Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: FFT
SDFileSystem.cpp
00001 /* mbed Microcontroller Library 00002 * Copyright (c) 2006-2012 ARM Limited 00003 * 00004 * Permission is hereby granted, free of charge, to any person obtaining a copy 00005 * of this software and associated documentation files (the "Software"), to deal 00006 * in the Software without restriction, including without limitation the rights 00007 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 00008 * copies of the Software, and to permit persons to whom the Software is 00009 * furnished to do so, subject to the following conditions: 00010 * 00011 * The above copyright notice and this permission notice shall be included in 00012 * all copies or substantial portions of the Software. 00013 * 00014 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 00015 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 00016 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 00017 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 00018 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 00019 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 00020 * SOFTWARE. 00021 */ 00022 /* Introduction 00023 * ------------ 00024 * SD and MMC cards support a number of interfaces, but common to them all 00025 * is one based on SPI. This is the one I'm implmenting because it means 00026 * it is much more portable even though not so performant, and we already 00027 * have the mbed SPI Interface! 00028 * 00029 * The main reference I'm using is Chapter 7, "SPI Mode" of: 00030 * http://www.sdcard.org/developers/tech/sdcard/pls/Simplified_Physical_Layer_Spec.pdf 00031 * 00032 * SPI Startup 00033 * ----------- 00034 * The SD card powers up in SD mode. The SPI interface mode is selected by 00035 * asserting CS low and sending the reset command (CMD0). The card will 00036 * respond with a (R1) response. 00037 * 00038 * CMD8 is optionally sent to determine the voltage range supported, and 00039 * indirectly determine whether it is a version 1.x SD/non-SD card or 00040 * version 2.x. I'll just ignore this for now. 00041 * 00042 * ACMD41 is repeatedly issued to initialise the card, until "in idle" 00043 * (bit 0) of the R1 response goes to '0', indicating it is initialised. 00044 * 00045 * You should also indicate whether the host supports High Capicity cards, 00046 * and check whether the card is high capacity - i'll also ignore this 00047 * 00048 * SPI Protocol 00049 * ------------ 00050 * The SD SPI protocol is based on transactions made up of 8-bit words, with 00051 * the host starting every bus transaction by asserting the CS signal low. The 00052 * card always responds to commands, data blocks and errors. 00053 * 00054 * The protocol supports a CRC, but by default it is off (except for the 00055 * first reset CMD0, where the CRC can just be pre-calculated, and CMD8) 00056 * I'll leave the CRC off I think! 00057 * 00058 * Standard capacity cards have variable data block sizes, whereas High 00059 * Capacity cards fix the size of data block to 512 bytes. I'll therefore 00060 * just always use the Standard Capacity cards with a block size of 512 bytes. 00061 * This is set with CMD16. 00062 * 00063 * You can read and write single blocks (CMD17, CMD25) or multiple blocks 00064 * (CMD18, CMD25). For simplicity, I'll just use single block accesses. When 00065 * the card gets a read command, it responds with a response token, and then 00066 * a data token or an error. 00067 * 00068 * SPI Command Format 00069 * ------------------ 00070 * Commands are 6-bytes long, containing the command, 32-bit argument, and CRC. 00071 * 00072 * +---------------+------------+------------+-----------+----------+--------------+ 00073 * | 01 | cmd[5:0] | arg[31:24] | arg[23:16] | arg[15:8] | arg[7:0] | crc[6:0] | 1 | 00074 * +---------------+------------+------------+-----------+----------+--------------+ 00075 * 00076 * As I'm not using CRC, I can fix that byte to what is needed for CMD0 (0x95) 00077 * 00078 * All Application Specific commands shall be preceded with APP_CMD (CMD55). 