT_D 0x2F
+#define BMX055_ACC_FIFO_CONFIG_0 0x30
+//#define BMX055_ACC_Reserved 0x31
+#define BMX055_ACC_PMU_SELF_TEST 0x32
+#define BMX055_ACC_TRIM_NVM_CTRL 0x33
+#define BMX055_ACC_BGW_SPI3_WDT 0x34
+//#define BMX055_ACC_Reserved 0x35
+#define BMX055_ACC_OFC_CTRL 0x36
+#define BMX055_ACC_OFC_SETTING 0x37
+#define BMX055_ACC_OFC_OFFSET_X 0x38
+#define BMX055_ACC_OFC_OFFSET_Y 0x39
+#define BMX055_ACC_OFC_OFFSET_Z 0x3A
+#define BMX055_ACC_TRIM_GPO 0x3B
+#define BMX055_ACC_TRIM_GP1 0x3C
+//#define BMX055_ACC_Reserved 0x3D
+#define BMX055_ACC_FIFO_CONFIG_1 0x3E
+#define BMX055_ACC_FIFO_DATA 0x3F
+
+// BMX055 Gyroscope Registers
+#define BMX055_GYRO_WHOAMI 0x00 // should return 0x0F
+//#define BMX055_GYRO_Reserved 0x01
+#define BMX055_GYRO_RATE_X_LSB 0x02
+#define BMX055_GYRO_RATE_X_MSB 0x03
+#define BMX055_GYRO_RATE_Y_LSB 0x04
+#define BMX055_GYRO_RATE_Y_MSB 0x05
+#define BMX055_GYRO_RATE_Z_LSB 0x06
+#define BMX055_GYRO_RATE_Z_MSB 0x07
+//#define BMX055_GYRO_Reserved 0x08
+#define BMX055_GYRO_INT_STATUS_0 0x09
+#define BMX055_GYRO_INT_STATUS_1 0x0A
+#define BMX055_GYRO_INT_STATUS_2 0x0B
+#define BMX055_GYRO_INT_STATUS_3 0x0C
+//#define BMX055_GYRO_Reserved 0x0D
+#define BMX055_GYRO_FIFO_STATUS 0x0E
+#define BMX055_GYRO_RANGE 0x0F
+#define BMX055_GYRO_BW 0x10
+#define BMX055_GYRO_LPM1 0x11
+#define BMX055_GYRO_LPM2 0x12
+#define BMX055_GYRO_RATE_HBW 0x13
+#define BMX055_GYRO_BGW_SOFTRESET 0x14
+#define BMX055_GYRO_INT_EN_0 0x15
+#define BMX055_GYRO_INT_EN_1 0x16
+#define BMX055_GYRO_INT_MAP_0 0x17
+#define BMX055_GYRO_INT_MAP_1 0x18
+#define BMX055_GYRO_INT_MAP_2 0x19
+#define BMX055_GYRO_INT_SRC_1 0x1A
+#define BMX055_GYRO_INT_SRC_2 0x1B
+#define BMX055_GYRO_INT_SRC_3 0x1C
+//#define BMX055_GYRO_Reserved 0x1D
+#define BMX055_GYRO_FIFO_EN 0x1E
+//#define BMX055_GYRO_Reserved 0x1F
+//#define BMX055_GYRO_Reserved 0x20
+#define BMX055_GYRO_INT_RST_LATCH 0x21
+#define BMX055_GYRO_HIGH_TH_X 0x22
+#define BMX055_GYRO_HIGH_DUR_X 0x23
+#define BMX055_GYRO_HIGH_TH_Y 0x24
+#define BMX055_GYRO_HIGH_DUR_Y 0x25
+#define BMX055_GYRO_HIGH_TH_Z 0x26
+#define BMX055_GYRO_HIGH_DUR_Z 0x27
+//#define BMX055_GYRO_Reserved 0x28
+//#define BMX055_GYRO_Reserved 0x29
+//#define BMX055_GYRO_Reserved 0x2A
+#define BMX055_GYRO_SOC 0x31
+#define BMX055_GYRO_A_FOC 0x32
+#define BMX055_GYRO_TRIM_NVM_CTRL 0x33
+#define BMX055_GYRO_BGW_SPI3_WDT 0x34
+//#define BMX055_GYRO_Reserved 0x35
+#define BMX055_GYRO_OFC1 0x36
+#define BMX055_GYRO_OFC2 0x37
+#define BMX055_GYRO_OFC3 0x38
+#define BMX055_GYRO_OFC4 0x39
+#define BMX055_GYRO_TRIM_GP0 0x3A
+#define BMX055_GYRO_TRIM_GP1 0x3B
+#define BMX055_GYRO_BIST 0x3C
+#define BMX055_GYRO_FIFO_CONFIG_0 0x3D
+#define BMX055_GYRO_FIFO_CONFIG_1 0x3E
+
+// BMX055 magnetometer registers
+#define BMX055_MAG_WHOAMI 0x40 // should return 0x32
+#define BMX055_MAG_Reserved 0x41
+#define BMX055_MAG_XOUT_LSB 0x42
+#define BMX055_MAG_XOUT_MSB 0x43
+#define BMX055_MAG_YOUT_LSB 0x44
+#define BMX055_MAG_YOUT_MSB 0x45
+#define BMX055_MAG_ZOUT_LSB 0x46
+#define BMX055_MAG_ZOUT_MSB 0x47
+#define BMX055_MAG_ROUT_LSB 0x48
+#define BMX055_MAG_ROUT_MSB 0x49
+#define BMX055_MAG_INT_STATUS 0x4A
+#define BMX055_MAG_PWR_CNTL1 0x4B
+#define BMX055_MAG_PWR_CNTL2 0x4C
+#define BMX055_MAG_INT_EN_1 0x4D
+#define BMX055_MAG_INT_EN_2 0x4E
+#define BMX055_MAG_LOW_THS 0x4F
+#define BMX055_MAG_HIGH_THS 0x50
+#define BMX055_MAG_REP_XY 0x51
+#define BMX055_MAG_REP_Z 0x52
+/* Trim Extended Registers */
