Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
mac/LoRaMac.cpp
- Committer:
- Pasi
- Date:
- 2016-04-19
- Revision:
- 6:71b489e70063
- Parent:
- 5:be347c6040c1
File content as of revision 6:71b489e70063:
/*
/ _____) _ | |
( (____ _____ ____ _| |_ _____ ____| |__
\____ \| ___ | (_ _) ___ |/ ___) _ \
_____) ) ____| | | || |_| ____( (___| | | |
(______/|_____)_|_|_| \__)_____)\____)_| |_|
(C)2013 Semtech
___ _____ _ ___ _ _____ ___ ___ ___ ___
/ __|_ _/_\ / __| |/ / __/ _ \| _ \/ __| __|
\__ \ | |/ _ \ (__| ' <| _| (_) | / (__| _|
|___/ |_/_/ \_\___|_|\_\_| \___/|_|_\\___|___|
embedded.connectivity.solutions===============
Description: LoRa MAC layer implementation
License: Revised BSD License, see LICENSE.TXT file include in the project
Maintainer: Miguel Luis ( Semtech ), Gregory Cristian ( Semtech ) and Daniel Jäckle ( STACKFORCE )
*/
#include "mbed.h"
#include "LoRaMacCrypto.h"
#include "LoRaMac.h"
#include "LoRaMacTest.h"
#include "LoRaMac-board.h"
#include "sx1272.h"
#include "sx1272Regs-LoRa.h"
#include "sx1272-hal.h"
/*!
* Maximum PHY layer payload size
*/
#define LORAMAC_PHY_MAXPAYLOAD 255
/*!
* Maximum MAC commands buffer size
*/
#define LORA_MAC_COMMAND_MAX_LENGTH 15
#define dConduitBugs 1
/*!
* Device IEEE EUI
*/
static uint8_t *LoRaMacDevEui;
/*!
* Application IEEE EUI
*/
static uint8_t *LoRaMacAppEui;
/*!
* AES encryption/decryption cipher application key
*/
static uint8_t *LoRaMacAppKey;
/*!
* AES encryption/decryption cipher network session key
*/
static uint8_t LoRaMacNwkSKey[] =
{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
/*!
* AES encryption/decryption cipher application session key
*/
static uint8_t LoRaMacAppSKey[] =
{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
/*!
* Device nonce is a random value extracted by issuing a sequence of RSSI
* measurements
*/
static uint16_t LoRaMacDevNonce;
/*!
* Network ID ( 3 bytes )
*/
static uint32_t LoRaMacNetID;
/*!
* Mote Address
*/
static uint32_t LoRaMacDevAddr;
/*!
* Multicast channels linked list
*/
static MulticastParams_t *MulticastChannels = NULL;
/*!
* Actual device class
*/
static DeviceClass_t LoRaMacDeviceClass;
/*!
* Indicates if the node is connected to a private or public network
*/
static bool PublicNetwork;
/*!
* Indicates if the node supports repeaters
*/
static bool RepeaterSupport;
/*!
* Buffer containing the data to be sent or received.
*/
static uint8_t LoRaMacBuffer[LORAMAC_PHY_MAXPAYLOAD];
/*!
* Length of packet in LoRaMacBuffer
*/
static uint16_t LoRaMacBufferPktLen = 0;
/*!
* Buffer containing the upper layer data.
*/
static uint8_t LoRaMacPayload[LORAMAC_PHY_MAXPAYLOAD];
static uint8_t LoRaMacRxPayload[LORAMAC_PHY_MAXPAYLOAD];
/*!
* LoRaMAC frame counter. Each time a packet is sent the counter is incremented.
* Only the 16 LSB bits are sent
*/
static uint32_t UpLinkCounter = 1;
/*!
* LoRaMAC frame counter. Each time a packet is received the counter is incremented.
* Only the 16 LSB bits are received
*/
static uint32_t DownLinkCounter = 0;
/*!
* IsPacketCounterFixed enables the MIC field tests by fixing the
* UpLinkCounter value
*/
static bool IsUpLinkCounterFixed = false;
/*!
* Used for test purposes. Disables the opening of the reception windows.
*/
static bool IsRxWindowsEnabled = true;
/*!
* Indicates if the MAC layer has already joined a network.
*/
static bool IsLoRaMacNetworkJoined = false;
/*!
* LoRaMac ADR control status
*/
static bool AdrCtrlOn = false;
/*!
* Counts the number of missed ADR acknowledgements
*/
static uint32_t AdrAckCounter = 0;
/*!
* If the node has sent a FRAME_TYPE_DATA_CONFIRMED_UP this variable indicates
* if the nodes needs to manage the server acknowledgement.
*/
static bool NodeAckRequested = false;
/*!
* If the server has sent a FRAME_TYPE_DATA_CONFIRMED_DOWN this variable indicates
* if the ACK bit must be set for the next transmission
*/
static bool SrvAckRequested = false;
/*!
* Indicates if the MAC layer wants to send MAC commands
*/
static bool MacCommandsInNextTx = false;
/*!
* Contains the current MacCommandsBuffer index
*/
static uint8_t MacCommandsBufferIndex = 0;
/*!
* Buffer containing the MAC layer commands
*/
static uint8_t MacCommandsBuffer[LORA_MAC_COMMAND_MAX_LENGTH];
#if defined( USE_BAND_433 )
/*!
* Data rates table definition
*/
const uint8_t Datarates[] = { 12, 11, 10, 9, 8, 7, 7, 50 };
/*!
* Maximum payload with respect to the datarate index. Cannot operate with repeater.
*/
const uint8_t MaxPayloadOfDatarate[] = { 59, 59, 59, 123, 250, 250, 250, 250 };
/*!
* Maximum payload with respect to the datarate index. Can operate with repeater.
*/
const uint8_t MaxPayloadOfDatarateRepeater[] = { 59, 59, 59, 123, 230, 230, 230, 230 };
/*!
* Tx output powers table definition
*/
const int8_t TxPowers[] = { 20, 14, 11, 8, 5, 2 };
/*!
* LoRaMac bands
*/
static Band_t Bands[LORA_MAX_NB_BANDS] =
{
BAND0,
};
/*!
* LoRaMAC channels
*/
static ChannelParams_t Channels[LORA_MAX_NB_CHANNELS] =
{
LC1,
LC2,
LC3,
};
#elif defined( USE_BAND_780 )
/*!
* Data rates table definition
*/
const uint8_t Datarates[] = { 12, 11, 10, 9, 8, 7, 7, 50 };
/*!
* Maximum payload with respect to the datarate index. Cannot operate with repeater.
*/
const uint8_t MaxPayloadOfDatarate[] = { 59, 59, 59, 123, 250, 250, 250, 250 };
/*!
* Maximum payload with respect to the datarate index. Can operate with repeater.
*/
const uint8_t MaxPayloadOfDatarateRepeater[] = { 59, 59, 59, 123, 230, 230, 230, 230 };
/*!
* Tx output powers table definition
*/
const int8_t TxPowers[] = { 20, 14, 11, 8, 5, 2 };
/*!
* LoRaMac bands
*/
static Band_t Bands[LORA_MAX_NB_BANDS] =
{
BAND0,
};
/*!
* LoRaMAC channels
*/
static ChannelParams_t Channels[LORA_MAX_NB_CHANNELS] =
{
LC1,
LC2,
LC3,
};
#elif defined( USE_BAND_868 )
/*!
* Data rates table definition
*/
const uint8_t Datarates[] = { 12, 11, 10, 9, 8, 7, 7, 50 };
/*!
* Maximum payload with respect to the datarate index. Cannot operate with repeater.
*/
const uint8_t MaxPayloadOfDatarate[] = { 51, 51, 51, 115, 242, 242, 242, 242 };
/*!
* Maximum payload with respect to the datarate index. Can operate with repeater.
*/
const uint8_t MaxPayloadOfDatarateRepeater[] = { 51, 51, 51, 115, 222, 222, 222, 222 };
/*!
* Tx output powers table definition
*/
const int8_t TxPowers[] = { 20, 14, 11, 8, 5, 2 };
/*!
* LoRaMac bands
*/
static Band_t Bands[LORA_MAX_NB_BANDS] =
{
BAND0,
BAND1,
BAND2,
BAND3,
BAND4,
};
/*!
* LoRaMAC channels
*/
static ChannelParams_t Channels[LORA_MAX_NB_CHANNELS] =
{
LC1,
LC2,
LC3,
};
#elif defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
/*!
* Data rates table definition
*/
const uint8_t Datarates[] = { 10, 9, 8, 7, 8, 0, 0, 0, 12, 11, 10, 9, 8, 7, 0, 0 };
/*!
* Up/Down link data rates offset definition
*/
const int8_t datarateOffsets[16][4] =
{
{ DR_10, DR_9 , DR_8 , DR_8 }, // DR_0
{ DR_11, DR_10, DR_9 , DR_8 }, // DR_1
{ DR_12, DR_11, DR_10, DR_9 }, // DR_2
{ DR_13, DR_12, DR_11, DR_10 }, // DR_3
{ DR_13, DR_13, DR_12, DR_11 }, // DR_4
{ 0xFF , 0xFF , 0xFF , 0xFF },
{ 0xFF , 0xFF , 0xFF , 0xFF },
{ 0xFF , 0xFF , 0xFF , 0xFF },
{ DR_8 , DR_8 , DR_8 , DR_8 },
{ DR_9 , DR_8 , DR_8 , DR_8 },
{ DR_10, DR_9 , DR_8 , DR_8 },
{ DR_11, DR_10, DR_9 , DR_8 },
{ DR_12, DR_11, DR_10, DR_9 },
{ DR_13, DR_12, DR_11, DR_10 },
{ 0xFF , 0xFF , 0xFF , 0xFF },
{ 0xFF , 0xFF , 0xFF , 0xFF },
};
/*!
* Maximum payload with respect to the datarate index. Cannot operate with repeater.
*/
const uint8_t MaxPayloadOfDatarate[] = { 11, 53, 129, 242, 242, 0, 0, 0, 53, 129, 242, 242, 242, 242, 0, 0 };
/*!
* Maximum payload with respect to the datarate index. Can operate with repeater.
*/
const uint8_t MaxPayloadOfDatarateRepeater[] = { 11, 53, 129, 242, 242, 0, 0, 0, 33, 103, 222, 222, 222, 222, 0, 0 };
/*!
* Tx output powers table definition
*/
const int8_t TxPowers[] = { 30, 28, 26, 24, 22, 20, 18, 16, 14, 12, 10 };
/*!
* LoRaMac bands
*/
static Band_t Bands[LORA_MAX_NB_BANDS] =
{
BAND0,
};
/*!
* LoRaMAC channels
*/
static ChannelParams_t Channels[LORA_MAX_NB_CHANNELS];
/*!
* Contains the channels which remain to be applied.
*/
static uint16_t ChannelsMaskRemaining[6];
#else
#error "Please define a frequency band in the compiler options."
#endif
/*!
* LoRaMAC 2nd reception window settings
*/
static Rx2ChannelParams_t Rx2Channel = RX_WND_2_CHANNEL;
/*!
* Datarate offset between uplink and downlink on first window
*/
static uint8_t Rx1DrOffset = 0;
/*!
* Mask indicating which channels are enabled
*/
static uint16_t ChannelsMask[6];
/*!
* Channels Tx output power
*/
static int8_t ChannelsTxPower = LORAMAC_DEFAULT_TX_POWER;
/*!
* Channels datarate
*/
static int8_t ChannelsDatarate = LORAMAC_DEFAULT_DATARATE;
/*!
* Channels default datarate
*/
static int8_t ChannelsDefaultDatarate = LORAMAC_DEFAULT_DATARATE;
/*!
* Number of uplink messages repetitions [1:15] (unconfirmed messages only)
*/
static uint8_t ChannelsNbRep = 1;
/*!
* Uplink messages repetitions counter
*/
static uint8_t ChannelsNbRepCounter = 0;
/*!
* Maximum duty cycle
* \remark Possibility to shutdown the device.
*/
static uint8_t MaxDCycle = 0;
/*!
* Aggregated duty cycle management
*/
static uint16_t AggregatedDCycle;
static TimerTime_t AggregatedLastTxDoneTime;
static TimerTime_t AggregatedTimeOff;
/*!
* Enables/Disables duty cycle management (Test only)
*/
static bool DutyCycleOn;
/*!
* Current channel index
*/
static uint8_t Channel;
/*!
* LoRaMac internal states
*/
enum eLoRaMacState
{
MAC_IDLE = 0x00000000,
MAC_TX_RUNNING = 0x00000001,
MAC_RX = 0x00000002,
MAC_ACK_REQ = 0x00000004,
MAC_ACK_RETRY = 0x00000008,
MAC_TX_DELAYED = 0x00000010,
MAC_TX_CONFIG = 0x00000020,
};
/*!
* LoRaMac internal state
*/
uint32_t LoRaMacState = MAC_IDLE;
/*!
* LoRaMac timer used to check the LoRaMacState (runs every second)
*/
static Timeout MacStateCheckTimer;
/*!
* LoRaMac upper layer event functions
*/
static LoRaMacPrimitives_t *LoRaMacPrimitives;
/*!
* LoRaMac upper layer callback functions
*/
static LoRaMacCallback_t *LoRaMacCallbacks;
/*!
* Radio events function pointer
*/
//static RadioEvents_t RadioEvents;
/*!
* LoRaMac duty cycle delayed Tx timer
*/
static Timeout TxDelayedTimer;
/*!
* LoRaMac reception windows timers
*/
static Timeout RxWindowTimer1;
static Timeout RxWindowTimer2;
/*!
* LoRaMac reception windows delay from end of Tx
*/
static uint32_t ReceiveDelay1;
static uint32_t ReceiveDelay2;
static uint32_t JoinAcceptDelay1;
static uint32_t JoinAcceptDelay2;
/*!