00079 * 00080 * SPI Response Format 00081 * ------------------- 00082 * The main response format (R1) is a status byte (normally zero). Key flags: 00083 * idle - 1 if the card is in an idle state/initialising 00084 * cmd - 1 if an illegal command code was detected 00085 * 00086 * +-------------------------------------------------+ 00087 * R1 | 0 | arg | addr | seq | crc | cmd | erase | idle | 00088 * +-------------------------------------------------+ 00089 * 00090 * R1b is the same, except it is followed by a busy signal (zeros) until 00091 * the first non-zero byte when it is ready again. 00092 * 00093 * Data Response Token 00094 * ------------------- 00095 * Every data block written to the card is acknowledged by a byte 00096 * response token 00097 * 00098 * +----------------------+ 00099 * | xxx | 0 | status | 1 | 00100 * +----------------------+ 00101 * 010 - OK! 00102 * 101 - CRC Error 00103 * 110 - Write Error 00104 * 00105 * Single Block Read and Write 00106 * --------------------------- 00107 * 00108 * Block transfers have a byte header, followed by the data, followed 00109 * by a 16-bit CRC. In our case, the data will always be 512 bytes. 00110 * 00111 * +------+---------+---------+- - - -+---------+-----------+----------+ 00112 * | 0xFE | data[0] | data[1] | | data[n] | crc[15:8] | crc[7:0] | 00113 * +------+---------+---------+- - - -+---------+-----------+----------+ 00114 */ 00115 #include "SDFileSystem.h" 00116 #include "mbed_debug.h" 00117 00118 #define SD_COMMAND_TIMEOUT 5000 00119 00120 #define SD_DBG 0 00121 00122 SDFileSystem::SDFileSystem(PinName mosi, PinName miso, PinName sclk, PinName cs, const char* name) : 00123 FATFileSystem(name), _spi(mosi, miso, sclk), _cs(cs), _is_initialized(0) { 00124 _cs = 1; 00125 00126 // Set default to 100kHz for initialisation and 1MHz for data transfer 00127 _init_sck = 100000; 00128 _transfer_sck = 10000000; 00129 00130 } 00131 00132 #define R1_IDLE_STATE (1 << 0) 00133 #define R1_ERASE_RESET (1 << 1) 00134 #define R1_ILLEGAL_COMMAND (1 << 2) 00135 #define R1_COM_CRC_ERROR (1 << 3) 00136 #define R1_ERASE_SEQUENCE_ERROR (1 << 4) 00137 #define R1_ADDRESS_ERROR (1 << 5) 00138 #define R1_PARAMETER_ERROR (1 << 6) 00139 00140 // Types 00141 // - v1.x Standard Capacity 00142 // - v2.x Standard Capacity 00143 // - v2.x High Capacity 00144 // - Not recognised as an SD Card 00145 #define SDCARD_FAIL 0 00146 #define SDCARD_V1 1 00147 #define SDCARD_V2 2 00148 #define SDCARD_V2HC 3 00149 00150 int SDFileSystem::initialise_card() { 00151 // Set to SCK for initialisation, and clock card with cs = 1 00152 _spi.frequency(_init_sck); 00153 _cs = 1; 00154 for (int i = 0; i < 16; i++) { 00155 _spi.write(0xFF); 00156 } 00157 00158 // send CMD0, should return with all zeros except IDLE STATE set (bit 0) 00159 if (_cmd(0, 0) != R1_IDLE_STATE) { 00160 debug("No disk, or could not put SD card in to SPI idle state\n"); 00161 return SDCARD_FAIL; 00162 } 00163 00164 // send CMD8 to determine whther it is ver 2.x 00165 int r = _cmd8(); 00166 if (r == R1_IDLE_STATE) { 00167 return initialise_card_v2(); 00168 } else if (r == (R1_IDLE_STATE | R1_ILLEGAL_COMMAND)) { 00169 return initialise_card_v1(); 00170 } else { 00171 debug("Not in idle state after sending CMD8 (not an SD card?)