+#define BMM050_DIG_X1 0x5D // needed for magnetic field calculation
+#define BMM050_DIG_Y1 0x5E
+#define BMM050_DIG_Z4_LSB 0x62
+#define BMM050_DIG_Z4_MSB 0x63
+#define BMM050_DIG_X2 0x64
+#define BMM050_DIG_Y2 0x65
+#define BMM050_DIG_Z2_LSB 0x68
+#define BMM050_DIG_Z2_MSB 0x69
+#define BMM050_DIG_Z1_LSB 0x6A
+#define BMM050_DIG_Z1_MSB 0x6B
+#define BMM050_DIG_XYZ1_LSB 0x6C
+#define BMM050_DIG_XYZ1_MSB 0x6D
+#define BMM050_DIG_Z3_LSB 0x6E
+#define BMM050_DIG_Z3_MSB 0x6F
+#define BMM050_DIG_XY2 0x70
+#define BMM050_DIG_XY1 0x71
+
+// Using SDO1 = SDO2 = CSB3 = GND as designed
+// Seven-bit device addresses are ACC = 0x18, GYRO = 0x68, MAG = 0x10
+#define BMX055_ACC_ADDRESS 0x18 << 1 // Address of BMX055 accelerometer
+#define BMX055_GYRO_ADDRESS 0x68 << 1 // Address of BMX055 gyroscope
+#define BMX055_MAG_ADDRESS 0x10 << 1 // Address of BMX055 magnetometer
+
+// Set initial input parameters
+// define BMX055 ACC full scale options
+#define AFS_2G 0x03
+#define AFS_4G 0x05
+#define AFS_8G 0x08
+#define AFS_16G 0x0C
+
+enum ACCBW { // define BMX055 accelerometer bandwidths
+ ABW_8Hz, // 7.81 Hz, 64 ms update time
+ ABW_16Hz, // 15.63 Hz, 32 ms update time
+ ABW_31Hz, // 31.25 Hz, 16 ms update time
+ ABW_63Hz, // 62.5 Hz, 8 ms update time
+ ABW_125Hz, // 125 Hz, 4 ms update time
+ ABW_250Hz, // 250 Hz, 2 ms update time
+ ABW_500Hz, // 500 Hz, 1 ms update time
+ ABW_100Hz // 1000 Hz, 0.5 ms update time
+};
+
+enum Gscale {
+ GFS_2000DPS = 0,
+ GFS_1000DPS,
+ GFS_500DPS,
+ GFS_250DPS,
+ GFS_125DPS
+};
+
+enum GODRBW {
+ G_2000Hz523Hz = 0, // 2000 Hz ODR and unfiltered (bandwidth 523Hz)
+ G_2000Hz230Hz,
+ G_1000Hz116Hz,
+ G_400Hz47Hz,
+ G_200Hz23Hz,
+ G_100Hz12Hz,
+ G_200Hz64Hz,
+ G_100Hz32Hz // 100 Hz ODR and 32 Hz bandwidth
+};
+
+enum MODR {
+ MODR_10Hz = 0, // 10 Hz ODR
+ MODR_2Hz , // 2 Hz ODR
+ MODR_6Hz , // 6 Hz ODR
+ MODR_8Hz , // 8 Hz ODR
+ MODR_15Hz , // 15 Hz ODR
+ MODR_20Hz , // 20 Hz ODR
+ MODR_25Hz , // 25 Hz ODR
+ MODR_30Hz // 30 Hz ODR
+};
+
+enum Mmode {
+ lowPower = 0, // rms noise ~1.0 microTesla, 0.17 mA power
+ Regular , // rms noise ~0.6 microTesla, 0.5 mA power
+ enhancedRegular , // rms noise ~0.5 microTesla, 0.8 mA power
+ highAccuracy // rms noise ~0.3 microTesla, 4.9 mA power
+};
+
+// Set up I2C, (SDA,SCL)
+I2C i2c2(PB_11, PB_10);
+
+// Specify sensor full scale
+uint8_t Ascale = AFS_2G;
+uint8_t Gscale = GFS_125DPS;
+float aRes, gRes, mRes; // scale resolutions per LSB for the sensors
+
+// Parameters to hold BMX055 trim values
+int8_t dig_x1;
+int8_t dig_y1;
+int8_t dig_x2;
+int8_t dig_y2;
+uint16_t dig_z1;
+int16_t dig_z2;
+int16_t dig_z3;
+int16_t dig_z4;
+uint8_t dig_xy1;
+int8_t dig_xy2;
+uint16_t dig_xyz1;
+
+// BMX055 variables
+int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output
+int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output
+int16_t magCount[3]; // Stores the 13/15-bit signed magnetometer sensor output
+float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}, magBias[3] = {0, 0, 0}; // Bias corrections for gyro, accelerometer, mag
+float SelfTest[6]; // holds results of gyro and accelerometer self test
+
+// global constants for 9 DoF fusion and AHRS (Attitude and Heading Reference System)
+float GyroMeasError = M_PI * (40.0f / 180.0f); // gyroscope measurement error in rads/s (start at 40 deg/s)
+float GyroMeasDrift = M_PI * (0.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
+// There is a tradeoff in the beta parameter between accuracy and response speed.