* LoRaMac reception windows delay
* \remark normal frame: RxWindowXDelay = ReceiveDelayX - RADIO_WAKEUP_TIME
* join frame : RxWindowXDelay = JoinAcceptDelayX - RADIO_WAKEUP_TIME
*/
static uint32_t RxWindow1Delay;
static uint32_t RxWindow2Delay;
/*!
* LoRaMac maximum time a reception window stays open
*/
static uint32_t MaxRxWindow;
/*!
* Acknowledge timeout timer. Used for packet retransmissions.
*/
static Timeout AckTimeoutTimer;
/*!
* Number of trials to get a frame acknowledged
*/
static uint8_t AckTimeoutRetries = 1;
/*!
* Number of trials to get a frame acknowledged
*/
static uint8_t AckTimeoutRetriesCounter = 1;
/*!
* Indicates if the AckTimeout timer has expired or not
*/
static bool AckTimeoutRetry = false;
/*!
* Last transmission time on air
*/
TimerTime_t TxTimeOnAir = 0;
/*!
* Structure to hold an MCPS indication data.
*/
static McpsIndication_t McpsIndication;
/*!
* Structure to hold MCPS confirm data.
*/
static McpsConfirm_t McpsConfirm;
/*!
* Structure to hold MLME confirm data.
*/
static MlmeConfirm_t MlmeConfirm;
/*!
* Holds the current rx window slot
*/
static uint8_t RxSlot = 0;
/*!
* LoRaMac tx/rx operation state
*/
LoRaMacFlags_t LoRaMacFlags;
/*!
* \brief Function to be executed on Radio Tx Done event
*/
static void OnRadioTxDone( void );
/*!
* \brief This function prepares the MAC to abort the execution of function
* OnRadioRxDone in case of a reception error.
*/
static void PrepareRxDoneAbort( void );
/*!
* \brief Function to be executed on Radio Rx Done event
*/
static void OnRadioRxDone( uint8_t *payload, uint16_t size, int16_t rssi, int8_t snr );
/*!
* \brief Function executed on Radio Tx Timeout event
*/
static void OnRadioTxTimeout( void );
/*!
* \brief Function executed on Radio Rx error event
*/
static void OnRadioRxError( void );
/*!
* \brief Function executed on Radio Rx Timeout event
*/
static void OnRadioRxTimeout( void );
/*!
* \brief Function executed on Resend Frame timer event.
*/
static void OnMacStateCheckTimerEvent( void );
/*!
* \brief Function executed on duty cycle delayed Tx timer event
*/
static void OnTxDelayedTimerEvent( void );
/*!
* \brief Function executed on first Rx window timer event
*/
static void OnRxWindow1TimerEvent( void );
/*!
* \brief Function executed on second Rx window timer event
*/
static void OnRxWindow2TimerEvent( void );
/*!
* \brief Function executed on AckTimeout timer event
*/
static void OnAckTimeoutTimerEvent( void );
/*!
* \brief Searches and set the next random available channel
*
* \retval status Function status [0: OK, 1: Unable to find a free channel]
*/
static TimerTime_t SetNextChannel( void );
static Timer timerGeneralPurpose;
SX1272BRD radio( OnRadioTxDone, OnRadioTxTimeout, OnRadioRxDone, OnRadioRxTimeout, OnRadioRxError, NULL, NULL,
RF_SPI_MOSI, RF_SPI_MISO, RF_SPI_SCK, RF_SPI_CS,
RF_RESET, RF_DIO0, RF_DIO1, RF_DIO2, RF_DIO3, RF_DIO4, RF_DIO5, RF_RXTX_SW );
/*!
* \brief Sets the network to public or private. Updates the sync byte.
*
* \param [IN] enable if true, it enables a public network
*/
static void SetPublicNetwork( bool enable );
/*!
* \brief Initializes and opens the reception window
*
* \param [IN] freq window channel frequency
* \param [IN] datarate window channel datarate
* \param [IN] bandwidth window channel bandwidth
* \param [IN] timeout window channel timeout
*/
static void RxWindowSetup( uint32_t freq, int8_t datarate, uint32_t bandwidth, uint16_t timeout, bool rxContinuous );
/*!
* \brief Adds a new MAC command to be sent.
*
* \Remark MAC layer internal function
*
* \param [in] cmd MAC command to be added
* [MOTE_MAC_LINK_CHECK_REQ,
* MOTE_MAC_LINK_ADR_ANS,
* MOTE_MAC_DUTY_CYCLE_ANS,
* MOTE_MAC_RX2_PARAM_SET_ANS,
* MOTE_MAC_DEV_STATUS_ANS
* MOTE_MAC_NEW_CHANNEL_ANS]
* \param [in] p1 1st parameter ( optional depends on the command )
* \param [in] p2 2nd parameter ( optional depends on the command )
*
* \retval status Function status [0: OK, 1: Unknown command, 2: Buffer full]
*/
static LoRaMacStatus_t AddMacCommand( uint8_t cmd, uint8_t p1, uint8_t p2 );
/*!
* \brief Validates if the payload fits into the frame, taking the datarate
* into account.
*
* \details Refer to chapter 4.3.2 of the LoRaWAN specification, v1.0
*
* \param lenN Length of the application payload. The length depends on the
* datarate and is region specific
*
* \param datarate Current datarate
*
* \param fOptsLen Length of the fOpts field
*
* \retval [false: payload does not fit into the frame, true: payload fits into
* the frame]
*/
static bool ValidatePayloadLength( uint8_t lenN, int8_t datarate, uint8_t fOptsLen );
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
/*!
* \brief Counts the number of enabled 125 kHz channels in the channel mask.
* This function can only be applied to US915 band.
*
* \param channelsMask Pointer to the first element of the channel mask
*
* \retval Number of enabled channels in the channel mask
*/
static uint8_t CountNbEnabled125kHzChannels( uint16_t *channelsMask );
#endif
/*!
* \brief Limits the Tx power according to the number of enabled channels
*
* \retval Returns the maximum valid tx power
*/
static int8_t LimitTxPower( int8_t txPower );
/*!
* \brief Verifies, if a value is in a given range.
*
* \param value Value to verify, if it is in range
*
* \param min Minimum possible value
*
* \param max Maximum possible value
*
* \retval Returns the maximum valid tx power
*/
static bool ValueInRange( int8_t value, int8_t min, int8_t max );
/*!
* \brief Calculates the next datarate to set, when ADR is on or off
*
* \param [IN] adrEnabled Specify whether ADR is on or off
*
* \param [IN] updateChannelMask Set to true, if the channel masks shall be updated
*
* \param [OUT] datarateOut Reports the datarate which will be used next
*
* \retval Returns the state of ADR ack request
*/
static bool AdrNextDr( bool adrEnabled, bool updateChannelMask, int8_t* datarateOut );
/*!
* \brief Disables channel in a specified channel mask
*
* \param [IN] id - Id of the channel
*
* \param [IN] mask - Pointer to the channel mask to edit
*
* \retval [true, if disable was successful, false if not]
*/
static bool DisableChannelInMask( uint8_t id, uint16_t* mask );
/*!
* \brief Decodes MAC commands in the fOpts field and in the payload
*/
static void ProcessMacCommands( uint8_t *payload, uint8_t macIndex, uint8_t commandsSize, uint8_t snr );
/*!
* \brief LoRaMAC layer generic send frame
*
* \param [IN] macHdr MAC header field
* \param [IN] fPort MAC payload port
* \param [IN] fBuffer MAC data buffer to be sent
* \param [IN] fBufferSize MAC data buffer size
* \retval status Status of the operation.
*/
LoRaMacStatus_t Send( LoRaMacHeader_t *macHdr, uint8_t fPort, void *fBuffer, uint16_t fBufferSize );
/*!
* \brief LoRaMAC layer frame buffer initialization
*
* \param [IN] macHdr MAC header field
* \param [IN] fCtrl MAC frame control field
* \param [IN] fOpts MAC commands buffer
* \param [IN] fPort MAC payload port
* \param [IN] fBuffer MAC data buffer to be sent
* \param [IN] fBufferSize MAC data buffer size
* \retval status Status of the operation.
*/
LoRaMacStatus_t PrepareFrame( LoRaMacHeader_t *macHdr, LoRaMacFrameCtrl_t *fCtrl, uint8_t fPort, void *fBuffer, uint16_t fBufferSize );
/*
* \brief Schedules the frame according to the duty cycle
*
* \retval Status of the operation
*/
static LoRaMacStatus_t ScheduleTx( void );
/*!
* \brief LoRaMAC layer prepared frame buffer transmission with channel specification
*
* \remark PrepareFrame must be called at least once before calling this
* function.
*
* \param [IN] channel Channel parameters
* \retval status Status of the operation.
*/
LoRaMacStatus_t SendFrameOnChannel( ChannelParams_t channel );
static unsigned char randbuf[16];
void radio_init( void )
{
//hal_disableIRQs( );
__disable_irq();
// seed 15-byte randomness via noise rssi
// Set LoRa modem ON
radio.SetModem( MODEM_LORA );
// Disable LoRa modem interrupts
radio.Write( REG_LR_IRQFLAGSMASK, RFLR_IRQFLAGS_RXTIMEOUT |
RFLR_IRQFLAGS_RXDONE |
RFLR_IRQFLAGS_PAYLOADCRCERROR |
RFLR_IRQFLAGS_VALIDHEADER |
RFLR_IRQFLAGS_TXDONE |
RFLR_IRQFLAGS_CADDONE |
RFLR_IRQFLAGS_FHSSCHANGEDCHANNEL |
RFLR_IRQFLAGS_CADDETECTED );
// Set radio in continuous reception
radio.Rx( 0 );
for( int i = 1; i < 16; i++ )
{
for( int j = 0; j < 8; j++ )
{
unsigned char b; // wait for two non-identical subsequent least-significant bits
while( ( b = radio.Read( REG_LR_RSSIWIDEBAND ) & 0x01 ) == ( radio.Read( REG_LR_RSSIWIDEBAND ) & 0x01 ) );
randbuf[i] = ( randbuf[i] << 1 ) | b;
}
}
randbuf[0] = 16; // set initial index
// Change LoRa modem SyncWord
radio.Write( REG_LR_SYNCWORD, LORA_MAC_PUBLIC_SYNCWORD );
radio.Sleep( );
//hal_enableIRQs( );
__enable_irq();
}
static void OnRadioTxDone( void )
{
TimerTime_t curTime = timerGeneralPurpose.read_us( );
if( LoRaMacDeviceClass != CLASS_C )
{
radio.Sleep( );
}
else
{
OnRxWindow2TimerEvent( );
}
// Update Band Time OFF
Bands[Channels[Channel].Band].LastTxDoneTime = curTime;
if( DutyCycleOn == true )
{
Bands[Channels[Channel].Band].TimeOff = TxTimeOnAir * Bands[Channels[Channel].Band].DCycle - TxTimeOnAir;
}
else
{
Bands[Channels[Channel].Band].TimeOff = 0;
}
// Update Aggregated Time OFF
AggregatedLastTxDoneTime = curTime;
AggregatedTimeOff = AggregatedTimeOff + ( TxTimeOnAir * AggregatedDCycle - TxTimeOnAir );
if( IsRxWindowsEnabled == true )
{
RxWindowTimer1.attach_us(OnRxWindow1TimerEvent, RxWindow1Delay);
if( LoRaMacDeviceClass != CLASS_C )
{
RxWindowTimer2.attach_us(OnRxWindow2TimerEvent, RxWindow2Delay);
}
if( ( LoRaMacDeviceClass == CLASS_C ) || ( NodeAckRequested == true ) )
{
AckTimeoutTimer.attach_us(OnAckTimeoutTimerEvent,
RxWindow2Delay + ACK_TIMEOUT + randr( -ACK_TIMEOUT_RND, ACK_TIMEOUT_RND ));
}
}
else
{
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_OK;
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX2_TIMEOUT;
if( LoRaMacFlags.Value == 0 )
{
LoRaMacFlags.Bits.McpsReq = 1;
}
LoRaMacFlags.Bits.MacDone = 1;
}
if( NodeAckRequested == false )
{
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_OK;
ChannelsNbRepCounter++;
}
}
static void PrepareRxDoneAbort( void )
{
LoRaMacState &= ~MAC_TX_RUNNING;
if( NodeAckRequested )
{
OnAckTimeoutTimerEvent( );
}
if( ( RxSlot == 0 ) && ( LoRaMacDeviceClass == CLASS_C ) )
{
OnRxWindow2TimerEvent( );
}
LoRaMacFlags.Bits.McpsInd = 1;
LoRaMacFlags.Bits.MacDone = 1;
// Trig OnMacCheckTimerEvent call as soon as possible
MacStateCheckTimer.attach_us(OnMacStateCheckTimerEvent, 1000);
}
static void OnRadioRxDone( uint8_t *payload, uint16_t size, int16_t rssi, int8_t snr )
{
LoRaMacHeader_t macHdr;
LoRaMacFrameCtrl_t fCtrl;
#if dConduitBugs
#warning Conduit bug patch
if( IsLoRaMacNetworkJoined != true )
size = size - 6;
#endif
uint8_t pktHeaderLen = 0;
uint32_t address = 0;
uint8_t appPayloadStartIndex = 0;
uint8_t port = 0xFF;
uint8_t frameLen = 0;
uint32_t mic = 0;
uint32_t micRx = 0;
uint16_t sequenceCounter = 0;
uint16_t sequenceCounterPrev = 0;
uint16_t sequenceCounterDiff = 0;
uint32_t downLinkCounter = 0;
MulticastParams_t *curMulticastParams = NULL;
uint8_t *nwkSKey = LoRaMacNwkSKey;
uint8_t *appSKey = LoRaMacAppSKey;
uint8_t multicast = 0;
bool isMicOk = false;
McpsConfirm.AckReceived = false;
McpsIndication.Rssi = rssi;
McpsIndication.Snr = snr;
McpsIndication.RxSlot = RxSlot;
McpsIndication.Port = 0;
McpsIndication.Multicast = 0;
McpsIndication.FramePending = 0;
McpsIndication.Buffer = NULL;
McpsIndication.BufferSize = 0;
McpsIndication.RxData = false;
McpsIndication.AckReceived = false;
McpsIndication.DownLinkCounter = 0;
McpsIndication.McpsIndication = MCPS_UNCONFIRMED;
if( LoRaMacDeviceClass != CLASS_C )
{
radio.Sleep( );
}
RxWindowTimer2.detach();
macHdr.Value = payload[pktHeaderLen++];
switch( macHdr.Bits.MType )
{
case FRAME_TYPE_JOIN_ACCEPT:
if( IsLoRaMacNetworkJoined == true )
{
break;
}
LoRaMacJoinDecrypt( payload + 1, size - 1, LoRaMacAppKey, LoRaMacRxPayload + 1 );
LoRaMacRxPayload[0] = macHdr.Value;
LoRaMacJoinComputeMic( LoRaMacRxPayload, size - LORAMAC_MFR_LEN, LoRaMacAppKey, &mic );
micRx |= ( uint32_t )LoRaMacRxPayload[size - LORAMAC_MFR_LEN];
micRx |= ( ( uint32_t )LoRaMacRxPayload[size - LORAMAC_MFR_LEN + 1] << 8 );
micRx |= ( ( uint32_t )LoRaMacRxPayload[size - LORAMAC_MFR_LEN + 2] << 16 );
micRx |= ( ( uint32_t )LoRaMacRxPayload[size - LORAMAC_MFR_LEN + 3] << 24 );
if( micRx == mic )
{
LoRaMacJoinComputeSKeys( LoRaMacAppKey, LoRaMacRxPayload + 1, LoRaMacDevNonce, LoRaMacNwkSKey, LoRaMacAppSKey );
LoRaMacNetID = ( uint32_t )LoRaMacRxPayload[4];
LoRaMacNetID |= ( ( uint32_t )LoRaMacRxPayload[5] << 8 );
LoRaMacNetID |= ( ( uint32_t )LoRaMacRxPayload[6] << 16 );
LoRaMacDevAddr = ( uint32_t )LoRaMacRxPayload[7];
LoRaMacDevAddr |= ( ( uint32_t )LoRaMacRxPayload[8] << 8 );
LoRaMacDevAddr |= ( ( uint32_t )LoRaMacRxPayload[9] << 16 );
LoRaMacDevAddr |= ( ( uint32_t )LoRaMacRxPayload[10] << 24 );
// DLSettings
Rx1DrOffset = ( LoRaMacRxPayload[11] >> 4 ) & 0x07;
Rx2Channel.Datarate = LoRaMacRxPayload[11] & 0x0F;
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
/*
* WARNING: To be removed once Semtech server implementation
* is corrected.
