This program simply connects to a HTS221 I2C device to read Temperature & Humidity, and a WNC Cellular Module both of which are on the Avnet WNC Shield.

Dependencies:   mbed FXOS8700CQ

/media/uploads/JMF/avnet_logo.gif

AT&T Shape Hackathon QuickStart Instructions

  • One area that has been problematic is setting the the MY_SERVER_URL. When you copy the URL from the flow, you must make sure that the MY_SERVER_URL is also set to the appropirate server. It can be either "run-east.att.io" or "run-west.att.io", so be sure to check this.

Useful Links

Adding Additional Sensors

The FLOW_DEVICE_NAME field must contain the name of the instance of the Virtual Starter kit in FLOW that you will be communicating with. Usually this will be "vstarterkit001", but if you have problems communicating you can verify that this is indeed correct. Note that this device will not be created until you click the “Initialize” input on the Virtual Device tab of the Starter Kit project in FLOW. At that point it becomes available in M2X and you can see it there, as the DEVICE SERIAL field under Devices as in the image below.

Sensors: When executing, the FRDM-K64F board will upload sensor measurements to AT&T’s Flow environment every 5 seconds, using the Cellular shield board. You can adjust how often you want to do this by editing the SENSOR_UPDATE_INTERVAL_MS value in the header file. Temperature and humidity: By default the board will report readings from the HTS221 temperature and humidity sensor. These two values are sent to the HTTP IN /climate port in FLOW with field names “temp” and “humidity”. Temperature is in degrees Fahrenheit and humidity is a %. This default assignment is: iSensorsToReport = TEMP_HUMIDITY_ONLY;

Accelerometer: If you want to expand and use the on-board motion sensor, you can also send 3-axis accelerometer information from the board as “accelX”, “accelY” and “accelZ”. This is useful if you want to know the stationary position of the board with regards to gravity, or whether it is in motion. These readings are in g’s. To send these values, change the assignment to: iSensorsToReport = TEMP_HUMIDITY_ACCELEROMETER;

PMOD Sensors: If you have a Silicon Labs sensor module that can plug into the PMOD connector on the Cellular shield, you will also be able to measure proximity, UV light, ambient visible and infrared light from the Si1145 sensor. This PMOD also has a temperature and humidity sensor, but in this case it is redundant. When enabled, the fields “proximity”, “light_uv”, “light_vis” and “light_ir” will also be sent. To enable all these sensors, change the assignment to: iSensorsToReport = TEMP_HUMIDITY_ACCELEROMETER_PMODSENSORS;

Connecting up the PMOD sensors: Because the pinouts do not align, the SiLabs PMOD sensor board cannot be plugged into the J10 PMOD receptacle on the shield directly. The following wiring instructions must be used:

Signal=J10=(Shield) PMOD=Color in the image below
VCCPin 6Pin 6Red
GNDPin 5Pin 5Black
SDAPin4Pin 3Green
SCLPin3Pin 2Yellow

Link to AT&T M2X

M2X

Link to AT&T Flow

FLOW

Avnet WNC-Shield Information

Getting Started with the Avnet WNC-Shield & Hackathon software

  • This project uses Revision 119 of the MBED library because of I2C implementation differences with the tip (Revision 121)
  • This project uses Revision 4 of the FXOS8700CQ library for sensors

Easily modifiable parameters in source code

Inside the mbed “AvnetATT_shape_hackathon” project, the parameters that are needed to customize your board are in the config_me.h file.

  • FLOW parameters: This project assumes that you are using a fork of the “Starter Kit Base” project, which is a reference design that was created using AT&T’s FLOW (https://flow.att.com) that allows the creation of on-line virtualization and other IoT functionality. The default parameters in the config_me.h file are done for a specific instance of this project. When you fork the original project, you get your own instance and it will have its own base address. At the bottom of the FLOW environment, when you click on the “Endpoints” tab, you will see the URL information that is specific to your instance. Of note is the Base URL. In the example below (as in the default mbed project), the Base URL is: https://run-west.att.io/1e464b19cdcde/774c88d68202/86694923d5bf28a/in/flow You have to take note of two parts of this address. The run-west.att.io part is the server URL, and you have to make sure the
  • MY_SERVER_URL field in config_me.h matches this. Then there is the rest of the base URL, in green above, that needs to be pasted into the FLOW_BASE_URL field.