+// In the original Madgwick study, beta of 0.041 (corresponding to GyroMeasError of 2.7 degrees/s) was found to give optimal accuracy.
+// However, with this value, the LSM9SD0 response time is about 10 seconds to a stable initial quaternion.
+// Subsequent changes also require a longish lag time to a stable output, not fast enough for a quadcopter or robot car!
+// By increasing beta (GyroMeasError) by about a factor of fifteen, the response time constant is reduced to ~2 sec
+// I haven't noticed any reduction in solution accuracy. This is essentially the I coefficient in a PID control sense;
+// the bigger the feedback coefficient, the faster the solution converges, usually at the expense of accuracy.
+// In any case, this is the free parameter in the Madgwick filtering and fusion scheme.
+float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta
+float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
+#define Kp 2.0f * 5.0f // these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral
+#define Ki 0.0f
+
+// Declination at Sao Paulo, Brazil is -21 degrees 7 minutes on 2016-03-27
+#define LOCAL_DECLINATION -21.1f
+
+float deltat = 0.0f; // integration interval for both filter schemes
+
+float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion
+float eInt[3] = {0.0f, 0.0f, 0.0f}; // vector to hold integral error for Mahony method
+
+
+class BMX055 {
+private:
+ float pitch, yaw, roll;
+
+ void writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
+ {
+ char data_write[2];
+ data_write[0] = subAddress;
+ data_write[1] = data;
+ i2c2.write(address, data_write, 2, 0);
+ }
+
+ char readByte(uint8_t address, uint8_t subAddress)
+ {
+ char data[1]; // `data` will store the register data
+ char data_write[1];
+ data_write[0] = subAddress;
+ i2c2.write(address, data_write, 1, 1); // no stop
+ i2c2.read(address, data, 1, 0);
+ return data[0];
+ }
+
+ void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
+ {
+ char data[14];
+ char data_write[1];
+ data_write[0] = subAddress;
+ i2c2.write(address, data_write, 1, 1); // no stop
+ i2c2.read(address, data, count, 0);
+ for(int ii = 0; ii < count; ii++)
+ {
+ dest[ii] = data[ii];
+ }
+ }
+
+public:
+ BMX055()
+ {
+ //Set up I2C
+ i2c2.frequency(400000); // use fast (400 kHz) I2C
+ }
+
+ float getAres(void)
+ {
+ switch (Ascale)
+ {
+ // Possible accelerometer scales (and their register bit settings) are:
+ // 2 Gs (0011), 4 Gs (0101), 8 Gs (1000), and 16 Gs (1100).
+ // BMX055 ACC data is signed 12 bit
+ case AFS_2G:
+ aRes = 2.0/2048.0;
+ break;
+ case AFS_4G:
+ aRes = 4.0/2048.0;
+ break;
+ case AFS_8G:
+ aRes = 8.0/2048.0;
+ break;
+ case AFS_16G:
+ aRes = 16.0/2048.0;
+ break;
+ }
+
+ return aRes;
+ }
+
+ float getGres(void)
+ {
+ switch (Gscale)
+ {
+ // Possible gyro scales (and their register bit settings) are:
+ // 125 DPS (100), 250 DPS (011), 500 DPS (010), 1000 DPS (001), and 2000 DPS (000).
+ case GFS_125DPS:
+ gRes = 124.87/32768.0; // per data sheet, not exactly 125!?
