sad

Dependencies:   OneWire

DS1820.cpp

Committer:
brose
Date:
19 months ago
Revision:
26:ab2080dd9e46
Parent:
25:b78d40247b97

File content as of revision 26:ab2080dd9e46:

/*
 * Dallas' DS1820 family temperature sensor.
 * This library depends on the OneWire library (Dallas' 1-Wire bus protocol implementation)
 * available at <http://developer.mbed.org/users/hudakz/code/OneWire/>
 *
 * Example of use:
 *
 * Single sensor.
 *
 * #include "mbed.h"
 * #include "DS1820.h"
 *
 * Serial      pc(USBTX, USBRX);
 * DigitalOut  led(LED1);
 * OneWire     oneWire(D8);    // substitute D8 with actual mbed pin name connected 1-wire bus
 * float       temp = 0;
 * int         result = 0;
 *
 * int main()
 * {
 *     pc.printf("\r\n--Starting--\r\n");
 *     if (ds1820.begin()) {
 *         while (1) {
 *             ds1820.startConversion();   // start temperature conversion from analog to digital
 *             ThisThread::sleep_for(1000ms);// let DS1820 complete the temperature conversion
 *             result = ds1820.read(temp);   // read temperature from DS1820 and perform cyclic redundancy check (CRC)
 *             switch (result) {
 *                 case 0:                   // no errors -> 'temp' contains the value of measured temperature
 *                     pc.printf("temp = %3.1f%cC\r\n", temp, 176);
 *                     break;
 *
 *                 case 1:                   // no sensor present -> 'temp' is not updated
 *                     pc.printf("no sensor present\n\r");
 *                     break;
 *
 *                 case 2:                   // CRC error -> 'temp' is not updated
 *                     pc.printf("CRC error\r\n");
 *             }
 *
 *             led = !led;
 *         }
 *     }
 *     else
 *         pc.printf("No DS1820 sensor found!\r\n");
 * }
 *
 *
 * More sensors connected to the same 1-wire bus.
 *
 * #include "mbed.h"
 * #include "DS1820.h"
 *
 * #define     SENSORS_COUNT   64      // number of DS1820 sensors to be connected to the 1-wire bus (max 256)
 *
 * Serial      pc(USBTX, USBRX);
 * DigitalOut  led(LED1);
 * OneWire     oneWire(D8);            // substitute D8 with actual mbed pin name connected to the DS1820 data pin
 * DS1820*     ds1820[SENSORS_COUNT];
 * int         sensors_found = 0;      // counts the actually found DS1820 sensors
 * float       temp = 0;
 * int         result = 0;
 *
 * int main() {
 *     int i = 0;
 *
 *     pc.printf("\r\n Starting \r\n");
 *     //Enumerate (i.e. detect) DS1820 sensors on the 1-wire bus
 *     for(i = 0; i < SENSORS_COUNT; i++) {
 *         ds1820[i] = new DS1820(&oneWire);
 *         if(!ds1820[i]->begin()) {
 *             delete ds1820[i];
 *             break;
 *         }
 *     }
 *
 *     sensors_found = i;
 *
 *     if (sensors_found == 0) {
 *         pc.printf("No DS1820 sensor found!\r\n");
 *         return -1;
 *     }
 *     else
 *         pc.printf("Found %d sensors.\r\n", sensors_found);
 *
 *     while(1) {
 *         pc.printf("-------------------\r\n");
 *         for(i = 0; i < sensors_found; i++)
 *             ds1820[i]->startConversion();   // start temperature conversion from analog to digital
 *         ThisThread::sleep_for(1000ms);      // let DS1820s complete the temperature conversion
 *         for(int i = 0; i < sensors_found; i++) {
 *             if(ds1820[i]->isPresent())
 *                 pc.printf("temp[%d] = %3.1f%cC\r\n", i, ds1820[i]->read(), 176);     // read temperature
 *         }
 *     }
 * }
 *
 */
#include "DS1820.h"

//u#define DEBUG   1

//* Initializing static members
uint8_t DS1820::    _lastAddr[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };

/**
 * @brief   Constructs a generic DS1820 sensor
 * @note    begin() must be called to detect and initialize the actual model
 * @param   gpioPin: Name of the GPIO pin
 * @retval
 */
DS1820::DS1820(PinName gpioPin, int samplePoint_us /*=13*/ )
{
    _oneWire = new OneWire(gpioPin, samplePoint_us);
    _present = false;
    _model_s = false;
}

/**
 * @brief   Constructs a generic DS1820 sensor
 * @note    begin() must be called to detect and initialize the actual model
 * @param   txPin:  UART's Tx pin
 * @param   rxPin:  UART's Rx pin
 * @retval
 */
DS1820::DS1820(PinName txPin, PinName rxPin)
{
    _oneWire = new OneWire(txPin, rxPin);
    _present = false;
    _model_s = false;
}

/**
 * @brief   Constructs a generic DS1820 sensor
 * @note    begin() must be called to detect and initialize the actual model
 * @param   pin: Name of data pin
 * @retval
 */
DS1820::DS1820(OneWire* oneWire) :
    _oneWire(oneWire)
{
    _present = false;
    _model_s = false;
}