*/
if( Rx2Channel.Datarate == DR_3 )
{
Rx2Channel.Datarate = DR_8;
}
#endif
// RxDelay
ReceiveDelay1 = ( LoRaMacRxPayload[12] & 0x0F );
if( ReceiveDelay1 == 0 )
{
ReceiveDelay1 = 1;
}
ReceiveDelay1 *= 1e6;
ReceiveDelay2 = ReceiveDelay1 + 1e6;
#if !( defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID ) )
//CFList
if( ( size - 1 ) > 16 )
{
ChannelParams_t param;
param.DrRange.Value = ( DR_5 << 4 ) | DR_0;
LoRaMacState |= MAC_TX_CONFIG;
for( uint8_t i = 3, j = 0; i < ( 5 + 3 ); i++, j += 3 )
{
param.Frequency = ( ( uint32_t )LoRaMacRxPayload[13 + j] | ( ( uint32_t )LoRaMacRxPayload[14 + j] << 8 ) | ( ( uint32_t )LoRaMacRxPayload[15 + j] << 16 ) ) * 100;
LoRaMacChannelAdd( i, param );
}
LoRaMacState &= ~MAC_TX_CONFIG;
}
#endif
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_OK;
IsLoRaMacNetworkJoined = true;
ChannelsDatarate = ChannelsDefaultDatarate;
}
else
{
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_JOIN_FAIL;
}
break;
case FRAME_TYPE_DATA_CONFIRMED_DOWN:
case FRAME_TYPE_DATA_UNCONFIRMED_DOWN:
{
address = payload[pktHeaderLen++];
address |= ( (uint32_t)payload[pktHeaderLen++] << 8 );
address |= ( (uint32_t)payload[pktHeaderLen++] << 16 );
address |= ( (uint32_t)payload[pktHeaderLen++] << 24 );
if( address != LoRaMacDevAddr )
{
curMulticastParams = MulticastChannels;
while( curMulticastParams != NULL )
{
if( address == curMulticastParams->Address )
{
multicast = 1;
nwkSKey = curMulticastParams->NwkSKey;
appSKey = curMulticastParams->AppSKey;
downLinkCounter = curMulticastParams->DownLinkCounter;
break;
}
curMulticastParams = curMulticastParams->Next;
}
if( multicast == 0 )
{
// We are not the destination of this frame.
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_ADDRESS_FAIL;
PrepareRxDoneAbort( );
return;
}
}
else
{
multicast = 0;
nwkSKey = LoRaMacNwkSKey;
appSKey = LoRaMacAppSKey;
downLinkCounter = DownLinkCounter;
}
fCtrl.Value = payload[pktHeaderLen++];
sequenceCounter = ( uint16_t )payload[pktHeaderLen++];
sequenceCounter |= ( uint16_t )payload[pktHeaderLen++] << 8;
appPayloadStartIndex = 8 + fCtrl.Bits.FOptsLen;
micRx |= ( uint32_t )payload[size - LORAMAC_MFR_LEN];
micRx |= ( ( uint32_t )payload[size - LORAMAC_MFR_LEN + 1] << 8 );
micRx |= ( ( uint32_t )payload[size - LORAMAC_MFR_LEN + 2] << 16 );
micRx |= ( ( uint32_t )payload[size - LORAMAC_MFR_LEN + 3] << 24 );
sequenceCounterPrev = ( uint16_t )downLinkCounter;
sequenceCounterDiff = ( sequenceCounter - sequenceCounterPrev );
if( sequenceCounterDiff < ( 1 << 15 ) )
{
downLinkCounter += sequenceCounterDiff;
LoRaMacComputeMic( payload, size - LORAMAC_MFR_LEN, nwkSKey, address, DOWN_LINK, downLinkCounter, &mic );
if( micRx == mic )
{
isMicOk = true;
}
}
else
{
// check for sequence roll-over
uint32_t downLinkCounterTmp = downLinkCounter + 0x10000 + ( int16_t )sequenceCounterDiff;
LoRaMacComputeMic( payload, size - LORAMAC_MFR_LEN, nwkSKey, address, DOWN_LINK, downLinkCounterTmp, &mic );
if( micRx == mic )
{
isMicOk = true;
downLinkCounter = downLinkCounterTmp;
}
}
if( isMicOk == true )
{
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_OK;
McpsIndication.Multicast = multicast;
McpsIndication.FramePending = fCtrl.Bits.FPending;
McpsIndication.Buffer = NULL;
McpsIndication.BufferSize = 0;
McpsIndication.DownLinkCounter = downLinkCounter;
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_OK;
AdrAckCounter = 0;
// Update 32 bits downlink counter
if( multicast == 1 )
{
McpsIndication.McpsIndication = MCPS_MULTICAST;
if( ( curMulticastParams->DownLinkCounter == downLinkCounter ) &&
( curMulticastParams->DownLinkCounter != 0 ) )
{
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_DOWNLINK_REPEATED;
McpsIndication.DownLinkCounter = downLinkCounter;
PrepareRxDoneAbort( );
return;
}
curMulticastParams->DownLinkCounter = downLinkCounter;
}
else
{
if( macHdr.Bits.MType == FRAME_TYPE_DATA_CONFIRMED_DOWN )
{
SrvAckRequested = true;
McpsIndication.McpsIndication = MCPS_CONFIRMED;
}
else
{
SrvAckRequested = false;
McpsIndication.McpsIndication = MCPS_UNCONFIRMED;
}
if( ( DownLinkCounter == downLinkCounter ) &&
( DownLinkCounter != 0 ) )
{
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_DOWNLINK_REPEATED;
McpsIndication.DownLinkCounter = downLinkCounter;
PrepareRxDoneAbort( );
return;
}
DownLinkCounter = downLinkCounter;
}
// Check if the frame is an acknowledgement
if( fCtrl.Bits.Ack == 1 )
{
McpsConfirm.AckReceived = true;
McpsIndication.AckReceived = true;
// Stop the AckTimeout timer as no more retransmissions
// are needed.
AckTimeoutTimer.detach();
}
else
{
McpsConfirm.AckReceived = false;
if( AckTimeoutRetriesCounter > AckTimeoutRetries )
{
// Stop the AckTimeout timer as no more retransmissions
// are needed.
AckTimeoutTimer.detach();
}
}
if( fCtrl.Bits.FOptsLen > 0 )
{
// Decode Options field MAC commands
ProcessMacCommands( payload, 8, appPayloadStartIndex, snr );
}
if( ( ( size - 4 ) - appPayloadStartIndex ) > 0 )
{
port = payload[appPayloadStartIndex++];
frameLen = ( size - 4 ) - appPayloadStartIndex;
McpsIndication.Port = port;
if( port == 0 )
{
LoRaMacPayloadDecrypt( payload + appPayloadStartIndex,
frameLen,
nwkSKey,
address,
DOWN_LINK,
downLinkCounter,
LoRaMacRxPayload );
// Decode frame payload MAC commands
ProcessMacCommands( LoRaMacRxPayload, 0, frameLen, snr );
}
else
{
LoRaMacPayloadDecrypt( payload + appPayloadStartIndex,
frameLen,
appSKey,
address,
DOWN_LINK,
downLinkCounter,
LoRaMacRxPayload );
McpsIndication.Buffer = LoRaMacRxPayload;
McpsIndication.BufferSize = frameLen;
McpsIndication.RxData = true;
}
}
LoRaMacFlags.Bits.McpsInd = 1;
}
else
{
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_MIC_FAIL;
PrepareRxDoneAbort( );
return;
}
}
break;
case FRAME_TYPE_PROPRIETARY:
{
memcpy1( LoRaMacRxPayload, &payload[pktHeaderLen], size );
McpsIndication.McpsIndication = MCPS_PROPRIETARY;
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_OK;
McpsIndication.Buffer = LoRaMacRxPayload;
McpsIndication.BufferSize = size - pktHeaderLen;
LoRaMacFlags.Bits.McpsInd = 1;
break;
}
default:
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_ERROR;
PrepareRxDoneAbort( );
break;
}
if( ( RxSlot == 0 ) && ( LoRaMacDeviceClass == CLASS_C ) )
{
OnRxWindow2TimerEvent( );
}
LoRaMacFlags.Bits.MacDone = 1;
}
static void OnRadioTxTimeout( void )
{
if( LoRaMacDeviceClass != CLASS_C )
{
radio.Sleep( );
}
else
{
OnRxWindow2TimerEvent( );
}
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_TX_TIMEOUT;
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_TX_TIMEOUT;
LoRaMacFlags.Bits.MacDone = 1;
}
static void OnRadioRxError( void )
{
if( LoRaMacDeviceClass != CLASS_C )
{
radio.Sleep( );
}
else
{
OnRxWindow2TimerEvent( );
}
if( RxSlot == 1 )
{
if( NodeAckRequested == true )
{
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX2_ERROR;
}
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX2_ERROR;
LoRaMacFlags.Bits.MacDone = 1;
}
}
static void OnRadioRxTimeout( void )
{
if( LoRaMacDeviceClass != CLASS_C )
{
radio.Sleep( );
}
else
{
OnRxWindow2TimerEvent( );
}
if( RxSlot == 1 )
{
if( NodeAckRequested == true )
{
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX2_TIMEOUT;
}
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX2_TIMEOUT;
LoRaMacFlags.Bits.MacDone = 1;
}
}
static void OnMacStateCheckTimerEvent( void )
{
MacStateCheckTimer.detach();
bool txTimeout = false;
if( LoRaMacFlags.Bits.MacDone == 1 )
{
if( ( LoRaMacFlags.Bits.MlmeReq == 1 ) || ( ( LoRaMacFlags.Bits.McpsReq == 1 ) ) )
{
if( ( McpsConfirm.Status == LORAMAC_EVENT_INFO_STATUS_TX_TIMEOUT ) ||
( MlmeConfirm.Status == LORAMAC_EVENT_INFO_STATUS_TX_TIMEOUT ) )
{
// Stop transmit cycle due to tx timeout.