+ break;
+ case GFS_250DPS:
+ gRes = 249.75/32768.0;
+ break;
+ case GFS_500DPS:
+ gRes = 499.5/32768.0;
+ break;
+ case GFS_1000DPS:
+ gRes = 999.0/32768.0;
+ break;
+ case GFS_2000DPS:
+ gRes = 1998.0/32768.0;
+ break;
+ }
+
+ return gRes;
+ }
+
+ float getPitch(void)
+ {
+ return pitch;
+ }
+
+ float getRoll(void)
+ {
+ return roll;
+ }
+
+ float getYaw(void)
+ {
+ return yaw;
+ }
+
+ void readAccelData(int16_t * destination)
+ {
+ uint8_t rawData[6]; // x/y/z accel register data stored here
+
+ // Read the six raw data registers into data array
+ readBytes(BMX055_ACC_ADDRESS, BMX055_ACC_D_X_LSB, 6, &rawData[0]);
+ if((rawData[0] & 0x01) && (rawData[2] & 0x01) && (rawData[4] & 0x01))
+ { // Check that all 3 axes have new data
+ // Turn the MSB and LSB into a signed 12-bit value
+ destination[0] = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]) >> 4;
+ destination[1] = (int16_t) (((int16_t)rawData[3] << 8) | rawData[2]) >> 4;
+ destination[2] = (int16_t) (((int16_t)rawData[5] << 8) | rawData[4]) >> 4;
+ }
+ }
+
+ void readGyroData(int16_t * destination)
+ {
+ uint8_t rawData[6]; // x/y/z gyro register data stored here
+
+ // Read the six raw data registers sequentially into data array
+ readBytes(BMX055_GYRO_ADDRESS, BMX055_GYRO_RATE_X_LSB, 6, &rawData[0]);
+ // Turn the MSB and LSB into a signed 16-bit value
+ destination[0] = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]);
+ destination[1] = (int16_t) (((int16_t)rawData[3] << 8) | rawData[2]);
+ destination[2] = (int16_t) (((int16_t)rawData[5] << 8) | rawData[4]);
+ }
+
+ void readMagData(int16_t * magData)
+ {
+ int16_t mdata_x = 0, mdata_y = 0, mdata_z = 0, temp = 0;
+ uint16_t data_r = 0;
+ uint8_t rawData[8]; // x/y/z hall magnetic field data, and Hall resistance data
+ readBytes(BMX055_MAG_ADDRESS, BMX055_MAG_XOUT_LSB, 8, &rawData[0]); // Read the eight raw data registers sequentially into data array
+ if(rawData[6] & 0x01) { // Check if data ready status bit is set
+ mdata_x = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]) >> 3; // 13-bit signed integer for x-axis field
+ mdata_y = (int16_t) (((int16_t)rawData[3] << 8) | rawData[2]) >> 3; // 13-bit signed integer for y-axis field
+ mdata_z = (int16_t) (((int16_t)rawData[5] << 8) | rawData[4]) >> 1; // 15-bit signed integer for z-axis field
+ data_r = (uint16_t) (((uint16_t)rawData[7] << 8) | rawData[6]) >> 2; // 14-bit unsigned integer for Hall resistance
+
+ // calculate temperature compensated 16-bit magnetic fields
+ temp = ((int16_t)(((uint16_t)((((int32_t)dig_xyz1) << 14)/(data_r != 0 ? data_r : dig_xyz1))) - ((uint16_t)0x4000)));
+ magData[0] = ((int16_t)((((int32_t)mdata_x) *
+ ((((((((int32_t)dig_xy2) * ((((int32_t)temp) * ((int32_t)temp)) >> 7)) +
+ (((int32_t)temp) * ((int32_t)(((int16_t)dig_xy1) << 7)))) >> 9) +
+ ((int32_t)0x100000)) * ((int32_t)(((int16_t)dig_x2) + ((int16_t)0xA0)))) >> 12)) >> 13)) +
+ (((int16_t)dig_x1) << 3);
+
+ temp = ((int16_t)(((uint16_t)((((int32_t)dig_xyz1) << 14)/(data_r != 0 ? data_r : dig_xyz1))) - ((uint16_t)0x4000)));
+ magData[1] = ((int16_t)((((int32_t)mdata_y) *
+ ((((((((int32_t)dig_xy2) * ((((int32_t)temp) * ((int32_t)temp)) >> 7)) +
+ (((int32_t)temp) * ((int32_t)(((int16_t)dig_xy1) << 7)))) >> 9) +
+ ((int32_t)0x100000)) * ((int32_t)(((int16_t)dig_y2) + ((int16_t)0xA0)))) >> 12)) >> 13)) +
+ (((int16_t)dig_y1) << 3);
+ magData[2] = (((((int32_t)(mdata_z - dig_z4)) << 15) - ((((int32_t)dig_z3) * ((int32_t)(((int16_t)data_r) -
+ ((int16_t)dig_xyz1))))>>2))/(dig_z2 + ((int16_t)(((((int32_t)dig_z1) * ((((int16_t)data_r) << 1)))+(1<<15))>>16))));
+ }
+ }
+
+ float getTemperature()
+ {
+ uint8_t c = readByte(BMX055_ACC_ADDRESS, BMX055_ACC_D_TEMP); // Read the raw data register
+ int16_t tempCount = ((int16_t)((int16_t)c << 8)) >> 8 ; // Turn the byte into a signed 8-bit integer
+
+ return ((((float)tempCount) * 0.5) + 23.0); // temperature in degrees Centigrade
+ }
+
+ void fastcompaccelBMX055(float * dest1)
+ {
+ writeByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_CTRL, 0x80); // set all accel offset compensation registers to zero
+ writeByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_SETTING, 0x20); // set offset targets to 0, 0, and +1 g for x, y, z axes
+ writeByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_CTRL, 0x20); // calculate x-axis offset
+
+ uint8_t c = readByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_CTRL);
+ while(!(c & 0x10))
+ { // check if fast calibration complete
+ c = readByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_CTRL);
+ wait_ms(10);
+ }
+ writeByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_CTRL, 0x40); // calculate y-axis offset
+
+ c = readByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_CTRL);
+ while(!(c & 0x10))
+ { // check if fast calibration complete
+ c = readByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_CTRL);
+ wait_ms(10);
+ }
+ writeByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_CTRL, 0x60); // calculate z-axis offset
+
+ c = readByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_CTRL);
+ while(!(c & 0x10))
+ { // check if fast calibration complete
+ c = readByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_CTRL);
+ wait_ms(10);
+ }
+
+ int8_t compx = readByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_OFFSET_X);
+ int8_t compy = readByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_OFFSET_Y);
+ int8_t compz = readByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_OFFSET_Z);
+
+ dest1[0] = (float) compx/128.; // accleration bias in g
+ dest1[1] = (float) compy/128.; // accleration bias in g
+ dest1[2] = (float) compz/128.; // accleration bias in g
+ }
+
+ void magcalBMX055(float * dest1)
+ {
+ uint16_t ii = 0, sample_count = 0;
+ int32_t mag_bias[3] = {0, 0, 0};
+ int16_t mag_max[3] = {0, 0, 0}, mag_min[3] = {0, 0, 0};
+
+ // ## "Mag Calibration: Wave device in a figure eight until done!" ##
+ //wait(4);
+
+ sample_count = 48;
+ for(ii = 0; ii < sample_count; ii++)
+ {
+ int16_t mag_temp[3] = {0, 0, 0};
+ readMagData(mag_temp);
+ for (int jj = 0; jj < 3; jj++)
+ {
+ if(mag_temp[jj] > mag_max[jj]) mag_max[jj] = mag_temp[jj];
+ if(mag_temp[jj] < mag_min[jj]) mag_min[jj] = mag_temp[jj];
+ }
+ wait_ms(105); // at 10 Hz ODR, new mag data is available every 100 ms
+ }
+
+ mag_bias[0] = (mag_max[0] + mag_min[0])/2; // get average x mag bias in counts
+ mag_bias[1] = (mag_max[1] + mag_min[1])/2; // get average y mag bias in counts
+ mag_bias[2] = (mag_max[2] + mag_min[2])/2; // get average z mag bias in counts
+
+ // save mag biases in G for main program
+ dest1[0] = (float) mag_bias[0]*mRes;
+ dest1[1] = (float) mag_bias[1]*mRes;
+ dest1[2] = (float) mag_bias[2]*mRes;
+
+ // ## "Mag Calibration done!" ##
+ }
+
+ // Get trim values for magnetometer sensitivity
+ void trim(void)
+ {
+ uint8_t rawData[2]; //placeholder for 2-byte trim data
+
+ dig_x1 = readByte(BMX055_ACC_ADDRESS, BMM050_DIG_X1);
+ dig_x2 = readByte(BMX055_ACC_ADDRESS, BMM050_DIG_X2);
+ dig_y1 = readByte(BMX055_ACC_ADDRESS, BMM050_DIG_Y1);
+ dig_y2 = readByte(BMX055_ACC_ADDRESS, BMM050_DIG_Y2);
+ dig_xy1 = readByte(BMX055_ACC_ADDRESS, BMM050_DIG_XY1);
+ dig_xy2 = readByte(BMX055_ACC_ADDRESS, BMM050_DIG_XY2);
+ readBytes(BMX055_MAG_ADDRESS, BMM050_DIG_Z1_LSB, 2, &rawData[0]);
+ dig_z1 = (uint16_t) (((uint16_t)rawData[1] << 8) | rawData[0]);
+ readBytes(BMX055_MAG_ADDRESS, BMM050_DIG_Z2_LSB, 2, &rawData[0]);
+ dig_z2 = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]);
+ readBytes(BMX055_MAG_ADDRESS, BMM050_DIG_Z3_LSB, 2, &rawData[0]);
+ dig_z3 = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]);
+ readBytes(BMX055_MAG_ADDRESS, BMM050_DIG_Z4_LSB, 2, &rawData[0]);
+ dig_z4 = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]);
+ readBytes(BMX055_MAG_ADDRESS, BMM050_DIG_XYZ1_LSB, 2, &rawData[0]);
+ dig_xyz1 = (uint16_t) (((uint16_t)rawData[1] << 8) | rawData[0]);
+ }
+
+ /** Initialize device for active mode
+ * @param Ascale set accel full scale
+ * @param ACCBW set bandwidth for accelerometer
+ * @param Gscale set gyro full scale
+ * @param GODRBW set gyro ODR and bandwidth
+ * @param Mmode set magnetometer operation mode
+ * @param MODR set magnetometer data rate