\n"); 00172 return SDCARD_FAIL; 00173 } 00174 } 00175 00176 int SDFileSystem::initialise_card_v1() { 00177 for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) { 00178 _cmd(55, 0); 00179 if (_cmd(41, 0) == 0) { 00180 cdv = 512; 00181 debug_if(SD_DBG, "\n\rInit: SEDCARD_V1\n\r"); 00182 return SDCARD_V1; 00183 } 00184 } 00185 00186 debug("Timeout waiting for v1.x card\n"); 00187 return SDCARD_FAIL; 00188 } 00189 00190 int SDFileSystem::initialise_card_v2() { 00191 for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) { 00192 wait_ms(50); 00193 _cmd58(); 00194 _cmd(55, 0); 00195 if (_cmd(41, 0x40000000) == 0) { 00196 _cmd58(); 00197 debug_if(SD_DBG, "\n\rInit: SDCARD_V2\n\r"); 00198 cdv = 1; 00199 return SDCARD_V2; 00200 } 00201 } 00202 00203 debug("Timeout waiting for v2.x card\n"); 00204 return SDCARD_FAIL; 00205 } 00206 00207 int SDFileSystem::disk_initialize() { 00208 _is_initialized = initialise_card(); 00209 if (_is_initialized == 0) { 00210 debug("Fail to initialize card\n"); 00211 return 1; 00212 } 00213 debug_if(SD_DBG, "init card = %d\n", _is_initialized); 00214 _sectors = _sd_sectors(); 00215 00216 // Set block length to 512 (CMD16) 00217 if (_cmd(16, 512) != 0) { 00218 debug("Set 512-byte block timed out\n"); 00219 return 1; 00220 } 00221 00222 // Set SCK for data transfer 00223 _spi.frequency(_transfer_sck); 00224 return 0; 00225 } 00226 00227 int SDFileSystem::disk_write(const uint8_t* buffer, uint32_t block_number, uint32_t count) { 00228 if (!_is_initialized) { 00229 return -1; 00230 } 00231 00232 for (uint32_t b = block_number; b < block_number + count; b++) { 00233 // set write address for single block (CMD24) 00234 if (_cmd(24, b * cdv) != 0) { 00235 return 1; 00236 } 00237 00238 // send the data block 00239 _write(buffer, 512); 00240 buffer += 512; 00241 } 00242 00243 return 0; 00244 } 00245 00246 int SDFileSystem::disk_read(uint8_t* buffer, uint32_t block_number, uint32_t count) { 00247 if (!_is_initialized) { 00248 return -1; 00249 } 00250 00251 for (uint32_t b = block_number; b < block_number + count; b++) { 00252 // set read address for single block (CMD17) 00253 if (_cmd(17, b * cdv) != 0) { 00254 return 1; 00255 } 00256 00257 // receive the data 00258 _read(buffer, 512); 00259 buffer += 512; 00260 } 00261 00262 return 0; 00263 } 00264 00265 int SDFileSystem::disk_status() { 00266 // FATFileSystem::disk_status() returns 0 when initialized 00267 if (_is_initialized) { 00268 return 0; 00269 } else { 00270 return 1; 00271 } 00272 } 00273 00274 int SDFileSystem::disk_sync() { return 0; } 00275 uint32_t SDFileSystem::disk_sectors() { return _sectors; } 00276 00277 00278 // PRIVATE FUNCTIONS 00279 int SDFileSystem::_cmd(int cmd, int arg) { 00280 _cs = 0; 00281 00282 // send a command 00283 _spi.write(0x40 | cmd); 00284 _spi.write(arg >> 24); 00285 _spi.write(arg >> 16); 00286 _spi.write(arg >> 8); 00287 _spi.write(arg >> 0); 00288 _spi.write(0x95); 00289 00290 // wait for the repsonse (response[7] == 0) 00291 for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) { 00292 int response = _spi.write(0xFF); 00293 if (!(response & 0x80)) { 00294 _cs = 1; 00295 _spi.write(0xFF); 00296 return response; 00297 } 00298 } 00299 _cs = 1; 00300 _spi.write(0xFF); 00301 return -1; // timeout 00302 } 00303 int SDFileSystem::_cmdx(int cmd, int arg) { 00304 _cs = 0; 00305 00306 // send a command 00307 _spi.write(0x40 | cmd); 00308 _spi.write(arg >> 24); 00309 _spi.write(arg >> 16); 00310 _spi.write(arg >> 8); 00311 _spi.write(arg >> 0); 00312 _spi.write(0x95); 00313 00314 // wait for the repsonse (response[7] == 0) 00315 for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) { 00316 int response = _spi.write(0xFF); 00317 if (!(response & 0x80)) { 00318 return response; 00319 } 00320 } 00321 _cs = 1; 00322 _spi.write(0xFF); 00323 return -1; // timeout 00324 } 00325 00326 00327 int SDFileSystem::_cmd58() { 00328 _cs = 0; 00329 int arg = 0; 00330 00331 // send a command 00332 _spi.write(0x40 | 58); 00333 _spi.write(arg >> 24); 00334 _spi.write(arg >> 16); 00335 _spi.write(arg >> 8); 00336 _spi.write(arg >> 0); 00337 _spi.write(0x95); 00338 00339 // wait for the repsonse (response[7] == 0) 00340 for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) { 00341 int response = _spi.write(0xFF); 00342 if (!