/**
 * @brief   Detects and initializes the actual DS1820 model
 * @note
 * @param
 * @retval  true:   if a DS1820 family sensor was detected and initialized
            false:  otherwise
 */
bool DS1820::begin(void)
{
#if DEBUG
    printf("lastAddr =");
    for (uint8_t i = 0; i < 8; i++) {
        printf(" %x", _lastAddr[i]);
    }

    printf("\r\n");
#endif
    if (!_oneWire->search(_lastAddr))
    {
#if DEBUG
        printf("No addresses.\r\n");
#endif
        _oneWire->reset_search();
#if MBED_MAJOR_VERSION == 2
        wait_ms(250);
#else
        ThisThread::sleep_for(250ms);
        //wait_ms(250);
#endif
        return false;
    }

    for (int i = 0; i < 8; i++)
        _addr[i] = _lastAddr[i];

#if DEBUG
    printf("ROM =");
    for (uint8_t i = 0; i < 8; i++) {
        printf(" %x", _addr[i]);
    }

    printf("\r\n");
#endif
    if (OneWire::crc8(_addr, 7) == _addr[7]) {
        _present = true;

        // the first ROM byte indicates which chip
        switch (_addr[0]) {
            case 0x10:
                _model_s = true;
    #if DEBUG
                printf("DS18S20 or old DS1820\r\n");
    #endif
                break;

            case 0x28:
                _model_s = false;
    #if DEBUG
                printf("DS18B20\r\n");
    #endif
                break;

            case 0x22:
                _model_s = false;
    #if DEBUG
                printf("DS1822\r\n");
    #endif
                break;

            default:
                _present = false;
    #if DEBUG
                printf("Device doesn't belong to the DS1820 family\r\n");
    #endif
                return false;
        }

        return true;
    }
    else
    {
#if DEBUG
        printf("Invalid CRC!\r\n");
#endif
        return false;
    }
}

/**
 * @brief   Informs about presence of a DS1820 sensor.
 * @note    begin() shall be called before using this function
 *          if a generic DS1820 instance was created by the user.
 *          No need to call begin() for a specific DS1820 instance.
 * @param
 * @retval  true:   when a DS1820 sensor is present
 *          false:  otherwise
 */
bool DS1820::isPresent(void)
{
    return _present;
}

/**
 * @brief   Sets temperature-to-digital conversion resolution.
 * @note    The configuration register allows the user to set the resolution
 *          of the temperature-to-digital conversion to 9, 10, 11, or 12 bits.
 *          Defaults to 12-bit resolution for DS18B20.
 *          DS18S20 allows only 9-bit resolution.
 * @param   res:    Resolution of the temperature-to-digital conversion in bits.
 * @retval
 */
void DS1820::setResolution(uint8_t res)
{
    // keep resolution within limits

    if (res > 12)
        res = 12;
    if (res < 9)
        res = 9;
    if (_model_s)
        res = 9;

    _oneWire->reset();
    _oneWire->select(_addr);
    _oneWire->write_byte(0xBE);      // to read Scratchpad
    for (uint8_t i = 0; i < 9; i++) // read Scratchpad bytes
        _data[i] = _oneWire->read_byte();

    _data[4] |= (res - 9) << 5;      // update configuration byte (set resolution)
    _oneWire->reset();
    _oneWire->select(_addr);
    _oneWire->write_byte(0x4E);      // to write into Scratchpad
    for (uint8_t i = 2; i < 5; i++) // write three bytes (2nd, 3rd, 4th) into Scratchpad
        _oneWire->write_byte(_data[i]);
}

/**
 * @brief   Starts temperature conversion
 * @note    The time to complete the converion depends on the selected resolution:
 *           9-bit resolution -> max conversion time = 93.75ms
 *          10-bit resolution -> max conversion time = 187.5ms
 *          11-bit resolution -> max conversion time = 375ms
 *          12-bit resolution -> max conversion time = 750ms
 * @param
 * @retval
 */
void DS1820::startConversion(void)
{
    if (_present) {
        _oneWire->reset();
        _oneWire->select(_addr);
        _oneWire->write_byte(0x44);  //start temperature conversion
    }
}

/**
 * @brief   Reads temperature from the chip's Scratchpad
 * @note
 * @param
 * @retval  Floating point temperature value
 */
float DS1820::read(void)
{
    if (_present) {
        _oneWire->reset();
        _oneWire->select(_addr);
        _oneWire->write_byte(0xBE);          // to read Scratchpad
        for (uint8_t i = 0; i < 9; i++)     // reading scratchpad registers
            _data[i] = _oneWire->read_byte();

        // Convert the raw bytes to a 16-bit unsigned value
        uint16_t*   p_word = reinterpret_cast < uint16_t * > (&_data[0]);

#if DEBUG
        printf("raw = %#x\r\n", *p_word);
#endif
        if (_model_s) {
            *p_word = *p_word << 3;         // 9-bit resolution
            if (_data[7] == 0x10) {