+ * @see ACCBW, GODRBW and MODR enums
+ */
+ void init(uint8_t mAscale = AFS_2G, uint8_t ACCBW = ABW_16Hz,
+ uint8_t mGscale = GFS_125DPS, uint8_t GODRBW = G_200Hz23Hz,
+ uint8_t Mmode = Regular, uint8_t MODR = MODR_10Hz)
+ {
+ Ascale = mAscale;
+ Gscale = mGscale;
+
+ // Configure accelerometer
+ writeByte(BMX055_ACC_ADDRESS, BMX055_ACC_PMU_RANGE, Ascale & 0x0F); // Set accelerometer full scale
+ writeByte(BMX055_ACC_ADDRESS, BMX055_ACC_PMU_BW, (0x08 | ACCBW) & 0x0F); // Set accelerometer bandwidth
+ writeByte(BMX055_ACC_ADDRESS, BMX055_ACC_D_HBW, 0x00); // Use filtered data
+
+ // Configure Gyro
+ writeByte(BMX055_GYRO_ADDRESS, BMX055_GYRO_RANGE, Gscale); // set GYRO FS range
+ writeByte(BMX055_GYRO_ADDRESS, BMX055_GYRO_BW, GODRBW); // set GYRO ODR and Bandwidth
+
+ // Configure magnetometer
+ writeByte(BMX055_MAG_ADDRESS, BMX055_MAG_PWR_CNTL1, 0x82); // Softreset magnetometer, ends up in sleep mode
+ wait_ms(100);
+ writeByte(BMX055_MAG_ADDRESS, BMX055_MAG_PWR_CNTL1, 0x01); // Wake up magnetometer
+ wait_ms(100);
+ writeByte(BMX055_MAG_ADDRESS, BMX055_MAG_PWR_CNTL2, MODR << 3); // Normal mode
+
+ // Set up four standard configurations for the magnetometer
+ switch (Mmode)
+ {
+ case lowPower:
+ // Low-power
+ writeByte(BMX055_MAG_ADDRESS, BMX055_MAG_REP_XY, 0x01); // 3 repetitions (oversampling)
+ writeByte(BMX055_MAG_ADDRESS, BMX055_MAG_REP_Z, 0x02); // 3 repetitions (oversampling)
+ break;
+ case Regular:
+ // Regular
+ writeByte(BMX055_MAG_ADDRESS, BMX055_MAG_REP_XY, 0x04); // 9 repetitions (oversampling)
+ writeByte(BMX055_MAG_ADDRESS, BMX055_MAG_REP_Z, 0x16); // 15 repetitions (oversampling)
+ break;
+ case enhancedRegular:
+ // Enhanced Regular
+ writeByte(BMX055_MAG_ADDRESS, BMX055_MAG_REP_XY, 0x07); // 15 repetitions (oversampling)
+ writeByte(BMX055_MAG_ADDRESS, BMX055_MAG_REP_Z, 0x22); // 27 repetitions (oversampling)
+ break;
+ case highAccuracy:
+ // High Accuracy
+ writeByte(BMX055_MAG_ADDRESS, BMX055_MAG_REP_XY, 0x17); // 47 repetitions (oversampling)
+ writeByte(BMX055_MAG_ADDRESS, BMX055_MAG_REP_Z, 0x51); // 83 repetitions (oversampling)
+ break;
+ }
+
+ // get sensor resolutions, only need to do this once
+ getAres();
+ getGres();
+ // magnetometer resolution is 1 microTesla/16 counts or 1/1.6 milliGauss/count
+ mRes = 1./1.6;
+
+ trim(); // read the magnetometer calibration data
+
+ fastcompaccelBMX055(accelBias);
+ magcalBMX055(magBias);
+ // TODO: see magcalBMX055(): 128 samples * 105ms = 13.44s
+ // So far, magnetometer bias is calculated and subtracted here manually, should construct an algorithm to do it automatically
+ // like the gyro and accelerometer biases
+ // magBias[0] = -5.; // User environmental x-axis correction in milliGauss
+ // magBias[1] = -95.; // User environmental y-axis correction in milliGauss
+ // magBias[2] = -260.; // User environmental z-axis correction in milliGauss
+
+ }
+
+ // Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
+ // (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
+ // which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-based estimate of absolute
+ // device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
+ // The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
+ // but is much less computationally intensive
+ void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
+ {
+ float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
+ float norm;
+ float hx, hy, _2bx, _2bz;
+ float s1, s2, s3, s4;
+ float qDot1, qDot2, qDot3, qDot4;
+
+ // Auxiliary variables to avoid repeated arithmetic
+ float _2q1mx;
+ float _2q1my;
+ float _2q1mz;
+ float _2q2mx;
+ float _4bx;
+ float _4bz;
+ float _2q1 = 2.0f * q1;
+ float _2q2 = 2.0f * q2;
+ float _2q3 = 2.0f * q3;
+ float _2q4 = 2.0f * q4;
+ float _2q1q3 = 2.0f * q1 * q3;
+ float _2q3q4 = 2.0f * q3 * q4;
+ float q1q1 = q1 * q1;
+ float q1q2 = q1 * q2;
+ float q1q3 = q1 * q3;
+ float q1q4 = q1 * q4;
+ float q2q2 = q2 * q2;
+ float q2q3 = q2 * q3;
+ float q2q4 = q2 * q4;
+ float q3q3 = q3 * q3;
+ float q3q4 = q3 * q4;
+ float q4q4 = q4 * q4;
+
+ // Normalise accelerometer measurement