LoRaMacState &= ~MAC_TX_RUNNING;
McpsConfirm.NbRetries = AckTimeoutRetriesCounter;
McpsConfirm.AckReceived = false;
McpsConfirm.TxTimeOnAir = 0;
txTimeout = true;
}
}
if( ( NodeAckRequested == false ) && ( txTimeout == false ) )
{
if( LoRaMacFlags.Bits.MlmeReq == 1 )
{
if( MlmeConfirm.MlmeRequest == MLME_JOIN )
{
if( MlmeConfirm.Status == LORAMAC_EVENT_INFO_STATUS_OK )
{
UpLinkCounter = 0;
}
// Join messages aren't repeated automatically
ChannelsNbRepCounter = ChannelsNbRep;
}
}
if( ( LoRaMacFlags.Bits.MlmeReq == 1 ) || ( ( LoRaMacFlags.Bits.McpsReq == 1 ) ) )
{
if( ( ChannelsNbRepCounter >= ChannelsNbRep ) || ( LoRaMacFlags.Bits.McpsInd == 1 ) )
{
ChannelsNbRepCounter = 0;
AdrAckCounter++;
if( IsUpLinkCounterFixed == false )
{
UpLinkCounter++;
}
LoRaMacState &= ~MAC_TX_RUNNING;
}
else
{
LoRaMacFlags.Bits.MacDone = 0;
// Sends the same frame again
ScheduleTx( );
}
}
}
if( LoRaMacFlags.Bits.McpsInd == 1 )
{
if( ( McpsConfirm.AckReceived == true ) || ( AckTimeoutRetriesCounter > AckTimeoutRetries ) )
{
AckTimeoutRetry = false;
NodeAckRequested = false;
if( IsUpLinkCounterFixed == false )
{
UpLinkCounter++;
}
McpsConfirm.NbRetries = AckTimeoutRetriesCounter;
LoRaMacState &= ~MAC_TX_RUNNING;
}
}
if( ( AckTimeoutRetry == true ) && ( ( LoRaMacState & MAC_TX_DELAYED ) == 0 ) )
{
AckTimeoutRetry = false;
if( ( AckTimeoutRetriesCounter < AckTimeoutRetries ) && ( AckTimeoutRetriesCounter <= MAX_ACK_RETRIES ) )
{
AckTimeoutRetriesCounter++;
if( ( AckTimeoutRetriesCounter % 2 ) == 1 )
{
ChannelsDatarate = MAX( ChannelsDatarate - 1, LORAMAC_MIN_DATARATE );
}
LoRaMacFlags.Bits.MacDone = 0;
// Sends the same frame again
ScheduleTx( );
}
else
{
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
// Re-enable default channels LC1, LC2, LC3
ChannelsMask[0] = ChannelsMask[0] | ( LC( 1 ) + LC( 2 ) + LC( 3 ) );
#elif defined( USE_BAND_915 )
// Re-enable default channels
ChannelsMask[0] = 0xFFFF;
ChannelsMask[1] = 0xFFFF;
ChannelsMask[2] = 0xFFFF;
ChannelsMask[3] = 0xFFFF;
ChannelsMask[4] = 0x00FF;
ChannelsMask[5] = 0x0000;
#elif defined( USE_BAND_915_HYBRID )
// Re-enable default channels
ChannelsMask[0] = 0x00FF;
ChannelsMask[1] = 0x0000;
ChannelsMask[2] = 0x0000;
ChannelsMask[3] = 0x0000;
ChannelsMask[4] = 0x0001;
ChannelsMask[5] = 0x0000;
#else
#error "Please define a frequency band in the compiler options."
#endif
LoRaMacState &= ~MAC_TX_RUNNING;
NodeAckRequested = false;
McpsConfirm.AckReceived = false;
McpsConfirm.NbRetries = AckTimeoutRetriesCounter;
if( IsUpLinkCounterFixed == false )
{
UpLinkCounter++;
}
}
}
}
// Handle reception for Class B and Class C
if( ( LoRaMacState & MAC_RX ) == MAC_RX )
{
LoRaMacState &= ~MAC_RX;
}
if( LoRaMacState == MAC_IDLE )
{
if( LoRaMacFlags.Bits.McpsReq == 1 )
{
LoRaMacPrimitives->MacMcpsConfirm( &McpsConfirm );
LoRaMacFlags.Bits.McpsReq = 0;
}
if( LoRaMacFlags.Bits.MlmeReq == 1 )
{
LoRaMacPrimitives->MacMlmeConfirm( &MlmeConfirm );
LoRaMacFlags.Bits.MlmeReq = 0;
}
LoRaMacFlags.Bits.MacDone = 0;
}
else
{
// Operation not finished restart timer
MacStateCheckTimer.attach_us(OnMacStateCheckTimerEvent, MAC_STATE_CHECK_TIMEOUT);
}
if( LoRaMacFlags.Bits.McpsInd == 1 )
{
LoRaMacPrimitives->MacMcpsIndication( &McpsIndication );
LoRaMacFlags.Bits.McpsInd = 0;
}
}
static void OnTxDelayedTimerEvent( void )
{
TxDelayedTimer.detach();
LoRaMacState &= ~MAC_TX_DELAYED;
ScheduleTx( );
}
static void OnRxWindow1TimerEvent( void )
{
uint16_t symbTimeout = 5; // DR_2, DR_1, DR_0
int8_t datarate = 0;
uint32_t bandwidth = 0; // LoRa 125 kHz
RxWindowTimer1.detach();
RxSlot = 0;
if( LoRaMacDeviceClass == CLASS_C )
{
radio.Standby( );
}
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
datarate = ChannelsDatarate - Rx1DrOffset;
if( datarate < 0 )
{
datarate = DR_0;
}
// For higher datarates, we increase the number of symbols generating a Rx Timeout
if( datarate >= DR_3 )
{ // DR_6, DR_5, DR_4, DR_3
symbTimeout = 8;
}
if( datarate == DR_6 )
{// LoRa 250 kHz
bandwidth = 1;
}
RxWindowSetup( Channels[Channel].Frequency, datarate, bandwidth, symbTimeout, false );
#elif ( defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID ) )
datarate = datarateOffsets[ChannelsDatarate][Rx1DrOffset];
if( datarate < 0 )
{
datarate = DR_0;
}
// For higher datarates, we increase the number of symbols generating a Rx Timeout
if( datarate > DR_0 )
{ // DR_1, DR_2, DR_3, DR_4, DR_8, DR_9, DR_10, DR_11, DR_12, DR_13
symbTimeout = 8;
}
if( datarate >= DR_4 )
{// LoRa 500 kHz
bandwidth = 2;
}
RxWindowSetup( 923.3e6 + ( Channel % 8 ) * 600e3, datarate, bandwidth, symbTimeout, false );
#else
#error "Please define a frequency band in the compiler options."
#endif
}
static void OnRxWindow2TimerEvent( void )
{
uint16_t symbTimeout = 5; // DR_2, DR_1, DR_0
uint32_t bandwidth = 0; // LoRa 125 kHz
RxWindowTimer2.detach();
RxSlot = 1;
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
// For higher datarates, we increase the number of symbols generating a Rx Timeout
if( Rx2Channel.Datarate >= DR_3 )
{ // DR_6, DR_5, DR_4, DR_3
symbTimeout = 8;
}
if( Rx2Channel.Datarate == DR_6 )
{// LoRa 250 kHz
bandwidth = 1;
}
#elif ( defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID ) )
// For higher datarates, we increase the number of symbols generating a Rx Timeout
if( Rx2Channel.Datarate > DR_0 )
{ // DR_1, DR_2, DR_3, DR_4, DR_8, DR_9, DR_10, DR_11, DR_12, DR_13
symbTimeout = 8;
}
if( Rx2Channel.Datarate >= DR_4 )
{// LoRa 500 kHz
bandwidth = 2;
}
#else
#error "Please define a frequency band in the compiler options."
#endif
if( LoRaMacDeviceClass != CLASS_C )
{
RxWindowSetup( Rx2Channel.Frequency, Rx2Channel.Datarate, bandwidth, symbTimeout, false );
}
else
{
RxWindowSetup( Rx2Channel.Frequency, Rx2Channel.Datarate, bandwidth, symbTimeout, true );
}
}
static void OnAckTimeoutTimerEvent( void )
{
AckTimeoutTimer.detach();
if( NodeAckRequested == true )
{
AckTimeoutRetry = true;
LoRaMacState &= ~MAC_ACK_REQ;
}
if( LoRaMacDeviceClass == CLASS_C )
{
LoRaMacFlags.Bits.MacDone = 1;
}
}
static bool SetNextChannel( TimerTime_t* time )
{
uint8_t nbEnabledChannels = 0;
uint8_t delayTx = 0;
uint8_t enabledChannels[LORA_MAX_NB_CHANNELS];
TimerTime_t curTime = timerGeneralPurpose.read_us( );
TimerTime_t nextTxDelay = ( TimerTime_t )( -1 );
memset1( enabledChannels, 0, LORA_MAX_NB_CHANNELS );
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
if( CountNbEnabled125kHzChannels( ChannelsMaskRemaining ) == 0 )
{ // Restore default channels
memcpy1( ( uint8_t* ) ChannelsMaskRemaining, ( uint8_t* ) ChannelsMask, 8 );
}
if( ( ChannelsDatarate >= DR_4 ) && ( ( ChannelsMaskRemaining[4] & 0x00FF ) == 0 ) )
{ // Make sure, that the channels are activated
ChannelsMaskRemaining[4] = ChannelsMask[4];
}
#else
uint8_t chanCnt = 0;
for( uint8_t i = 0, k = 0; i < LORA_MAX_NB_CHANNELS; i += 16, k++ )
{
if( ChannelsMask[k] != 0 )
{
chanCnt++;
break;
}
}
if( chanCnt == 0 )
{
// Re-enable default channels, if no channel is enabled
ChannelsMask[0] = ChannelsMask[0] | ( LC( 1 ) + LC( 2 ) + LC( 3 ) );
}
#endif
// Update Aggregated duty cycle
if( AggregatedTimeOff < ( curTime - AggregatedLastTxDoneTime ) )
{
AggregatedTimeOff = 0;
// Update bands Time OFF
for( uint8_t i = 0; i < LORA_MAX_NB_BANDS; i++ )
{
if( DutyCycleOn == true )
{
if( Bands[i].TimeOff < ( curTime - Bands[i].LastTxDoneTime ) )
{
Bands[i].TimeOff = 0;
}
if( Bands[i].TimeOff != 0 )
{
nextTxDelay = MIN( Bands[i].TimeOff -
( curTime - Bands[i].LastTxDoneTime ),
nextTxDelay );
}
}
else
{
nextTxDelay = 0;
Bands[i].TimeOff = 0;
}
}
// Search how many channels are enabled
for( uint8_t i = 0, k = 0; i < LORA_MAX_NB_CHANNELS; i += 16, k++ )
{
for( uint8_t j = 0; j < 16; j++ )
{
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
if( ( ChannelsMaskRemaining[k] & ( 1 << j ) ) != 0 )
#else
if( ( ChannelsMask[k] & ( 1 << j ) ) != 0 )
#endif
{
if( Channels[i + j].Frequency == 0 )
{ // Check if the channel is enabled
continue;
}
if( ( ( Channels[i + j].DrRange.Fields.Min <= ChannelsDatarate ) &&
( ChannelsDatarate <= Channels[i + j].DrRange.Fields.Max ) ) == false )
{ // Check if the current channel selection supports the given datarate
continue;
}
if( Bands[Channels[i + j].Band].TimeOff > 0 )
{ // Check if the band is available for transmission
delayTx++;
continue;
}
enabledChannels[nbEnabledChannels++] = i + j;
}
}
}
}
else
{
delayTx++;
nextTxDelay = AggregatedTimeOff - ( curTime - AggregatedLastTxDoneTime );
}
if( nbEnabledChannels > 0 )
{
Channel = enabledChannels[randr( 0, nbEnabledChannels - 1 )];
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
if( Channel < ( LORA_MAX_NB_CHANNELS - 8 ) )
{
DisableChannelInMask( Channel, ChannelsMaskRemaining );
}
#endif
*time = 0;
return true;
}
else
{
if( delayTx > 0 )
{
// Delay transmission due to AggregatedTimeOff or to a band time off
*time = nextTxDelay;
return true;
}
// Datarate not supported by any channel
*time = 0;
return false;
}
}
static void SetPublicNetwork( bool enable )
{
PublicNetwork = enable;
radio.SetModem( MODEM_LORA );
if( PublicNetwork == true )
{
// Change LoRa modem SyncWord
radio.Write( REG_LR_SYNCWORD, LORA_MAC_PUBLIC_SYNCWORD );
}
else
{
// Change LoRa modem SyncWord
radio.Write( REG_LR_SYNCWORD, LORA_MAC_PRIVATE_SYNCWORD );
}
}
static void RxWindowSetup( uint32_t freq, int8_t datarate, uint32_t bandwidth, uint16_t timeout, bool rxContinuous )
{
uint8_t downlinkDatarate = Datarates[datarate];
ModemType modem;
if( radio.GetState( ) == IDLE )
{
radio.SetChannel( freq );
// Store downlink datarate
