MP3 PLAYER
Dependencies: DebouncedInterrupt SDFileSystem SPI_TFT_ILI9341 ST_401_84MHZ TFT_fonts VS1053 mbed
Fork of B18_MP3_PLAYER by
Revision 3:c58fe0902900, committed 2015-12-09
- Comitter:
- PKnevermind
- Date:
- Wed Dec 09 08:34:40 2015 +0000
- Parent:
- 2:c4b198e96ded
- Commit message:
- B18_MP3_PLAYER
Changed in this revision
diff -r c4b198e96ded -r c58fe0902900 MPU9250.h --- a/MPU9250.h Tue Dec 08 19:52:20 2015 +0000 +++ b/MPU9250.h Wed Dec 09 08:34:40 2015 +0000 @@ -206,7 +206,7 @@ DigitalOut myled(LED1); // Pin definitions -//int intPin = 3; // These can be changed, 2 and 3 are the Arduinos ext int pins +int intPin = 2; // These can be changed, 2 and 3 are the Arduinos ext int pins int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output
diff -r c4b198e96ded -r c58fe0902900 VS1053.lib --- a/VS1053.lib Tue Dec 08 19:52:20 2015 +0000 +++ b/VS1053.lib Wed Dec 09 08:34:40 2015 +0000 @@ -1,1 +1,1 @@ -https://developer.mbed.org/teams/FRA221_B18/code/VS1053/#6f21eae5f456 +https://developer.mbed.org/teams/FRA221_B18/code/VS1053/#934d5e72990a
diff -r c4b198e96ded -r c58fe0902900 main.cpp --- a/main.cpp Tue Dec 08 19:52:20 2015 +0000 +++ b/main.cpp Wed Dec 09 08:34:40 2015 +0000 @@ -1,16 +1,7 @@ #include "mbed.h" #include "player.h" #include "DebouncedInterrupt.h" -//#include "MPU9250.h" -#include "SPI_TFT_ILI9341.h" -#include "stdio.h" -#include "string" -#include "Arial12x12.h" -#include "Arial24x23.h" -#include "Arial28x28.h" -#include "font_big.h" -DigitalIn Mode(A5); extern char list[20][50]; //song list extern unsigned char vlume; //vlume @@ -20,297 +11,42 @@ extern playerStatetype playerState; Serial pc(SERIAL_TX, SERIAL_RX); + Player player; DebouncedInterrupt KEY_PS(D3); InterruptIn KEY_Next(D4); -extern unsigned char p1[]; -extern unsigned char p2[]; -extern unsigned char p3[]; -int mark=10,list_nowplay=0; -SPI_TFT_ILI9341 TFT(PA_7,PA_6,PA_5,PA_13,PA_14,PA_15,"TFT"); // mosi, miso, sclk, cs, reset, dc -float sum = 0; -uint32_t sumCount = 0; -char buffer[14]; -uint8_t dato_leido[2]; -uint8_t whoami; + void riseFlip() { - if(playerState == PS_PAUSE)playerState = PS_PLAY; - else playerState = PS_PAUSE; - //a=!a; -} - -void letplay() -{ - TFT.cls(); - TFT.foreground(White); - TFT.background(Black); - TFT.cls(); - TFT.set_orientation(1); - TFT.Bitmap(60,1,200,173,p1); -} - -void angry() -{ - TFT.cls(); - TFT.foreground(White); - TFT.background(Black); - TFT.cls(); - TFT.set_orientation(1); - TFT.Bitmap(60,1,200,173,p2); -} - -void cry() -{ - TFT.cls(); - TFT.foreground(White); - TFT.background(Black); - TFT.cls(); - TFT.set_orientation(1); - TFT.Bitmap(60,1,200,173,p3); -} - -void print_list() -{ - int i=0,j=0; - TFT.claim(stdout); - TFT.cls(); - TFT.foreground(White); - TFT.background(Black); - TFT.cls(); - - TFT.set_orientation(3); - TFT.set_font((unsigned char*) Arial28x28); - TFT.locate(150,120); - TFT.printf("Manual Mode:"); - TFT.cls(); - TFT.set_orientation(3); - TFT.set_font((unsigned char*) Arial12x12); - //list[5]='\0'; - do { - TFT.locate(5,j); - TFT.printf("%2d . %s\r\n", i,list[i]); - i++; - j=j+23; - } while(i<5); - + if(player.mode()) { + if(playerState == PS_PAUSE) playerState = PS_PLAY; + else playerState = PS_PAUSE; + } } void Next() { - playerState = PS_STOP; + if(player.mode())playerState = PS_STOP; + //player.select_list(); } + int main() { + player.setup(); KEY_PS.attach(&riseFlip ,IRQ_RISE ,100); KEY_Next.fall(&Next); - if(Mode.read() == 0) { - - player.begin(); - print_list(); - while(1) { - player.playFile(list[index]); - } + player.begin(); + if(player.mode())player.print_list(); + else player.letplay(); + while(1) { + player.playFile(list[index]); } + //int i = player.getGX(); + //printf("%d\n",i); } -/*//___ Set up I2C: use fast (400 kHz) I2C ___ -i2c.frequency(400000); -pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock); - -t.start(); // Timer ON - -// Read the WHO_AM_I register, this is a good test of communication -whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); - -pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x71\n\r"); -if (I2Cstate != 0) // error on I2C - pc.printf("I2C failure while reading WHO_AM_I register"); - -if (whoami == 0x71) // WHO_AM_I should always be 0x71 -{ - pc.printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami); - pc.printf("MPU9250 is online...