+ norm = sqrt(ax * ax + ay * ay + az * az);
+ if (norm == 0.0f) return; // handle NaN
+ norm = 1.0f/norm;
+ ax *= norm;
+ ay *= norm;
+ az *= norm;
+
+ // Normalise magnetometer measurement
+ norm = sqrt(mx * mx + my * my + mz * mz);
+ if (norm == 0.0f) return; // handle NaN
+ norm = 1.0f/norm;
+ mx *= norm;
+ my *= norm;
+ mz *= norm;
+
+ // Reference direction of Earth's magnetic field
+ _2q1mx = 2.0f * q1 * mx;
+ _2q1my = 2.0f * q1 * my;
+ _2q1mz = 2.0f * q1 * mz;
+ _2q2mx = 2.0f * q2 * mx;
+ hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4;
+ hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4;
+ _2bx = sqrt(hx * hx + hy * hy);
+ _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4;
+ _4bx = 2.0f * _2bx;
+ _4bz = 2.0f * _2bz;
+
+ // Gradient decent algorithm corrective step
+ s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
+ s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
+ s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
+ s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
+ norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4); // normalise step magnitude
+ norm = 1.0f/norm;
+ s1 *= norm;
+ s2 *= norm;
+ s3 *= norm;
+ s4 *= norm;
+
+ // Compute rate of change of quaternion
+ qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1;
+ qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2;
+ qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3;
+ qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4;
+
+ // Integrate to yield quaternion
+ q1 += qDot1 * deltat;
+ q2 += qDot2 * deltat;
+ q3 += qDot3 * deltat;
+ q4 += qDot4 * deltat;
+ norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion
+ norm = 1.0f/norm;
+ q[0] = q1 * norm;
+ q[1] = q2 * norm;
+ q[2] = q3 * norm;
+ q[3] = q4 * norm;
+
+ }
+
+ /** Get raw 9-axis motion sensor readings (accel/gyro/compass).
+ * @param ax 12-bit signed integer container for accelerometer X-axis value
+ * @param ay 12-bit signed integer container for accelerometer Y-axis value
+ * @param az 12-bit signed integer container for accelerometer Z-axis value
+ * @param gx 16-bit signed integer container for gyroscope X-axis value
+ * @param gy 16-bit signed integer container for gyroscope Y-axis value
+ * @param gz 16-bit signed integer container for gyroscope Z-axis value
+ * @param mx 13-bit signed integer container for magnetometer X-axis value
+ * @param my 13-bit signed integer container for magnetometer Y-axis value
+ * @param mz 15-bit signed integer container for magnetometer Z-axis value
+ * @see getAcceleration()
+ * @see getRotation()
+ * @see getMag()
+ */
+ void getRaw9( int16_t* ax, int16_t* ay, int16_t* az,
+ int16_t* gx, int16_t* gy, int16_t* gz,
+ int16_t* mx, int16_t* my, int16_t* mz)
+ {
+ uint8_t rawData[8]; // x/y/z MSB and LSB registers raw data stored here
+
+ // Read the six raw data registers into data array
+ // Turn the MSB and LSB into a signed 12-bit value
+ readBytes(BMX055_ACC_ADDRESS, BMX055_ACC_D_X_LSB, 6, rawData);
+ *ax = (int16_t)(((int16_t)rawData[1] << 8) | rawData[0]) >> 4;
+ *ay = (int16_t)(((int16_t)rawData[3] << 8) | rawData[2]) >> 4;
+ *az = (int16_t)(((int16_t)rawData[5] << 8) | rawData[4]) >> 4;
+
+ // Read the six raw data registers sequentially into data array
+ // Turn the MSB and LSB into a signed 16-bit value
+ readBytes(BMX055_GYRO_ADDRESS, BMX055_GYRO_RATE_X_LSB, 6, rawData);
+ *gx = (int16_t)(((int16_t)rawData[1] << 8) | rawData[0]);
+ *gy = (int16_t)(((int16_t)rawData[3] << 8) | rawData[2]);
+ *gz = (int16_t)(((int16_t)rawData[5] << 8) | rawData[4]);
+
+ // Read the six raw data registers into data array
+ // 13-bit signed integer for x-axis and y-axis field
+ // 15-bit signed integer for z-axis field
+ readBytes(BMX055_MAG_ADDRESS, BMX055_MAG_XOUT_LSB, 8, rawData);
+ if(rawData[6] & 0x01) // Check if data ready status bit is set
+ {
+ *mx = (int16_t)(((int16_t)rawData[1] << 8) | rawData[0]) >> 3;
+ *my = (int16_t)(((int16_t)rawData[3] << 8) | rawData[2]) >> 3;
+ *mz = (int16_t)(((int16_t)rawData[5] << 8) | rawData[4]) >> 1;
+ }
+ }
+
+ /** Get raw 9-axis motion sensor readings (accel/gyro/compass).