McpsIndication.RxDatarate = ( uint8_t ) datarate;
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
if( datarate == DR_7 )
{
modem = MODEM_FSK;
radio.SetRxConfig( modem, 50e3, downlinkDatarate * 1e3, 0, 83.333e3, 5, 0, false, 0, true, 0, 0, false, rxContinuous );
}
else
{
modem = MODEM_LORA;
radio.SetRxConfig( modem, bandwidth, downlinkDatarate, 1, 0, 8, timeout, false, 0, false, 0, 0, true, rxContinuous );
}
#elif defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
modem = MODEM_LORA;
radio.SetRxConfig( modem, bandwidth, downlinkDatarate, 1, 0, 8, timeout, false, 0, false, 0, 0, true, rxContinuous );
#endif
if( RepeaterSupport == true )
{
radio.SetMaxPayloadLength( modem, MaxPayloadOfDatarateRepeater[datarate] );
}
else
{
radio.SetMaxPayloadLength( modem, MaxPayloadOfDatarate[datarate] );
}
if( rxContinuous == false )
{
radio.Rx( MaxRxWindow );
}
else
{
radio.Rx( 0 ); // Continuous mode
}
}
}
static bool ValidatePayloadLength( uint8_t lenN, int8_t datarate, uint8_t fOptsLen )
{
uint16_t maxN = 0;
uint16_t payloadSize = 0;
// Get the maximum payload length
if( RepeaterSupport == true )
{
maxN = MaxPayloadOfDatarateRepeater[datarate];
}
else
{
maxN = MaxPayloadOfDatarate[datarate];
}
// Calculate the resulting payload size
payloadSize = ( lenN + fOptsLen );
// Validation of the application payload size
if( ( payloadSize <= maxN ) && ( payloadSize <= LORAMAC_PHY_MAXPAYLOAD ) )
{
return true;
}
return false;
}
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
static uint8_t CountNbEnabled125kHzChannels( uint16_t *channelsMask )
{
uint8_t nb125kHzChannels = 0;
for( uint8_t i = 0, k = 0; i < LORA_MAX_NB_CHANNELS - 8; i += 16, k++ )
{
for( uint8_t j = 0; j < 16; j++ )
{// Verify if the channel is active
if( ( channelsMask[k] & ( 1 << j ) ) == ( 1 << j ) )
{
nb125kHzChannels++;
}
}
}
return nb125kHzChannels;
}
#endif
static int8_t LimitTxPower( int8_t txPower )
{
int8_t resultTxPower = txPower;
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
if( ( ChannelsDatarate == DR_4 ) ||
( ( ChannelsDatarate >= DR_8 ) && ( ChannelsDatarate <= DR_13 ) ) )
{// Limit tx power to max 26dBm
resultTxPower = MAX( txPower, TX_POWER_26_DBM );
}
else
{
if( CountNbEnabled125kHzChannels( ChannelsMask ) < 50 )
{// Limit tx power to max 21dBm
resultTxPower = MAX( txPower, TX_POWER_20_DBM );
}
}
#endif
return resultTxPower;
}
static bool ValueInRange( int8_t value, int8_t min, int8_t max )
{
if( ( value >= min ) && ( value <= max ) )
{
return true;
}
return false;
}
static bool DisableChannelInMask( uint8_t id, uint16_t* mask )
{
uint8_t index = 0;
index = id / 16;
if( ( index > 4 ) || ( id >= LORA_MAX_NB_CHANNELS ) )
{
return false;
}
// Deactivate channel
mask[index] &= ~( 1 << ( id % 16 ) );
return true;
}
static bool AdrNextDr( bool adrEnabled, bool updateChannelMask, int8_t* datarateOut )
{
bool adrAckReq = false;
int8_t datarate = ChannelsDatarate;
if( adrEnabled == true )
{
if( datarate == LORAMAC_MIN_DATARATE )
{
AdrAckCounter = 0;
adrAckReq = false;
}
else
{
if( AdrAckCounter >= ADR_ACK_LIMIT )
{
adrAckReq = true;
}
else
{
adrAckReq = false;
}
if( AdrAckCounter >= ( ADR_ACK_LIMIT + ADR_ACK_DELAY ) )
{
if( ( ( AdrAckCounter - ADR_ACK_DELAY ) % ADR_ACK_LIMIT ) == 0 )
{
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
if( datarate > LORAMAC_MIN_DATARATE )
{
datarate--;
}
if( datarate == LORAMAC_MIN_DATARATE )
{
if( updateChannelMask == true )
{
// Re-enable default channels LC1, LC2, LC3
ChannelsMask[0] = ChannelsMask[0] | ( LC( 1 ) + LC( 2 ) + LC( 3 ) );
}
}
#elif defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
if( ( datarate > LORAMAC_MIN_DATARATE ) && ( datarate == DR_8 ) )
{
datarate = DR_4;
}
else if( datarate > LORAMAC_MIN_DATARATE )
{
datarate--;
}
if( datarate == LORAMAC_MIN_DATARATE )
{
if( updateChannelMask == true )
{
#if defined( USE_BAND_915 )
// Re-enable default channels
ChannelsMask[0] = 0xFFFF;
ChannelsMask[1] = 0xFFFF;
ChannelsMask[2] = 0xFFFF;
ChannelsMask[3] = 0xFFFF;
ChannelsMask[4] = 0x00FF;
ChannelsMask[5] = 0x0000;
#else // defined( USE_BAND_915_HYBRID )
// Re-enable default channels
ChannelsMask[0] = 0x00FF;
ChannelsMask[1] = 0x0000;
ChannelsMask[2] = 0x0000;
ChannelsMask[3] = 0x0000;
ChannelsMask[4] = 0x0001;
ChannelsMask[5] = 0x0000;
#endif
}
}
#else
#error "Please define a frequency band in the compiler options."
#endif
}
}
}
}
*datarateOut = datarate;
return adrAckReq;
}
static LoRaMacStatus_t AddMacCommand( uint8_t cmd, uint8_t p1, uint8_t p2 )
{
LoRaMacStatus_t status = LORAMAC_STATUS_BUSY;
switch( cmd )
{
case MOTE_MAC_LINK_CHECK_REQ:
if( MacCommandsBufferIndex < LORA_MAC_COMMAND_MAX_LENGTH )
{
MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
// No payload for this command
status = LORAMAC_STATUS_OK;
}
break;
case MOTE_MAC_LINK_ADR_ANS:
if( MacCommandsBufferIndex < ( LORA_MAC_COMMAND_MAX_LENGTH - 1 ) )
{
MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
// Margin
MacCommandsBuffer[MacCommandsBufferIndex++] = p1;
status = LORAMAC_STATUS_OK;
}
break;
case MOTE_MAC_DUTY_CYCLE_ANS:
if( MacCommandsBufferIndex < LORA_MAC_COMMAND_MAX_LENGTH )
{
MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
// No payload for this answer
status = LORAMAC_STATUS_OK;
}
break;
case MOTE_MAC_RX_PARAM_SETUP_ANS:
if( MacCommandsBufferIndex < ( LORA_MAC_COMMAND_MAX_LENGTH - 1 ) )
{
MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
// Status: Datarate ACK, Channel ACK
MacCommandsBuffer[MacCommandsBufferIndex++] = p1;
status = LORAMAC_STATUS_OK;
}
break;
case MOTE_MAC_DEV_STATUS_ANS:
if( MacCommandsBufferIndex < ( LORA_MAC_COMMAND_MAX_LENGTH - 2 ) )
{
MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
// 1st byte Battery
// 2nd byte Margin
MacCommandsBuffer[MacCommandsBufferIndex++] = p1;
MacCommandsBuffer[MacCommandsBufferIndex++] = p2;
status = LORAMAC_STATUS_OK;
}
break;
case MOTE_MAC_NEW_CHANNEL_ANS:
if( MacCommandsBufferIndex < ( LORA_MAC_COMMAND_MAX_LENGTH - 1 ) )
{
MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
// Status: Datarate range OK, Channel frequency OK
MacCommandsBuffer[MacCommandsBufferIndex++] = p1;
status = LORAMAC_STATUS_OK;
}
break;
case MOTE_MAC_RX_TIMING_SETUP_ANS:
if( MacCommandsBufferIndex < LORA_MAC_COMMAND_MAX_LENGTH )
{
MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
// No payload for this answer
status = LORAMAC_STATUS_OK;
}
break;
default:
return LORAMAC_STATUS_SERVICE_UNKNOWN;
}
if( status == LORAMAC_STATUS_OK )
{
MacCommandsInNextTx = true;
}
return status;
}
static void ProcessMacCommands( uint8_t *payload, uint8_t macIndex, uint8_t commandsSize, uint8_t snr )
{
while( macIndex < commandsSize )
{
// Decode Frame MAC commands
switch( payload[macIndex++] )
{
case SRV_MAC_LINK_CHECK_ANS:
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_OK;
MlmeConfirm.DemodMargin = payload[macIndex++];
MlmeConfirm.NbGateways = payload[macIndex++];
break;
case SRV_MAC_LINK_ADR_REQ:
{
uint8_t i;
uint8_t status = 0x07;
uint16_t chMask;
int8_t txPower = 0;
int8_t datarate = 0;
uint8_t nbRep = 0;
uint8_t chMaskCntl = 0;
uint16_t channelsMask[6] = { 0, 0, 0, 0, 0, 0 };
// Initialize local copy of the channels mask array
for( i = 0; i < 6; i++ )
{
channelsMask[i] = ChannelsMask[i];
}
datarate = payload[macIndex++];
txPower = datarate & 0x0F;
datarate = ( datarate >> 4 ) & 0x0F;
if( ( AdrCtrlOn == false ) &&
( ( ChannelsDatarate != datarate ) || ( ChannelsTxPower != txPower ) ) )
{ // ADR disabled don't handle ADR requests if server tries to change datarate or txpower
// Answer the server with fail status
// Power ACK = 0
// Data rate ACK = 0
// Channel mask = 0
AddMacCommand( MOTE_MAC_LINK_ADR_ANS, 0, 0 );
macIndex += 3; // Skip over the remaining bytes of the request
break;
}
chMask = ( uint16_t )payload[macIndex++];
chMask |= ( uint16_t )payload[macIndex++] << 8;
nbRep = payload[macIndex++];
chMaskCntl = ( nbRep >> 4 ) & 0x07;
nbRep &= 0x0F;
if( nbRep == 0 )
{
nbRep = 1;
}
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
if( ( chMaskCntl == 0 ) && ( chMask == 0 ) )
{
status &= 0xFE; // Channel mask KO
}
else if( ( ( chMaskCntl >= 1 ) && ( chMaskCntl <= 5 )) ||
( chMaskCntl >= 7 ) )
{
// RFU
status &= 0xFE; // Channel mask KO
}
else
{
for( i = 0; i < LORA_MAX_NB_CHANNELS; i++ )
{
if( chMaskCntl == 6 )
{
if( Channels[i].Frequency != 0 )
{
chMask |= 1 << i;
}
}
else
{
if( ( ( chMask & ( 1 << i ) ) != 0 ) &&
( Channels[i].Frequency == 0 ) )
{// Trying to enable an undefined channel
status &= 0xFE; // Channel mask KO
}
}
}
channelsMask[0] = chMask;
}
#elif defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
if( chMaskCntl == 6 )
{
// Enable all 125 kHz channels
for( uint8_t i = 0, k = 0; i < LORA_MAX_NB_CHANNELS - 8; i += 16, k++ )
{
for( uint8_t j = 0; j < 16; j++ )
{
if( Channels[i + j].Frequency != 0 )
{
channelsMask[k] |= 1 << j;
}
}
}
}
else if( chMaskCntl == 7 )
{
// Disable all 125 kHz channels
channelsMask[0] = 0x0000;
channelsMask[1] = 0x0000;
channelsMask[2] = 0x0000;
channelsMask[3] = 0x0000;
}
else if( chMaskCntl == 5 )
{
// RFU
status &= 0xFE; // Channel mask KO
}
else
{
for( uint8_t i = 0; i < 16; i++ )
{
if( ( ( chMask & ( 1 << i ) ) != 0 ) &&
( Channels[chMaskCntl * 16 + i].Frequency == 0 ) )
{// Trying to enable an undefined channel
status &= 0xFE; // Channel mask KO
}
}
channelsMask[chMaskCntl] = chMask;
if( CountNbEnabled125kHzChannels( channelsMask ) < 6 )
{
status &= 0xFE; // Channel mask KO
}
}
#else
#error "Please define a frequency band in the compiler options."