\n\r"); - sprintf(buffer, "0x%x", whoami); - wait(1); - - mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration - - mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values (accelerometer and gyroscope self test) - pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]); - pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]); - pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]); - pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]); - pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]); - pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]); - - mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometer, load biases in bias registers - pc.printf("x gyro bias = %f\n\r", gyroBias[0]); - pc.printf("y gyro bias = %f\n\r", gyroBias[1]); - pc.printf("z gyro bias = %f\n\r", gyroBias[2]); - pc.printf("x accel bias = %f\n\r", accelBias[0]); - pc.printf("y accel bias = %f\n\r", accelBias[1]); - pc.printf("z accel bias = %f\n\r", accelBias[2]); - wait(2); - - // Initialize device for active mode read of acclerometer, gyroscope, and temperature - mpu9250.initMPU9250(); - pc.printf("MPU9250 initialized for active data mode....\n\r"); - - // Initialize device for active mode read of magnetometer, 16 bit resolution, 100Hz. - mpu9250.initAK8963(magCalibration); - pc.printf("AK8963 initialized for active data mode....\n\r"); - pc.printf("Accelerometer full-scale range = %f g\n\r", 2.0f*(float)(1<<Ascale)); - pc.printf("Gyroscope full-scale range = %f deg/s\n\r", 250.0f*(float)(1<<Gscale)); - if(Mscale == 0) pc.printf("Magnetometer resolution = 14 bits\n\r"); - if(Mscale == 1) pc.printf("Magnetometer resolution = 16 bits\n\r"); - if(Mmode == 2) pc.printf("Magnetometer ODR = 8 Hz\n\r"); - if(Mmode == 6) pc.printf("Magnetometer ODR = 100 Hz\n\r"); - wait(1); - } - - else // Connection failure - { - pc.printf("Could not connect to MPU9250: \n\r"); - pc.printf("%#x \n", whoami); - sprintf(buffer, "WHO_AM_I 0x%x", whoami); - while(1) ; // Loop forever if communication doesn't happen - } - - mpu9250.getAres(); // Get accelerometer sensitivity - mpu9250.getGres(); // Get gyro sensitivity - mpu9250.getMres(); // Get magnetometer sensitivity - pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes); - pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes); - pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes); - magbias[0] = +470.; // User environmental x-axis correction in milliGauss, should be automatically calculated - magbias[1] = +120.; // User environmental x-axis correction in milliGauss - magbias[2] = +125.; // User environmental x-axis correction in milliGauss - - while(1) { - - // If intPin goes high, all data registers have new data - if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) { // On interrupt, check if data ready interrupt - - mpu9250.readAccelData(accelCount); // Read the x/y/z adc values - // Now we'll calculate the accleration value into actual g's - if (I2Cstate != 0) //error on I2C - pc.printf("I2C error ocurred while reading accelerometer data. I2Cstate = %d \n\r", I2Cstate); - else{ // I2C read or write ok - I2Cstate = 1; - ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set - ay = (float)accelCount[1]*aRes - accelBias[1]; - az = (float)accelCount[2]*aRes - accelBias[2]; - } - - mpu9250.readGyroData(gyroCount); // Read the x/y/z adc values - // Calculate the gyro value into actual degrees per second - if (I2Cstate != 0) //error on I2C - pc.printf("I2C error ocurred while reading gyrometer data. I2Cstate = %d \n\r", I2Cstate); - else{ // I2C read or write ok - I2Cstate = 1; - gx = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set - gy = (float)gyroCount[1]*gRes - gyroBias[1]; - gz = (float)gyroCount[2]*gRes - gyroBias[2]; - } - - mpu9250.readMagData(magCount); // Read the x/y/z adc values - // Calculate