+ * @param ax accelerometer X-axis value (g's)
+ * @param ay accelerometer Y-axis value (g's)
+ * @param az accelerometer Z-axis value (g's)
+ * @param gx gyroscope X-axis value (degrees per second)
+ * @param gy gyroscope Y-axis value (degrees per second)
+ * @param gz gyroscope Z-axis value (degrees per second)
+ * @param mx magnetometer X-axis value (milliGauss)
+ * @param my magnetometer Y-axis value (milliGauss)
+ * @param mz magnetometer Z-axis value (milliGauss)
+ * @see getAcceleration()
+ * @see getRotation()
+ * @see getMag()
+ */
+ void getMotion9( float* ax, float* ay, float* az,
+ float* gx, float* gy, float* gz,
+ float* mx, float* my, float* mz)
+ {
+ int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output
+ int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output
+ int16_t magCount[3]; // Stores the 13/15-bit signed magnetometer sensor output
+
+ // Read the x/y/z raw values
+ readAccelData(accelCount);
+
+ // Calculate the accleration value into actual g's
+ // get actual g value, this depends on scale being set
+ *ax = (float)accelCount[0]*aRes; // + accelBias[0];
+ *ay = (float)accelCount[1]*aRes; // + accelBias[1];
+ *az = (float)accelCount[2]*aRes; // + accelBias[2];
+
+
+ // Read the x/y/z raw values
+ readGyroData(gyroCount);
+
+ // Calculate the gyro value into actual degrees per second
+ // get actual gyro value, this depends on scale being set
+ *gx = (float)gyroCount[0]*gRes;
+ *gy = (float)gyroCount[1]*gRes;
+ *gz = (float)gyroCount[2]*gRes;
+
+
+ // Read the x/y/z raw values
+ readMagData(magCount);
+
+ // Calculate the magnetometer values in milliGauss
+ // Temperature-compensated magnetic field is in 16 LSB/microTesla
+ // get actual magnetometer value, this depends on scale being set
+ *mx = (float)magCount[0]*mRes - magBias[0];
+ *my = (float)magCount[1]*mRes - magBias[1];
+ *mz = (float)magCount[2]*mRes - magBias[2];
+ }
+
+ void runAHRS(float mdeltat, float local_declination = LOCAL_DECLINATION)
+ {
+ float ax, ay, az, gx, gy, gz, mx, my, mz;
+
+ getMotion9(&ax, &ay, &az, &gx, &gy, &gz, &mx, &my, &mz);
+ deltat = mdeltat;
+
+ // Sensors x (y)-axis of the accelerometer is aligned with the -y (x)-axis of the magnetometer;
+ // the magnetometer z-axis (+ up) is aligned with z-axis (+ up) of accelerometer and gyro!
+ // We have to make some allowance for this orientation mismatch in feeding the output to the quaternion filter.
+ // For the BMX-055, we have chosen a magnetic rotation that keeps the sensor forward along the x-axis just like
+ // in the MPU9250 sensor. This rotation can be modified to allow any convenient orientation convention.
+ // This is ok by aircraft orientation standards!
+ // Pass gyro rate as rad/s
+ //MadgwickQuaternionUpdate(ax, ay, az, gx*M_PI/180.0f, gy*M_PI/180.0f, gz*M_PI/180.0f, -my, mx, mz);
+ MadgwickQuaternionUpdate(-ay, ax, az, -gy*M_PI/180.0f, gx*M_PI/180.0f, gz*M_PI/180.0f, mx, my, mz);
+
+
+ // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
+ // In this coordinate system, the positive z-axis is down toward Earth.
+ // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
+ // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
+ // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
+ // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
+ // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
+ // applied in the correct order which for this configuration is yaw, pitch, and then roll.
+ // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
+ yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
+ pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
+ roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
+ pitch *= 180.0f / M_PI;
+ yaw *= 180.0f / M_PI;
+ yaw -= local_declination;
+ roll *= 180.0f / M_PI;
+ }
+};
+
+#endif /* BMX055_H_ */
\ No newline at end of file