#endif
if( ValueInRange( datarate, LORAMAC_MIN_DATARATE, LORAMAC_MAX_DATARATE ) == false )
{
status &= 0xFD; // Datarate KO
}
//
// Remark MaxTxPower = 0 and MinTxPower = 5
//
if( ValueInRange( txPower, LORAMAC_MAX_TX_POWER, LORAMAC_MIN_TX_POWER ) == false )
{
status &= 0xFB; // TxPower KO
}
if( ( status & 0x07 ) == 0x07 )
{
ChannelsDatarate = datarate;
ChannelsTxPower = txPower;
#if defined( USE_BAND_915_HYBRID )
ChannelsMask[0] = channelsMask[0] & 0x00FF;
ChannelsMask[1] = channelsMask[1] & 0x0000;
ChannelsMask[2] = channelsMask[2] & 0x0000;
ChannelsMask[3] = channelsMask[3] & 0x0000;
ChannelsMask[4] = channelsMask[4] & 0x0001;
ChannelsMask[5] = channelsMask[5] & 0x0000;
#else
ChannelsMask[0] = channelsMask[0];
ChannelsMask[1] = channelsMask[1];
ChannelsMask[2] = channelsMask[2];
ChannelsMask[3] = channelsMask[3];
ChannelsMask[4] = channelsMask[4];
ChannelsMask[5] = channelsMask[5];
#endif
ChannelsNbRep = nbRep;
}
AddMacCommand( MOTE_MAC_LINK_ADR_ANS, status, 0 );
}
break;
case SRV_MAC_DUTY_CYCLE_REQ:
MaxDCycle = payload[macIndex++];
AggregatedDCycle = 1 << MaxDCycle;
AddMacCommand( MOTE_MAC_DUTY_CYCLE_ANS, 0, 0 );
break;
case SRV_MAC_RX_PARAM_SETUP_REQ:
{
uint8_t status = 0x07;
int8_t datarate = 0;
int8_t drOffset = 0;
uint32_t freq = 0;
drOffset = ( payload[macIndex] >> 4 ) & 0x07;
datarate = payload[macIndex] & 0x0F;
macIndex++;
freq = ( uint32_t )payload[macIndex++];
freq |= ( uint32_t )payload[macIndex++] << 8;
freq |= ( uint32_t )payload[macIndex++] << 16;
freq *= 100;
if( radio.CheckRfFrequency( freq ) == false )
{
status &= 0xFE; // Channel frequency KO
}
if( ValueInRange( datarate, LORAMAC_MIN_DATARATE, LORAMAC_MAX_DATARATE ) == false )
{
status &= 0xFD; // Datarate KO
}
#if ( defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID ) )
if( ( ValueInRange( datarate, DR_5, DR_7 ) == true ) ||
( datarate > DR_13 ) )
{
status &= 0xFD; // Datarate KO
}
#endif
if( ValueInRange( drOffset, LORAMAC_MIN_RX1_DR_OFFSET, LORAMAC_MAX_RX1_DR_OFFSET ) == false )
{
status &= 0xFB; // Rx1DrOffset range KO
}
if( ( status & 0x07 ) == 0x07 )
{
Rx2Channel.Datarate = datarate;
Rx2Channel.Frequency = freq;
Rx1DrOffset = drOffset;
}
AddMacCommand( MOTE_MAC_RX_PARAM_SETUP_ANS, status, 0 );
}
break;
case SRV_MAC_DEV_STATUS_REQ:
{
uint8_t batteryLevel = BAT_LEVEL_NO_MEASURE;
if( ( LoRaMacCallbacks != NULL ) && ( LoRaMacCallbacks->GetBatteryLevel != NULL ) )
{
//GetBatteryLevel not implemented and turned off for cert test purposes
//batteryLevel = LoRaMacCallbacks->GetBatteryLevel( );
}
AddMacCommand( MOTE_MAC_DEV_STATUS_ANS, batteryLevel, snr );
break;
}
case SRV_MAC_NEW_CHANNEL_REQ:
{
uint8_t status = 0x03;
#if ( defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID ) )
status &= 0xFC; // Channel frequency and datarate KO
macIndex += 5;
#else
int8_t channelIndex = 0;
ChannelParams_t chParam;
channelIndex = payload[macIndex++];
chParam.Frequency = ( uint32_t )payload[macIndex++];
chParam.Frequency |= ( uint32_t )payload[macIndex++] << 8;
chParam.Frequency |= ( uint32_t )payload[macIndex++] << 16;
chParam.Frequency *= 100;
chParam.DrRange.Value = payload[macIndex++];
LoRaMacState |= MAC_TX_CONFIG;
if( chParam.Frequency == 0 )
{
if( channelIndex < 3 )
{
status &= 0xFC;
}
else
{
if( LoRaMacChannelRemove( channelIndex ) != LORAMAC_STATUS_OK )
{
status &= 0xFC;
}
}
}
else
{
switch( LoRaMacChannelAdd( channelIndex, chParam ) )
{
case LORAMAC_STATUS_OK:
{
break;
}
case LORAMAC_STATUS_FREQUENCY_INVALID:
{
status &= 0xFE;
break;
}
case LORAMAC_STATUS_DATARATE_INVALID:
{
status &= 0xFD;
break;
}
case LORAMAC_STATUS_FREQ_AND_DR_INVALID:
{
status &= 0xFC;
break;
}
default:
{
status &= 0xFC;
break;
}
}
}
LoRaMacState &= ~MAC_TX_CONFIG;
#endif
AddMacCommand( MOTE_MAC_NEW_CHANNEL_ANS, status, 0 );
}
break;
case SRV_MAC_RX_TIMING_SETUP_REQ:
{
uint8_t delay = payload[macIndex++] & 0x0F;
if( delay == 0 )
{
delay++;
}
ReceiveDelay1 = delay * 1e6;
ReceiveDelay2 = ReceiveDelay1 + 1e6;
AddMacCommand( MOTE_MAC_RX_TIMING_SETUP_ANS, 0, 0 );
}
break;
default:
// Unknown command. ABORT MAC commands processing
return;
}
}
}
LoRaMacStatus_t Send( LoRaMacHeader_t *macHdr, uint8_t fPort, void *fBuffer, uint16_t fBufferSize )
{
LoRaMacFrameCtrl_t fCtrl;
LoRaMacStatus_t status = LORAMAC_STATUS_PARAMETER_INVALID;
fCtrl.Value = 0;
fCtrl.Bits.FOptsLen = 0;
fCtrl.Bits.FPending = 0;
fCtrl.Bits.Ack = false;
fCtrl.Bits.AdrAckReq = false;
fCtrl.Bits.Adr = AdrCtrlOn;
// Prepare the frame
status = PrepareFrame( macHdr, &fCtrl, fPort, fBuffer, fBufferSize );
// Validate status
if( status != LORAMAC_STATUS_OK )
{
return status;
}
// Reset confirm parameters
McpsConfirm.NbRetries = 0;
McpsConfirm.AckReceived = false;
McpsConfirm.UpLinkCounter = UpLinkCounter;
status = ScheduleTx( );
return status;
}
static LoRaMacStatus_t ScheduleTx( )
{
TimerTime_t dutyCycleTimeOff = 0;
// Check if the device is off
if( MaxDCycle == 255 )
{
return LORAMAC_STATUS_DEVICE_OFF;
}
if( MaxDCycle == 0 )
{
AggregatedTimeOff = 0;
}
// Select channel
while( SetNextChannel( &dutyCycleTimeOff ) == false )
{
// Set the default datarate
ChannelsDatarate = ChannelsDefaultDatarate;
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
// Re-enable default channels LC1, LC2, LC3
ChannelsMask[0] = ChannelsMask[0] | ( LC( 1 ) + LC( 2 ) + LC( 3 ) );
#endif
}
// Schedule transmission of frame
if( dutyCycleTimeOff == 0 )
{
// Try to send now
return SendFrameOnChannel( Channels[Channel] );
}
else
{
// Send later - prepare timer
LoRaMacState |= MAC_TX_DELAYED;
TxDelayedTimer.attach_us(OnTxDelayedTimerEvent, dutyCycleTimeOff);
return LORAMAC_STATUS_OK;
}
}
LoRaMacStatus_t PrepareFrame( LoRaMacHeader_t *macHdr, LoRaMacFrameCtrl_t *fCtrl, uint8_t fPort, void *fBuffer, uint16_t fBufferSize )
{
uint16_t i;
uint8_t pktHeaderLen = 0;
uint32_t mic = 0;
const void* payload = fBuffer;
uint8_t payloadSize = fBufferSize;
uint8_t framePort = fPort;
LoRaMacBufferPktLen = 0;
NodeAckRequested = false;
if( fBuffer == NULL )
{
fBufferSize = 0;
}
LoRaMacBuffer[pktHeaderLen++] = macHdr->Value;
switch( macHdr->Bits.MType )
{
case FRAME_TYPE_JOIN_REQ:
RxWindow1Delay = JoinAcceptDelay1 - RADIO_WAKEUP_TIME;
RxWindow2Delay = JoinAcceptDelay2 - RADIO_WAKEUP_TIME;
LoRaMacBufferPktLen = pktHeaderLen;
memcpyr( LoRaMacBuffer + LoRaMacBufferPktLen, LoRaMacAppEui, 8 );
LoRaMacBufferPktLen += 8;
memcpyr( LoRaMacBuffer + LoRaMacBufferPktLen, LoRaMacDevEui, 8 );
LoRaMacBufferPktLen += 8;
LoRaMacDevNonce = radio.Random( );
LoRaMacBuffer[LoRaMacBufferPktLen++] = LoRaMacDevNonce & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen++] = ( LoRaMacDevNonce >> 8 ) & 0xFF;
LoRaMacJoinComputeMic( LoRaMacBuffer, LoRaMacBufferPktLen & 0xFF, LoRaMacAppKey, &mic );
LoRaMacBuffer[LoRaMacBufferPktLen++] = mic & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen++] = ( mic >> 8 ) & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen++] = ( mic >> 16 ) & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen++] = ( mic >> 24 ) & 0xFF;
break;
case FRAME_TYPE_DATA_CONFIRMED_UP:
NodeAckRequested = true;
//Intentional falltrough
case FRAME_TYPE_DATA_UNCONFIRMED_UP:
if( IsLoRaMacNetworkJoined == false )
{
return LORAMAC_STATUS_NO_NETWORK_JOINED; // No network has been joined yet
}
fCtrl->Bits.AdrAckReq = AdrNextDr( fCtrl->Bits.Adr, true, &ChannelsDatarate );
if( ValidatePayloadLength( fBufferSize, ChannelsDatarate, MacCommandsBufferIndex ) == false )
{
return LORAMAC_STATUS_LENGTH_ERROR;
}
RxWindow1Delay = ReceiveDelay1 - RADIO_WAKEUP_TIME;
RxWindow2Delay = ReceiveDelay2 - RADIO_WAKEUP_TIME;
if( SrvAckRequested == true )
{
SrvAckRequested = false;
fCtrl->Bits.Ack = 1;
}
LoRaMacBuffer[pktHeaderLen++] = ( LoRaMacDevAddr ) & 0xFF;
LoRaMacBuffer[pktHeaderLen++] = ( LoRaMacDevAddr >> 8 ) & 0xFF;
LoRaMacBuffer[pktHeaderLen++] = ( LoRaMacDevAddr >> 16 ) & 0xFF;
LoRaMacBuffer[pktHeaderLen++] = ( LoRaMacDevAddr >> 24 ) & 0xFF;
LoRaMacBuffer[pktHeaderLen++] = fCtrl->Value;
LoRaMacBuffer[pktHeaderLen++] = UpLinkCounter & 0xFF;
LoRaMacBuffer[pktHeaderLen++] = ( UpLinkCounter >> 8 ) & 0xFF;
if( ( payload != NULL ) && ( payloadSize > 0 ) )
{
if( ( MacCommandsBufferIndex <= LORA_MAC_COMMAND_MAX_LENGTH ) && ( MacCommandsInNextTx == true ) )
{
fCtrl->Bits.FOptsLen += MacCommandsBufferIndex;
// Update FCtrl field with new value of OptionsLength
LoRaMacBuffer[0x05] = fCtrl->Value;
for( i = 0; i < MacCommandsBufferIndex; i++ )
{
LoRaMacBuffer[pktHeaderLen++] = MacCommandsBuffer[i];
}
}
}
else
{
if( ( MacCommandsBufferIndex > 0 ) && ( MacCommandsInNextTx ) )
{
payloadSize = MacCommandsBufferIndex;
payload = MacCommandsBuffer;
framePort = 0;
}
}
MacCommandsInNextTx = false;
MacCommandsBufferIndex = 0;
if( ( payload != NULL ) && ( payloadSize > 0 ) )
{
LoRaMacBuffer[pktHeaderLen++] = framePort;
if( framePort == 0 )
{
LoRaMacPayloadEncrypt( (uint8_t* ) payload, payloadSize, LoRaMacNwkSKey, LoRaMacDevAddr, UP_LINK, UpLinkCounter, LoRaMacPayload );
}
else
{
LoRaMacPayloadEncrypt( (uint8_t* ) payload, payloadSize, LoRaMacAppSKey, LoRaMacDevAddr, UP_LINK, UpLinkCounter, LoRaMacPayload );
}
memcpy1( LoRaMacBuffer + pktHeaderLen, LoRaMacPayload, payloadSize );
}
LoRaMacBufferPktLen = pktHeaderLen + payloadSize;
LoRaMacComputeMic( LoRaMacBuffer, LoRaMacBufferPktLen, LoRaMacNwkSKey, LoRaMacDevAddr, UP_LINK, UpLinkCounter, &mic );
LoRaMacBuffer[LoRaMacBufferPktLen + 0] = mic & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen + 1] = ( mic >> 8 ) & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen + 2] = ( mic >> 16 ) & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen + 3] = ( mic >> 24 ) & 0xFF;
LoRaMacBufferPktLen += LORAMAC_MFR_LEN;
break;
case FRAME_TYPE_PROPRIETARY:
if( ( fBuffer != NULL ) && ( fBufferSize > 0 ) )
{
memcpy1( LoRaMacBuffer + pktHeaderLen, ( uint8_t* ) fBuffer, fBufferSize );
LoRaMacBufferPktLen = pktHeaderLen + fBufferSize;
}
break;
default:
return LORAMAC_STATUS_SERVICE_UNKNOWN;
}
return LORAMAC_STATUS_OK;
}
LoRaMacStatus_t SendFrameOnChannel( ChannelParams_t channel )
{
int8_t datarate = Datarates[ChannelsDatarate];
int8_t txPower = 0;
ChannelsTxPower = LimitTxPower( ChannelsTxPower );
txPower = TxPowers[ChannelsTxPower];
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_ERROR;
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_ERROR;
McpsConfirm.Datarate = ChannelsDatarate;
McpsConfirm.TxPower = ChannelsTxPower;
radio.SetChannel( channel.Frequency );
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
if( ChannelsDatarate == DR_7 )
{ // High Speed FSK channel
radio.SetMaxPayloadLength( MODEM_FSK, LoRaMacBufferPktLen );
radio.SetTxConfig( MODEM_FSK, txPower, 25e3, 0, datarate * 1e3, 0, 5, false, true, 0, 0, false, 3e6 );
TxTimeOnAir = radio.TimeOnAir( MODEM_FSK, LoRaMacBufferPktLen );
}
else if( ChannelsDatarate == DR_6 )
{ // High speed LoRa channel
radio.SetMaxPayloadLength( MODEM_LORA, LoRaMacBufferPktLen );
radio.SetTxConfig( MODEM_LORA, txPower, 0, 1, datarate, 1, 8, false, true, 0, 0, false, 3e6 );
TxTimeOnAir = radio.TimeOnAir( MODEM_LORA, LoRaMacBufferPktLen );
}
else
{ // Normal LoRa channel
radio.SetMaxPayloadLength( MODEM_LORA, LoRaMacBufferPktLen );
radio.SetTxConfig( MODEM_LORA, txPower, 0, 0, datarate, 1, 8, false, true, 0, 0, false, 3e6 );
TxTimeOnAir = radio.TimeOnAir( MODEM_LORA, LoRaMacBufferPktLen );
}
#elif defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
radio.SetMaxPayloadLength( MODEM_LORA, LoRaMacBufferPktLen );
if( ChannelsDatarate >= DR_4 )
{ // High speed LoRa channel BW500 kHz
radio.SetTxConfig( MODEM_LORA, txPower, 0, 2, datarate, 1, 8, false, true, 0, 0, false, 3e6 );
TxTimeOnAir = radio.TimeOnAir( MODEM_LORA, LoRaMacBufferPktLen );
}
else
{ // Normal LoRa channel
radio.SetTxConfig( MODEM_LORA, txPower, 0, 0, datarate, 1, 8, false, true, 0, 0, false, 3e6 );
TxTimeOnAir = radio.TimeOnAir( MODEM_LORA, LoRaMacBufferPktLen );
}
#else
#error "Please define a frequency band in the compiler options."