There is also a FLOW_INPUT_NAME field. This should match the name of the HTTP IN port in the FLOW project that you want to send sensor data to. The default is "/climate", as in the FLOW image below.

/media/uploads/JMF/sf.png

Where is the binary I compiled

When the COMPILE button is pressed, it will compile your project and link it. The result is placed in the DOWNLOAD folder you use when downloading files from the internet. It will be called AvnetATT_shape_hackathon_K64F.bin.

Additional information on compiling/configuring

Comprehensive instructions can be found at: Quick Start Instructions

main.cpp

Committer:
stefanrousseau
Date:
2016-07-23
Revision:
34:029e07b67a41
Parent:
26:8d6e7e7cdcae

File content as of revision 34:029e07b67a41:

#include "mbed.h"
#include <cctype>
#include <string>
#include "SerialBuffered.h"
#include "HTS221.h"
#include "config_me.h"
#include "wnc_control.h"
#include "sensors.h"

#include "hardware.h"
I2C i2c(PTC11, PTC10);    //SDA, SCL -- define the I2C pins being used

// comment out the following line if color is not supported on the terminal
#define USE_COLOR
#ifdef USE_COLOR
 #define BLK "\033[30m"
 #define RED "\033[31m"
 #define GRN "\033[32m"
 #define YEL "\033[33m"
 #define BLU "\033[34m"
 #define MAG "\033[35m"
 #define CYN "\033[36m"
 #define WHT "\033[37m"
 #define DEF "\033[39m"
#else
 #define BLK
 #define RED
 #define GRN
 #define YEL
 #define BLU
 #define MAG
 #define CYN
 #define WHT
 #define DEF
#endif

#define MDM_DBG_OFF                             0
#define MDM_DBG_AT_CMDS                         (1 << 0)
int mdm_dbgmask = MDM_DBG_OFF;

Serial         pc(USBTX, USBRX);
SerialBuffered mdm(PTD3, PTD2, 128);
DigitalOut led_green(LED_GREEN);
DigitalOut led_red(LED_RED);
DigitalOut led_blue(LED_BLUE);

DigitalOut  mdm_uart2_rx_boot_mode_sel(PTC17);  // on powerup, 0 = boot mode, 1 = normal boot
DigitalOut  mdm_power_on(PTB9);                 // 0 = turn modem on, 1 = turn modem off (should be held high for >5 seconds to cycle modem)
DigitalOut  mdm_wakeup_in(PTC2);                // 0 = let modem sleep, 1 = keep modem awake -- Note: pulled high on shield

DigitalOut  mdm_reset(PTC12);                   // active high      

DigitalOut  shield_3v3_1v8_sig_trans_ena(PTC4); // 0 = disabled (all signals high impedence, 1 = translation active
DigitalOut  mdm_uart1_cts(PTD0);

#define TOUPPER(a) (a) //toupper(a)

const char ok_str[] = "OK";
const char error_str[] = "ERROR";

#define MDM_OK                                  0
#define MDM_ERR_TIMEOUT                         -1

#define MAX_AT_RSP_LEN                          255

ssize_t mdm_getline(char *buff, size_t size, int timeout_ms) {
    int cin = -1;
    int cin_last;
    
    if (NULL == buff || size == 0) {
        return -1;
    }

    size_t len = 0;
    Timer timer;
    timer.start();
    while ((len < (size-1)) && (timer.read_ms() < timeout_ms)) {
        if (mdm.readable()) {
            cin_last = cin;
            cin = mdm.getc();
            if (isprint(cin)) {
                buff[len++] = (char)cin;
                continue;
            } else if (('\r' == cin_last) && ('\n' == cin)) {
                break;
            }
        }
        wait_ms(1);
    }
    buff[len] = (char)NULL;
    
    return len;
}

int mdm_sendAtCmd(const char *cmd, const char **rsp_list, int timeout_ms) {
    if (cmd && strlen(cmd) > 0) {
        if (mdm_dbgmask & MDM_DBG_AT_CMDS) {
            printf(MAG "ATCMD: " DEF "--> " GRN "%s" DEF "\n", cmd);
        }
        mdm.printf("%s\r\n", cmd);
    }
    