the magnetometer values in milliGauss - // Include factory calibration per data sheet and user environmental corrections - if (I2Cstate != 0) //error on I2C - pc.printf("I2C error ocurred while reading magnetometer data. I2Cstate = %d \n\r", I2Cstate); - else{ // I2C read or write ok - I2Cstate = 1; - mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0]; // get actual magnetometer value, this depends on scale being set - my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1]; - mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2]; - } - - mpu9250.getCompassOrientation(orientation); - } - - Now = t.read_us(); - deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update - lastUpdate = Now; - sum += deltat; - sumCount++; - - // Pass gyro rate as rad/s - // mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); - mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); - - - // Serial print and/or display at 1.5 s rate independent of data rates - delt_t = t.read_ms() - count; - if (delt_t > 1500) { // update LCD once per half-second independent of read rate - pc.printf("ax = %f", 1000*ax); - pc.printf(" ay = %f", 1000*ay); - pc.printf(" az = %f mg\n\r", 1000*az); - pc.printf("gx = %f", gx); - pc.printf(" gy = %f", gy); - pc.printf(" gz = %f deg/s\n\r", gz); - pc.printf("mx = %f", mx); - pc.printf(" my = %f", my); - pc.printf(" mz = %f mG\n\r", mz); - - - tempCount = mpu9250.readTempData(); // Read the adc values - if (I2Cstate != 0) //error on I2C - pc.printf("I2C error ocurred while reading sensor temp. I2Cstate = %d \n\r", I2Cstate); - else{ // I2C read or write ok - I2Cstate = 1; - temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade - pc.printf(" temperature = %f C\n\r", temperature); - } - pc.printf("q0 = %f\n\r", q[0]); - pc.printf("q1 = %f\n\r", q[1]); - pc.printf("q2 = %f\n\r", q[2]); - pc.printf("q3 = %f\n\r", q[3]); - - pc.printf("Compass orientation: %f\n", orientation[0]); - - - - - // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation. - // In this coordinate system, the positive z-axis is down toward Earth. - // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise. - // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative. - // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll. - // These arise from the definition of the homogeneous rotation matrix constructed from quaternions. - // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be - // applied in the correct order which for this configuration is yaw, pitch, and then roll. - // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links. - - yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]); - pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2])); - roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]); - pitch *= 180.0f / PI; - yaw *= 180.0f / PI; - yaw -= 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04 - roll *= 180.0f / PI; - - /* - pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll); - pc.printf("average rate = %f\n\r", (float) sumCount/sum); - */ - - -/*myled= !myled; -count = t.read_ms(); - -if(count > 1<<21) { - t.start(); // start the timer over again if ~30 minutes has passed - count = 0; - deltat= 0; - lastUpdate = t.read_us(); -} -sum = 0; -sumCount = 0; -} -}*/
diff -r c4b198e96ded -r c58fe0902900 main11.h --- a/main11.h Tue Dec 08 19:52:20 2015 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,229 +0,0 @@ -/***** - Algorithm based on MPU-9250_Snowda program. It has been modified by Josué Olmeda Castelló for imasD Tecnología. - - This algorithm calibrates and reads data from accelerometer, gyroscope, magnetometer and the - internal temperature sensor. The lecture is made each time has a new mesured value (both gyro and accel data). - A comunication with a computer is made using serial interface. The user can see the data measured with 1 second update rate. - - This algorithm uses the STM32L152 development board and the MPU-9250 9-axis InvenSense movement sensor. The communication - between both devices is made through I2C serial interface. - - AD0 