#endif
// Store the time on air
McpsConfirm.TxTimeOnAir = TxTimeOnAir;
MlmeConfirm.TxTimeOnAir = TxTimeOnAir;
// Starts the MAC layer status check timer
MacStateCheckTimer.attach_us(OnMacStateCheckTimerEvent, MAC_STATE_CHECK_TIMEOUT);
// Send now
radio.Send( LoRaMacBuffer, LoRaMacBufferPktLen );
LoRaMacState |= MAC_TX_RUNNING;
return LORAMAC_STATUS_OK;
}
LoRaMacStatus_t LoRaMacInitialization( LoRaMacPrimitives_t *primitives, LoRaMacCallback_t *callbacks )
{
// start general purpose timer
timerGeneralPurpose.start();
if( primitives == NULL )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
if( ( primitives->MacMcpsConfirm == NULL ) ||
( primitives->MacMcpsIndication == NULL ) ||
( primitives->MacMlmeConfirm == NULL ))
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
LoRaMacPrimitives = primitives;
LoRaMacCallbacks = callbacks;
LoRaMacFlags.Value = 0;
LoRaMacDeviceClass = CLASS_A;
UpLinkCounter = 1;
DownLinkCounter = 0;
AdrAckCounter = 0;
RepeaterSupport = false;
IsRxWindowsEnabled = true;
IsLoRaMacNetworkJoined = false;
LoRaMacState = MAC_IDLE;
#if defined( USE_BAND_433 )
ChannelsMask[0] = LC( 1 ) + LC( 2 ) + LC( 3 );
#elif defined( USE_BAND_780 )
ChannelsMask[0] = LC( 1 ) + LC( 2 ) + LC( 3 );
#elif defined( USE_BAND_868 )
ChannelsMask[0] = LC( 1 ) + LC( 2 ) + LC( 3 );
#elif defined( USE_BAND_915 )
ChannelsMask[0] = 0xFFFF;
ChannelsMask[1] = 0xFFFF;
ChannelsMask[2] = 0xFFFF;
ChannelsMask[3] = 0xFFFF;
ChannelsMask[4] = 0x00FF;
ChannelsMask[5] = 0x0000;
memcpy1( ( uint8_t* ) ChannelsMaskRemaining, ( uint8_t* ) ChannelsMask, sizeof( ChannelsMask ) );
#elif defined( USE_BAND_915_HYBRID )
ChannelsMask[0] = 0x00FF;
ChannelsMask[1] = 0x0000;
ChannelsMask[2] = 0x0000;
ChannelsMask[3] = 0x0000;
ChannelsMask[4] = 0x0001;
ChannelsMask[5] = 0x0000;
memcpy1( ( uint8_t* ) ChannelsMaskRemaining, ( uint8_t* ) ChannelsMask, sizeof( ChannelsMask ) );
#else
#error "Please define a frequency band in the compiler options."
#endif
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
// 125 kHz channels
for( uint8_t i = 0; i < LORA_MAX_NB_CHANNELS - 8; i++ )
{
Channels[i].Frequency = 902.3e6 + i * 200e3;
Channels[i].DrRange.Value = ( DR_3 << 4 ) | DR_0;
Channels[i].Band = 0;
}
// 500 kHz channels
for( uint8_t i = LORA_MAX_NB_CHANNELS - 8; i < LORA_MAX_NB_CHANNELS; i++ )
{
Channels[i].Frequency = 903.0e6 + ( i - ( LORA_MAX_NB_CHANNELS - 8 ) ) * 1.6e6;
Channels[i].DrRange.Value = ( DR_4 << 4 ) | DR_4;
Channels[i].Band = 0;
}
#endif
ChannelsTxPower = LORAMAC_DEFAULT_TX_POWER;
ChannelsDefaultDatarate = ChannelsDatarate = LORAMAC_DEFAULT_DATARATE;
ChannelsNbRep = 1;
ChannelsNbRepCounter = 0;
MaxDCycle = 0;
AggregatedDCycle = 1;
AggregatedLastTxDoneTime = 0;
AggregatedTimeOff = 0;
#if defined( USE_BAND_433 )
DutyCycleOn = false;
#elif defined( USE_BAND_780 )
DutyCycleOn = false;
#elif defined( USE_BAND_868 )
DutyCycleOn = true;
#elif defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
DutyCycleOn = false;
#else
#error "Please define a frequency band in the compiler options."
#endif
MaxRxWindow = MAX_RX_WINDOW;
ReceiveDelay1 = RECEIVE_DELAY1;
ReceiveDelay2 = RECEIVE_DELAY2;
JoinAcceptDelay1 = JOIN_ACCEPT_DELAY1;
JoinAcceptDelay2 = JOIN_ACCEPT_DELAY2;
//TimerInit( &MacStateCheckTimer, OnMacStateCheckTimerEvent );
//TimerSetValue( &MacStateCheckTimer, MAC_STATE_CHECK_TIMEOUT );
//TimerInit( &TxDelayedTimer, OnTxDelayedTimerEvent );
//TimerInit( &RxWindowTimer1, OnRxWindow1TimerEvent );
//TimerInit( &RxWindowTimer2, OnRxWindow2TimerEvent );
//TimerInit( &AckTimeoutTimer, OnAckTimeoutTimerEvent );
// Initialize Radio driver
//RadioEvents.TxDone = OnRadioTxDone;
//RadioEvents.RxDone = OnRadioRxDone;
//RadioEvents.RxError = OnRadioRxError;
//RadioEvents.TxTimeout = OnRadioTxTimeout;
//RadioEvents.RxTimeout = OnRadioRxTimeout;
//radio.Init( &RadioEvents );
radio_init();
// Random seed initialization
srand1( radio.Random( ) );
// Initialize channel index.
Channel = LORA_MAX_NB_CHANNELS;
PublicNetwork = true;
SetPublicNetwork( PublicNetwork );
radio.Sleep( );
return LORAMAC_STATUS_OK;
}
LoRaMacStatus_t LoRaMacQueryTxPossible( uint8_t size, LoRaMacTxInfo_t* txInfo )
{
int8_t datarate = ChannelsDefaultDatarate;
if( txInfo == NULL )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
AdrNextDr( AdrCtrlOn, false, &datarate );
if( RepeaterSupport == true )
{
txInfo->CurrentPayloadSize = MaxPayloadOfDatarateRepeater[datarate];
}
else
{
txInfo->CurrentPayloadSize = MaxPayloadOfDatarate[datarate];
}
if( txInfo->CurrentPayloadSize >= MacCommandsBufferIndex )
{
txInfo->MaxPossiblePayload = txInfo->CurrentPayloadSize - MacCommandsBufferIndex;
}
else
{
return LORAMAC_STATUS_MAC_CMD_LENGTH_ERROR;
}
if( ValidatePayloadLength( size, datarate, 0 ) == false )
{
return LORAMAC_STATUS_LENGTH_ERROR;
}
if( ValidatePayloadLength( size, datarate, MacCommandsBufferIndex ) == false )
{
return LORAMAC_STATUS_MAC_CMD_LENGTH_ERROR;
}
return LORAMAC_STATUS_OK;
}
LoRaMacStatus_t LoRaMacMibGetRequestConfirm( MibRequestConfirm_t *mibGet )
{
LoRaMacStatus_t status = LORAMAC_STATUS_OK;
if( mibGet == NULL )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
switch( mibGet->Type )
{
case MIB_DEVICE_CLASS:
{
mibGet->Param.Class = LoRaMacDeviceClass;
break;
}
case MIB_NETWORK_JOINED:
{
mibGet->Param.IsNetworkJoined = IsLoRaMacNetworkJoined;
break;
}
case MIB_ADR:
{
mibGet->Param.AdrEnable = AdrCtrlOn;
break;
}
case MIB_NET_ID:
{
mibGet->Param.NetID = LoRaMacNetID;
break;
}
case MIB_DEV_ADDR:
{
mibGet->Param.DevAddr = LoRaMacDevAddr;
break;
}
case MIB_NWK_SKEY:
{
mibGet->Param.NwkSKey = LoRaMacNwkSKey;
break;
}
case MIB_APP_SKEY:
{
mibGet->Param.AppSKey = LoRaMacAppSKey;
break;
}
case MIB_PUBLIC_NETWORK:
{
mibGet->Param.EnablePublicNetwork = PublicNetwork;
break;
}
case MIB_REPEATER_SUPPORT:
{
mibGet->Param.EnableRepeaterSupport = RepeaterSupport;
break;
}
case MIB_CHANNELS:
{
mibGet->Param.ChannelList = Channels;
break;
}
case MIB_RX2_CHANNEL:
{
mibGet->Param.Rx2Channel = Rx2Channel;
break;
}
case MIB_CHANNELS_MASK:
{
mibGet->Param.ChannelsMask = ChannelsMask;
break;
}
case MIB_CHANNELS_NB_REP:
{
mibGet->Param.ChannelNbRep = ChannelsNbRep;
break;
}
case MIB_MAX_RX_WINDOW_DURATION:
{
mibGet->Param.MaxRxWindow = MaxRxWindow;
break;
}
case MIB_RECEIVE_DELAY_1:
{
mibGet->Param.ReceiveDelay1 = ReceiveDelay1;
break;
}
case MIB_RECEIVE_DELAY_2:
{
mibGet->Param.ReceiveDelay2 = ReceiveDelay2;
break;
}
case MIB_JOIN_ACCEPT_DELAY_1:
{
mibGet->Param.JoinAcceptDelay1 = JoinAcceptDelay1;
break;
}
case MIB_JOIN_ACCEPT_DELAY_2:
{
mibGet->Param.JoinAcceptDelay2 = JoinAcceptDelay2;
break;
}
case MIB_CHANNELS_DATARATE:
{
mibGet->Param.ChannelsDatarate = ChannelsDatarate;
break;
}
case MIB_CHANNELS_TX_POWER:
{
mibGet->Param.ChannelsTxPower = ChannelsTxPower;
break;
}
case MIB_UPLINK_COUNTER:
{
mibGet->Param.UpLinkCounter = UpLinkCounter;
break;
}
case MIB_DOWNLINK_COUNTER:
{
mibGet->Param.DownLinkCounter = DownLinkCounter;
break;
}
case MIB_MULTICAST_CHANNEL:
{
mibGet->Param.MulticastList = MulticastChannels;
break;
}
default:
status = LORAMAC_STATUS_SERVICE_UNKNOWN;
break;
}
return status;
}
LoRaMacStatus_t LoRaMacMibSetRequestConfirm( MibRequestConfirm_t *mibSet )
{
LoRaMacStatus_t status = LORAMAC_STATUS_OK;
if( mibSet == NULL )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
if( ( LoRaMacState & MAC_TX_RUNNING ) == MAC_TX_RUNNING )
{
return LORAMAC_STATUS_BUSY;
}
switch( mibSet->Type )
{
case MIB_DEVICE_CLASS:
{
LoRaMacDeviceClass = mibSet->Param.Class;
switch( LoRaMacDeviceClass )
{
case CLASS_A:
{
// Set the radio into sleep to setup a defined state
radio.Sleep( );
break;
}
case CLASS_B:
{
break;
}
case CLASS_C:
{
// Set the NodeAckRequested indicator to default
NodeAckRequested = false;
OnRxWindow2TimerEvent( );
break;
}
}
break;
}
case MIB_NETWORK_JOINED:
{
IsLoRaMacNetworkJoined = mibSet->Param.IsNetworkJoined;
break;
}
case MIB_ADR:
{
AdrCtrlOn = mibSet->Param.AdrEnable;
break;
}
case MIB_NET_ID:
{
LoRaMacNetID = mibSet->Param.NetID;
break;
}
case MIB_DEV_ADDR:
{
LoRaMacDevAddr = mibSet->Param.DevAddr;
break;
}
case MIB_NWK_SKEY:
{
if( mibSet->Param.NwkSKey != NULL )
{
memcpy1( LoRaMacNwkSKey, mibSet->Param.NwkSKey,
sizeof( LoRaMacNwkSKey ) );
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_APP_SKEY:
{
if( mibSet->Param.AppSKey != NULL )
{
memcpy1( LoRaMacAppSKey, mibSet->Param.AppSKey,
sizeof( LoRaMacAppSKey ) );
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_PUBLIC_NETWORK:
{
SetPublicNetwork( mibSet->Param.EnablePublicNetwork );
break;
}
case MIB_REPEATER_SUPPORT:
{
RepeaterSupport = mibSet->Param.EnableRepeaterSupport;
break;
}
case MIB_RX2_CHANNEL:
{
Rx2Channel = mibSet->Param.Rx2Channel;
break;
}
case MIB_CHANNELS_MASK:
{
if( mibSet->Param.ChannelsMask )
{
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
if( ( CountNbEnabled125kHzChannels( mibSet->Param.ChannelsMask ) < 6 ) &&
( CountNbEnabled125kHzChannels( mibSet->Param.ChannelsMask ) > 0 ) )
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
else
{
memcpy1( ( uint8_t* ) ChannelsMask,
( uint8_t* ) mibSet->Param.ChannelsMask, sizeof( ChannelsMask ) );
for ( uint8_t i = 0; i < sizeof( ChannelsMask ) / 2; i++ )
{
ChannelsMaskRemaining[i] &= ChannelsMask[i];
}
}
#else
memcpy1( ( uint8_t* ) ChannelsMask,
( uint8_t* ) mibSet->Param.ChannelsMask, 2 );
#endif
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_CHANNELS_NB_REP:
{
if( ( mibSet->Param.ChannelNbRep >= 1 ) &&
( mibSet->Param.ChannelNbRep <= 15 ) )
{
ChannelsNbRep = mibSet->Param.ChannelNbRep;
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_MAX_RX_WINDOW_DURATION:
{
MaxRxWindow = mibSet->Param.MaxRxWindow;
break;
}
case MIB_RECEIVE_DELAY_1:
{
ReceiveDelay1 = mibSet->Param.ReceiveDelay1;
break;
}
case MIB_RECEIVE_DELAY_2:
{
ReceiveDelay2 = mibSet->Param.ReceiveDelay2;
break;
}