                // "count remain" gives full 12-bit resolution
                *p_word = (*p_word & 0xFFF0) + 12 - _data[6];
            }
        }
        else {
            uint8_t cfg = (_data[4] & 0x60); // default 12-bit resolution

            // at lower resolution, the low bits are undefined, so let's clear them
            if (cfg == 0x00)
                *p_word = *p_word &~7;      //  9-bit resolution
            else
            if (cfg == 0x20)
                *p_word = *p_word &~3;      // 10-bit resolution
            else
            if (cfg == 0x40)
                *p_word = *p_word &~1;      // 11-bit resolution
        }

        // Convert the raw bytes to a 16-bit signed fixed point value :
        // 1 sign bit, 7 integer bits, 8 fractional bits (two’s compliment
        // and the LSB of the 16-bit binary number represents 1/256th of a unit).
        *p_word = *p_word << 4;

        // Convert to floating point value
        return(toFloat(*p_word));
    }
    else
        return 0;
}

/**
 * @brief   Reads temperature from chip's scratchpad.
 * @note    Verifies data integrity by calculating cyclic redundancy check (CRC).
 *          If the calculated CRC dosn't match the one stored in chip's scratchpad register
 *          the temperature variable is not updated and CRC error code is returned.
 * @param   temp: The temperature variable to be updated by this routine.
 *                (It's passed as reference to floating point.)
 * @retval  error code:
 *              0 - no errors ('temp' contains the temperature measured)
 *              1 - sensor not present ('temp' is not updated)
 *              2 - CRC error ('temp' is not updated)
 */
uint8_t DS1820::read(float& temp)
{
    if (_present) {
        _oneWire->reset();
        _oneWire->select(_addr);
        _oneWire->write_byte(0xBE);              // to read Scratchpad
        for (uint8_t i = 0; i < 9; i++)         // reading scratchpad registers
            _data[i] = _oneWire->read_byte();

        if (_oneWire->crc8(_data, 8) != _data[8])  // if calculated CRC does not match the stored one
        {
#if DEBUG
            for (uint8_t i = 0; i < 9; i++)
                printf("data[%d]=0x%.2x\r\n", i, _data[i]);
#endif
            return 2;                           // return with CRC error
        }

        // Convert the raw bytes to a 16bit unsigned value
        uint16_t*   p_word = reinterpret_cast < uint16_t * > (&_data[0]);

#if DEBUG
        printf("raw = %#x\r\n", *p_word);
#endif
        if (_model_s) {
            *p_word = *p_word << 3;             // 9 bit resolution,  max conversion time = 750ms
            if (_data[7] == 0x10) {

                // "count remain" gives full 12 bit resolution
                *p_word = (*p_word & 0xFFF0) + 12 - _data[6];
            }

            // Convert the raw bytes to a 16bit signed fixed point value :
            // 1 sign bit, 7 integer bits, 8 fractional bits (two's compliment
            // and the LSB of the 16bit binary number represents 1/256th of a unit).
            *p_word = *p_word << 4;

            // Convert to floating point value
            temp = toFloat(*p_word);
            return 0;                           // return with no errors
        }
        else {
            uint8_t cfg = (_data[4] & 0x60);     // default 12bit resolution, max conversion time = 750ms

            // at lower resolution, the low bits are undefined, so let's clear them
            if (cfg == 0x00)
                *p_word = *p_word &~7;          //  9bit resolution, max conversion time = 93.75ms
            else
            if (cfg == 0x20)
                *p_word = *p_word &~3;          // 10bit resolution, max conversion time = 187.5ms
            else
            if (cfg == 0x40)
                *p_word = *p_word &~1;          // 11bit resolution, max conversion time = 375ms

            // Convert the raw bytes to a 16bit signed fixed point value :
            // 1 sign bit, 7 integer bits, 8 fractional bits (two's complement
            // and the LSB of the 16bit binary number represents 1/256th of a unit).
            *p_word = *p_word << 4;

            // Convert to floating point value
            temp = toFloat(*p_word);
            return 0;                           // return with no errors
        }
    }
    else
        return 1;                               // error, sensor is not present
}

/**
 * @brief   Converts a 16-bit signed fixed point value to floating point value
 * @note    The 16-bit unsigned integer represnts actually
 *          a 16-bit signed fixed point value:
 *          1 sign bit, 7 integer bits, 8 fractional bits (two’s complement
 *          and the LSB of the 16-bit binary number represents 1/256th of a unit).
 * @param   16-bit unsigned integer
 * @retval  Floating point value
 */
float DS1820::toFloat(uint16_t word)
{
    if (word & 0x8000)
        return(-float(uint16_t(~word + 1)) / 256.0f);
    else
        return(float(word) / 256.0f);
}

// new from brose
void DS1820::getAddress(char * b)
{
    //char b[20]= {};
    
    sprintf (b, "%hhx%hhx%hhx%hhx%hhx%hhx%hhx%hhx", _addr[0],_addr[1],_addr[2],_addr[3],_addr[4],_addr[5],_addr[6],_addr[7]);
        //printf(b);
    
}