should be connected to GND. - - 04/05/2015 -*****/ - -#include "mbed.h" -#include "MPU9250.h" - - -Serial pc(SERIAL_TX, SERIAL_RX); // Huyperterminal default config: 9600 bauds, 8-bit data, 1 stop bit, no parity -MPU9250 mpu9250; -Timer t; -//DigitalOut myled(LED1); - -float sum = 0; -uint32_t sumCount = 0; -char buffer[14]; -uint8_t dato_leido[2]; -uint8_t whoami; - -int main() { - - //___ Set up I2C: use fast (400 kHz) I2C ___ - i2c.frequency(400000); - - pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock); - - t.start(); // Timer ON - - // Read the WHO_AM_I register, this is a good test of communication - whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); - - pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x71\n\r"); - if (I2Cstate != 0) // error on I2C - pc.printf("I2C failure while reading WHO_AM_I register"); - - if (whoami == 0x71) // WHO_AM_I should always be 0x71 - { - pc.printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami); - pc.printf("MPU9250 is online...\n\r"); - sprintf(buffer, "0x%x", whoami); - wait(1); - - mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration - - mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values (accelerometer and gyroscope self test) - pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]); - pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]); - pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]); - pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]); - pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]); - pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]); - - mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometer, load biases in bias registers - pc.printf("x gyro bias = %f\n\r", gyroBias[0]); - pc.printf("y gyro bias = %f\n\r", gyroBias[1]); - pc.printf("z gyro bias = %f\n\r", gyroBias[2]); - pc.printf("x accel bias = %f\n\r", accelBias[0]); - pc.printf("y accel bias = %f\n\r", accelBias[1]); - pc.printf("z accel bias = %f\n\r", accelBias[2]); - wait(2); - - // Initialize device for active mode read of acclerometer, gyroscope, and temperature - mpu9250.initMPU9250(); - pc.printf("MPU9250 initialized for active data mode....\n\r"); - - // Initialize device for active mode read of magnetometer, 16 bit resolution, 100Hz. - mpu9250.initAK8963(magCalibration); - pc.printf("AK8963 initialized for active data mode....\n\r"); - pc.printf("Accelerometer full-scale range = %f g\n\r", 2.0f*(float)(1<<Ascale)); - pc.printf("Gyroscope full-scale range = %f deg/s\n\r", 250.0f*(float)(1<<Gscale)); - if(Mscale == 0) pc.printf("Magnetometer resolution = 14 bits\n\r"); - if(Mscale == 1) pc.printf("Magnetometer resolution = 16 bits\n\r"); - if(Mmode == 2) pc.printf("Magnetometer ODR = 8 Hz\n\r"); - if(Mmode == 6) pc.printf("Magnetometer ODR = 100 Hz\n\r"); - wait(1); - } - - else // Connection failure - { - pc.printf("Could not connect to MPU9250: \n\r"); - pc.printf("%#x \n", whoami); - sprintf(buffer, "WHO_AM_I 0x%x", whoami); - while(1) ; // Loop forever if communication doesn't happen - } - - mpu9250.getAres(); // Get accelerometer sensitivity - mpu9250.getGres(); // Get gyro sensitivity - mpu9250.getMres(); // Get magnetometer sensitivity - pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes); - pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes); - pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes); - magbias[0] = +470.; // User environmental x-axis correction in milliGauss, should be automatically calculated - magbias[1] = +120.; // User environmental x-axis correction in milliGauss - magbias[2] = +125.; // User environmental x-axis correction in milliGauss - - while(1) { - - // If intPin goes high, all data registers have new data - if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) { // On interrupt, check if data ready interrupt - - mpu9250.readAccelData(accelCount); // Read the x/y/z adc values - // Now we'll calculate the accleration value into actual g's - if (I2Cstate != 0) //error on I2C - pc.printf("I2C error ocurred while reading accelerometer data. I2Cstate = %d \n\r", I2Cstate); - else{ // I2C read or write ok - I2Cstate = 1; - ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set - ay = (float)accelCount[1]*aRes - accelBias[1]; - az = (float)accelCount[2]*aRes - accelBias[2]; - } - - mpu9250.readGyroData(gyroCount); // Read the x/y/z adc values - // Calculate the gyro value into actual degrees per second - if (I2Cstate != 0) //error on I2C - pc.printf("I2C error ocurred while reading gyrometer data. I2Cstate = %d \n\r", I2Cstate); - else{ // I2C read or write ok - I2Cstate = 1; - gx = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set - gy = (float)gyroCount[1]*gRes - gyroBias[1]; - gz = (float)gyroCount[2]*gRes - gyroBias[2]; - } - - mpu9250.readMagData(magCount); // Read the x/y/z adc values - // Calculate the magnetometer values in milliGauss - // Include factory calibration per data sheet and user environmental corrections - if (I2Cstate != 0) //error on I2C - pc.printf("I2C error ocurred while reading magnetometer data. I2Cstate = %d \n\r", I2Cstate); - else{ // I2C read or write ok - I2Cstate = 1; - mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0]; // get actual magnetometer value, this depends on scale being set - my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1]; - mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2]; - } - - mpu9250.getCompassOrientation(orientation); - } - - Now = t.read_us(); - deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update - lastUpdate = Now; - sum += deltat; - sumCount++; - - // Pass gyro rate as rad/s - // mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); - mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); - - - // Serial print and/or display at 1.5 s rate independent of data rates - delt_t = t.read_ms() - count; - if (delt_t > 1500) { // update LCD once per half-second independent of read rate - pc.printf("ax = %f", 1000*ax); - pc.printf(" ay = %f", 1000*ay); - pc.printf(" az = %f mg\n\r", 1000*az); - pc.printf("gx = %f", gx); - pc.printf(" gy = %f", gy); - pc.printf(" gz = %f deg/s\n\r", gz); - pc.printf("mx = %f", mx); - pc.printf(" my = %f", my); - pc.printf(" mz = %f mG\n\r", mz); - - - tempCount = mpu9250.readTempData(); // Read the adc values - if (I2Cstate != 0) //error on I2C - pc.printf("I2C error ocurred while reading sensor temp. I2Cstate = %d \n\r", I2Cstate); - else{ // I2C read or write ok - I2Cstate = 1; - temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade - pc.printf(" temperature = %f C\n\r", temperature); - } - pc.printf("q0 = %f\n\r", q[0]); - pc.printf("q1 = %f\n\r", q[1]); - pc.printf("q2 = %f\n\r", q[2]); - pc.printf("q3 = %f\n\r", q[3]); - - pc.printf("Compass orientation: %f\n", orientation[0]); - - - - - // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation. - // In this coordinate system, the positive z-axis is down toward Earth. - // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise. - // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative. - // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll. - // These arise from the definition of the homogeneous rotation matrix constructed from quaternions. - // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be - // applied in the correct order which for this configuration is yaw, pitch, and then roll. - // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links. - - yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]); - pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2])); - roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]); - pitch *= 180.0f / PI; - yaw *= 180.0f / PI; - yaw -= 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04 - roll *= 180.0f / PI; - - /* - pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll); - pc.printf("average rate = %f\n\r", (float) sumCount/sum); - */ - - - myled= !myled; - count = t.read_ms(); - - if(count > 1<<21) { - t.start(); // start the timer over again if ~30 minutes has passed - count = 0; - deltat= 0; - lastUpdate = t.read_us(); - } - sum = 0; - sumCount = 0; - } - } -} \ No newline at end of file