case MIB_JOIN_ACCEPT_DELAY_1:
{
JoinAcceptDelay1 = mibSet->Param.JoinAcceptDelay1;
break;
}
case MIB_JOIN_ACCEPT_DELAY_2:
{
JoinAcceptDelay2 = mibSet->Param.JoinAcceptDelay2;
break;
}
case MIB_CHANNELS_DATARATE:
{
if( ValueInRange( mibSet->Param.ChannelsDatarate,
LORAMAC_MIN_DATARATE, LORAMAC_MAX_DATARATE ) )
{
ChannelsDatarate = mibSet->Param.ChannelsDatarate;
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_CHANNELS_TX_POWER:
{
if( ValueInRange( mibSet->Param.ChannelsTxPower,
LORAMAC_MAX_TX_POWER, LORAMAC_MIN_TX_POWER ) )
{
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
int8_t txPower = LimitTxPower( mibSet->Param.ChannelsTxPower );
if( txPower == mibSet->Param.ChannelsTxPower )
{
ChannelsTxPower = mibSet->Param.ChannelsTxPower;
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
#else
ChannelsTxPower = mibSet->Param.ChannelsTxPower;
#endif
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
default:
status = LORAMAC_STATUS_SERVICE_UNKNOWN;
break;
}
return status;
}
LoRaMacStatus_t LoRaMacChannelAdd( uint8_t id, ChannelParams_t params )
{
#if ( defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID ) )
return LORAMAC_STATUS_PARAMETER_INVALID;
#else
bool datarateInvalid = false;
bool frequencyInvalid = false;
uint8_t band = 0;
// The id must not exceed LORA_MAX_NB_CHANNELS
if( id >= LORA_MAX_NB_CHANNELS )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
// Validate if the MAC is in a correct state
if( ( LoRaMacState & MAC_TX_RUNNING ) == MAC_TX_RUNNING )
{
if( ( LoRaMacState & MAC_TX_CONFIG ) != MAC_TX_CONFIG )
{
return LORAMAC_STATUS_BUSY;
}
}
// Validate the datarate
if( ( params.DrRange.Fields.Min > params.DrRange.Fields.Max ) ||
( ValueInRange( params.DrRange.Fields.Min, LORAMAC_MIN_DATARATE,
LORAMAC_MAX_DATARATE ) == false ) ||
( ValueInRange( params.DrRange.Fields.Max, LORAMAC_MIN_DATARATE,
LORAMAC_MAX_DATARATE ) == false ) )
{
datarateInvalid = true;
}
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
if( id < 3 )
{
if( params.Frequency != Channels[id].Frequency )
{
frequencyInvalid = true;
}
if( params.DrRange.Fields.Min > LORAMAC_DEFAULT_DATARATE )
{
datarateInvalid = true;
}
if( ValueInRange( params.DrRange.Fields.Max, DR_5, LORAMAC_MAX_DATARATE ) == false )
{
datarateInvalid = true;
}
}
#endif
// Validate the frequency
if( ( radio.CheckRfFrequency( params.Frequency ) == true ) && ( params.Frequency > 0 ) && ( frequencyInvalid == false ) )
{
#if defined( USE_BAND_868 )
if( ( params.Frequency >= 865000000 ) && ( params.Frequency <= 868000000 ) )
{
band = BAND_G1_0;
}
else if( ( params.Frequency > 868000000 ) && ( params.Frequency <= 868600000 ) )
{
band = BAND_G1_1;
}
else if( ( params.Frequency >= 868700000 ) && ( params.Frequency <= 869200000 ) )
{
band = BAND_G1_2;
}
else if( ( params.Frequency >= 869400000 ) && ( params.Frequency <= 869650000 ) )
{
band = BAND_G1_3;
}
else if( ( params.Frequency >= 869700000 ) && ( params.Frequency <= 870000000 ) )
{
band = BAND_G1_4;
}
else
{
frequencyInvalid = true;
}
#endif
}
else
{
frequencyInvalid = true;
}
if( ( datarateInvalid == true ) && ( frequencyInvalid == true ) )
{
return LORAMAC_STATUS_FREQ_AND_DR_INVALID;
}
if( datarateInvalid == true )
{
return LORAMAC_STATUS_DATARATE_INVALID;
}
if( frequencyInvalid == true )
{
return LORAMAC_STATUS_FREQUENCY_INVALID;
}
// Every parameter is valid, activate the channel
Channels[id] = params;
Channels[id].Band = band;
ChannelsMask[0] |= ( 1 << id );
return LORAMAC_STATUS_OK;
#endif
}
LoRaMacStatus_t LoRaMacChannelRemove( uint8_t id )
{
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
if( ( LoRaMacState & MAC_TX_RUNNING ) == MAC_TX_RUNNING )
{
if( ( LoRaMacState & MAC_TX_CONFIG ) != MAC_TX_CONFIG )
{
return LORAMAC_STATUS_BUSY;
}
}
if( id < 3 )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
else
{
// Remove the channel from the list of channels
Channels[id] = ( ChannelParams_t ){ 0, { 0 }, 0 };
// Disable the channel as it doesn't exist anymore
if( DisableChannelInMask( id, ChannelsMask ) == false )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
}
return LORAMAC_STATUS_OK;
#elif ( defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID ) )
return LORAMAC_STATUS_PARAMETER_INVALID;
#endif
}
LoRaMacStatus_t LoRaMacMulticastChannelLink( MulticastParams_t *channelParam )
{
if( channelParam == NULL )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
if( ( LoRaMacState & MAC_TX_RUNNING ) == MAC_TX_RUNNING )
{
return LORAMAC_STATUS_BUSY;
}
// Reset downlink counter
channelParam->DownLinkCounter = 0;
if( MulticastChannels == NULL )
{
// New node is the fist element
MulticastChannels = channelParam;
}
else
{
MulticastParams_t *cur = MulticastChannels;
// Search the last node in the list
while( cur->Next != NULL )
{
cur = cur->Next;
}
// This function always finds the last node
cur->Next = channelParam;
}
return LORAMAC_STATUS_OK;
}
LoRaMacStatus_t LoRaMacMulticastChannelUnlink( MulticastParams_t *channelParam )
{
if( channelParam == NULL )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
if( ( LoRaMacState & MAC_TX_RUNNING ) == MAC_TX_RUNNING )
{
return LORAMAC_STATUS_BUSY;
}
if( MulticastChannels != NULL )
{
if( MulticastChannels == channelParam )
{
// First element
MulticastChannels = channelParam->Next;
}
else
{
MulticastParams_t *cur = MulticastChannels;
// Search the node in the list
while( cur->Next && cur->Next != channelParam )
{
cur = cur->Next;
}
// If we found the node, remove it
if( cur->Next )
{
cur->Next = channelParam->Next;
}
}
channelParam->Next = NULL;
}
return LORAMAC_STATUS_OK;
}
LoRaMacStatus_t LoRaMacMlmeRequest( MlmeReq_t *mlmeRequest )
{
LoRaMacStatus_t status = LORAMAC_STATUS_SERVICE_UNKNOWN;
LoRaMacHeader_t macHdr;
if( mlmeRequest == NULL )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
if( ( LoRaMacState & MAC_TX_RUNNING ) == MAC_TX_RUNNING )
{
return LORAMAC_STATUS_BUSY;
}
memset1( ( uint8_t* ) &MlmeConfirm, 0, sizeof( MlmeConfirm ) );
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_ERROR;
switch( mlmeRequest->Type )
{
case MLME_JOIN:
{
if( ( LoRaMacState & MAC_TX_DELAYED ) == MAC_TX_DELAYED )
{
status = LORAMAC_STATUS_BUSY;
}
MlmeConfirm.MlmeRequest = mlmeRequest->Type;
if( ( mlmeRequest->Req.Join.DevEui == NULL ) ||
( mlmeRequest->Req.Join.AppEui == NULL ) ||
( mlmeRequest->Req.Join.AppKey == NULL ) )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
LoRaMacFlags.Bits.MlmeReq = 1;
LoRaMacDevEui = mlmeRequest->Req.Join.DevEui;
LoRaMacAppEui = mlmeRequest->Req.Join.AppEui;
LoRaMacAppKey = mlmeRequest->Req.Join.AppKey;
macHdr.Value = 0;
macHdr.Bits.MType = FRAME_TYPE_JOIN_REQ;
IsLoRaMacNetworkJoined = false;
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
#if defined( USE_BAND_915 )
// Re-enable 500 kHz default channels
ChannelsMask[4] = 0x00FF;
#else // defined( USE_BAND_915_HYBRID )
// Re-enable 500 kHz default channels
ChannelsMask[4] = 0x0001;
#endif
static uint8_t drSwitch = 0;
if( ( ++drSwitch & 0x01 ) == 0x01 )
{
ChannelsDatarate = DR_0;
}
else
{
ChannelsDatarate = DR_4;
}
#endif
status = Send( &macHdr, 0, NULL, 0 );
break;
}
case MLME_LINK_CHECK:
{
LoRaMacFlags.Bits.MlmeReq = 1;
// LoRaMac will send this command piggy-pack
MlmeConfirm.MlmeRequest = mlmeRequest->Type;
status = AddMacCommand( MOTE_MAC_LINK_CHECK_REQ, 0, 0 );
break;
}
default:
break;
}
if( status != LORAMAC_STATUS_OK )
{
NodeAckRequested = false;
LoRaMacFlags.Bits.MlmeReq = 0;
}
return status;
}
LoRaMacStatus_t LoRaMacMcpsRequest( McpsReq_t *mcpsRequest )
{
LoRaMacStatus_t status = LORAMAC_STATUS_SERVICE_UNKNOWN;
LoRaMacHeader_t macHdr;
uint8_t fPort = 0;
void *fBuffer;
uint16_t fBufferSize;
int8_t datarate;
bool readyToSend = false;
if( mcpsRequest == NULL )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
if( ( ( LoRaMacState & MAC_TX_RUNNING ) == MAC_TX_RUNNING ) ||
( ( LoRaMacState & MAC_TX_DELAYED ) == MAC_TX_DELAYED ) )
{
return LORAMAC_STATUS_BUSY;
}
macHdr.Value = 0;
memset1 ( ( uint8_t* ) &McpsConfirm, 0, sizeof( McpsConfirm ) );
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_ERROR;
switch( mcpsRequest->Type )
{
case MCPS_UNCONFIRMED:
{
readyToSend = true;
AckTimeoutRetries = 1;
macHdr.Bits.MType = FRAME_TYPE_DATA_UNCONFIRMED_UP;
fPort = mcpsRequest->Req.Unconfirmed.fPort;
fBuffer = mcpsRequest->Req.Unconfirmed.fBuffer;
fBufferSize = mcpsRequest->Req.Unconfirmed.fBufferSize;
datarate = mcpsRequest->Req.Unconfirmed.Datarate;
break;
}
case MCPS_CONFIRMED:
{
readyToSend = true;
AckTimeoutRetriesCounter = 1;
AckTimeoutRetries = mcpsRequest->Req.Confirmed.NbTrials;
macHdr.Bits.MType = FRAME_TYPE_DATA_CONFIRMED_UP;
fPort = mcpsRequest->Req.Confirmed.fPort;
fBuffer = mcpsRequest->Req.Confirmed.fBuffer;
fBufferSize = mcpsRequest->Req.Confirmed.fBufferSize;
datarate = mcpsRequest->Req.Confirmed.Datarate;
break;
}
case MCPS_PROPRIETARY:
{
readyToSend = true;
AckTimeoutRetries = 1;
macHdr.Bits.MType = FRAME_TYPE_PROPRIETARY;
fBuffer = mcpsRequest->Req.Proprietary.fBuffer;
fBufferSize = mcpsRequest->Req.Proprietary.fBufferSize;
datarate = mcpsRequest->Req.Proprietary.Datarate;
break;
}
default:
break;
}
if( readyToSend == true )
{
if( AdrCtrlOn == false )
{
if( ValueInRange( datarate, LORAMAC_MIN_DATARATE, LORAMAC_MAX_DATARATE ) == true )
{
ChannelsDatarate = datarate;
}
else
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
}
status = Send( &macHdr, fPort, fBuffer, fBufferSize );
if( status == LORAMAC_STATUS_OK )
{
McpsConfirm.McpsRequest = mcpsRequest->Type;
LoRaMacFlags.Bits.McpsReq = 1;
}
else
{
NodeAckRequested = false;
}
}
return status;
}
void LoRaMacTestRxWindowsOn( bool enable )
{
IsRxWindowsEnabled = enable;
}
void LoRaMacTestSetMic( uint16_t txPacketCounter )
{
UpLinkCounter = txPacketCounter;
IsUpLinkCounterFixed = true;
}
void LoRaMacTestSetDutyCycleOn( bool enable )
{
DutyCycleOn = enable;
}