(response & 0x80)) { 00343 int ocr = _spi.write(0xFF) << 24; 00344 ocr |= _spi.write(0xFF) << 16; 00345 ocr |= _spi.write(0xFF) << 8; 00346 ocr |= _spi.write(0xFF) << 0; 00347 _cs = 1; 00348 _spi.write(0xFF); 00349 return response; 00350 } 00351 } 00352 _cs = 1; 00353 _spi.write(0xFF); 00354 return -1; // timeout 00355 } 00356 00357 int SDFileSystem::_cmd8() { 00358 _cs = 0; 00359 00360 // send a command 00361 _spi.write(0x40 | 8); // CMD8 00362 _spi.write(0x00); // reserved 00363 _spi.write(0x00); // reserved 00364 _spi.write(0x01); // 3.3v 00365 _spi.write(0xAA); // check pattern 00366 _spi.write(0x87); // crc 00367 00368 // wait for the repsonse (response[7] == 0) 00369 for (int i = 0; i < SD_COMMAND_TIMEOUT * 1000; i++) { 00370 char response[5]; 00371 response[0] = _spi.write(0xFF); 00372 if (!(response[0] & 0x80)) { 00373 for (int j = 1; j < 5; j++) { 00374 response[i] = _spi.write(0xFF); 00375 } 00376 _cs = 1; 00377 _spi.write(0xFF); 00378 return response[0]; 00379 } 00380 } 00381 _cs = 1; 00382 _spi.write(0xFF); 00383 return -1; // timeout 00384 } 00385 00386 int SDFileSystem::_read(uint8_t *buffer, uint32_t length) { 00387 _cs = 0; 00388 00389 // read until start byte (0xFF) 00390 while (_spi.write(0xFF) != 0xFE); 00391 00392 // read data 00393 for (uint32_t i = 0; i < length; i++) { 00394 buffer[i] = _spi.write(0xFF); 00395 } 00396 _spi.write(0xFF); // checksum 00397 _spi.write(0xFF); 00398 00399 _cs = 1; 00400 _spi.write(0xFF); 00401 return 0; 00402 } 00403 00404 int SDFileSystem::_write(const uint8_t*buffer, uint32_t length) { 00405 _cs = 0; 00406 00407 // indicate start of block 00408 _spi.write(0xFE); 00409 00410 // write the data 00411 for (uint32_t i = 0; i < length; i++) { 00412 _spi.write(buffer[i]); 00413 } 00414 00415 // write the checksum 00416 _spi.write(0xFF); 00417 _spi.write(0xFF); 00418 00419 // check the response token 00420 if ((_spi.write(0xFF) & 0x1F) != 0x05) { 00421 _cs = 1; 00422 _spi.write(0xFF); 00423 return 1; 00424 } 00425 00426 // wait for write to finish 00427 while (_spi.write(0xFF) == 0); 00428 00429 _cs = 1; 00430 _spi.write(0xFF); 00431 return 0; 00432 } 00433 00434 static uint32_t ext_bits(unsigned char *data, int msb, int lsb) { 00435 uint32_t bits = 0; 00436 uint32_t size = 1 + msb - lsb; 00437 for (uint32_t i = 0; i < size; i++) { 00438 uint32_t position = lsb + i; 00439 uint32_t byte = 15 - (position >> 3); 00440 uint32_t bit = position & 0x7; 00441 uint32_t value = (data[byte] >> bit) & 1; 00442 bits |= value << i; 00443 } 00444 return bits; 00445 } 00446 00447 uint32_t SDFileSystem::_sd_sectors() { 00448 uint32_t c_size, c_size_mult, read_bl_len; 00449 uint32_t block_len, mult, blocknr, capacity; 00450 uint32_t hc_c_size; 00451 uint32_t blocks; 00452 00453 // CMD9, Response R2 (R1 byte + 16-byte block read) 00454 if (_cmdx(9, 0) != 0) { 00455 debug("Didn't get a response from the disk\n"); 00456 return 0; 00457 } 00458 00459 uint8_t csd[16]; 00460 if (_read(csd, 16) != 0) { 00461 debug("Couldn't read csd response from disk\n"); 00462 return 0; 00463 } 00464 00465 // csd_structure : csd[127:126] 00466 // c_size : csd[73:62] 00467 // c_size_mult : csd[49:47] 00468 // read_bl_len : csd[83:80] - the *maximum* read block length 00469 00470 int csd_structure = ext_bits(csd, 127, 126); 00471 00472 switch (csd_structure) { 00473 case 0: 00474 cdv = 512; 00475 c_size = ext_bits(csd, 73, 62); 00476 c_size_mult = ext_bits(csd, 49, 47); 00477 read_bl_len = ext_bits(csd, 83, 80); 00478 00479 block_len = 1 << read_bl_len; 00480 mult = 1 << (c_size_mult + 2); 00481 blocknr = (c_size + 1) * mult; 00482 capacity = blocknr * block_len; 00483 blocks = capacity / 512; 00484 debug_if(SD_DBG, "\n\rSDCard\n\rc_size: %d \n\rcapacity: %ld \n\rsectors: %lld\n\r", c_size, capacity, blocks); 00485 break; 00486 00487 case 1: 00488 cdv = 1; 00489 hc_c_size = ext_bits(csd, 63, 48); 00490 blocks = (hc_c_size+1)*1024; 00491 debug_if(SD_DBG, "\n\rSDHC Card \n\rhc_c_size: %d\n\rcapacity: %lld \n\rsectors: %lld\n\r", hc_c_size, blocks*512, blocks); 00492 break; 00493 00494 default: 00495 debug("CSD struct unsupported\r\n"); 00496 return 0; 00497 }; 00498 return blocks; 00499 }
Generated on Tue Jul 12 2022 20:47:44 by