    if (rsp_list) {
        Timer   timer;
        char    rsp[MAX_AT_RSP_LEN+1];
        int     len;
        
        timer.start();
        while (timer.read_ms() < timeout_ms) {
            len = mdm_getline(rsp, sizeof(rsp), timeout_ms - timer.read_ms());
            
            if (len < 0)
                return MDM_ERR_TIMEOUT;

            if (len == 0)
                continue;
                
            if (mdm_dbgmask & MDM_DBG_AT_CMDS) {
                printf(MAG "ATRSP: " DEF "<-- " CYN "%s" DEF "\n", rsp);
            }
        
            if (rsp_list) {
                int rsp_idx = 0;
                while (rsp_list[rsp_idx]) {
                    if (strcasecmp(rsp, rsp_list[rsp_idx]) == 0) {
                        return rsp_idx;
                    }
                    rsp_idx++;
                }
            }
        }
        return MDM_ERR_TIMEOUT;
    }
    return MDM_OK;
}

int mdm_init(void) {
    // Hard reset the modem (doesn't go through
    // the signal level translator)
    mdm_reset = 0;

    // disable signal level translator (necessary
    // for the modem to boot properly).  All signals
    // except mdm_reset go through the level translator
    // and have internal pull-up/down in the module. While
    // the level translator is disabled, these pins will
    // be in the correct state.  
    shield_3v3_1v8_sig_trans_ena = 0;

    // While the level translator is disabled and ouptut pins
    // are tristated, make sure the inputs are in the same state
    // as the WNC Module pins so that when the level translator is
    // enabled, there are no differences.
    mdm_uart2_rx_boot_mode_sel = 1;   // UART2_RX should be high
    mdm_power_on = 0;                 // powr_on should be low
    mdm_wakeup_in = 1;                // wake-up should be high
    mdm_uart1_cts = 0;                // indicate that it is ok to send

   // Now, wait for the WNC Module to perform its initial boot correctly
    wait(1.0);
  
    // The WNC module initializes comms at 115200 8N1 so set it up
    mdm.baud(115200);
    
    //Now, enable the level translator, the input pins should now be the
    //same as how the M14A module is driving them with internal pull ups/downs.
    //When enabled, there will be no changes in these 4 pins...
    shield_3v3_1v8_sig_trans_ena = 1;

    // Now, give the modem 60 secons to start responding by
    // sending simple 'AT' commands to modem once per second.
    Timer timer;
    timer.start();
    while (timer.read() < 60) {
        const char * rsp_lst[] = { ok_str, error_str, NULL };
        int rc = mdm_sendAtCmd("AT", rsp_lst, 500);
        if (rc == 0)
            return true; //timer.read();
        wait_ms(1000 - (timer.read_ms() % 1000));
        pc.printf("\r%d",timer.read_ms()/1000);
    }
    return false;       
}

int mdm_sendAtCmdRsp(const char *cmd, const char **rsp_list, int timeout_ms, string * rsp, int * len) {
    static char cmd_buf[3200];  // Need enough room for the WNC sockreads (over 3000 chars)
    size_t n = strlen(cmd);
    if (cmd && n > 0) {
        if (mdm_dbgmask & MDM_DBG_AT_CMDS) {
            printf(MAG "ATCMD: " DEF "--> " GRN "%s" DEF "\n", cmd);
        }
        while (n--) {
            mdm.putc(*cmd++);
            wait_ms(1);
        };
        mdm.putc('\r');
        wait_ms(1);
        mdm.putc('\n');
        wait_ms(1);
    }

    if (rsp_list) {
        rsp->erase(); // Clean up from prior cmd response
        *len = 0;
        Timer   timer;
        timer.start();
        while (timer.read_ms() < timeout_ms) {
            int lenCmd = mdm_getline(cmd_buf, sizeof(cmd_buf), timeout_ms - timer.read_ms());

            if (lenCmd == 0)
                continue;

            if (lenCmd < 0)
                return MDM_ERR_TIMEOUT;
            else {
                *len += lenCmd;
                *rsp += cmd_buf;
            }

            if (mdm_dbgmask & MDM_DBG_AT_CMDS) {
                printf(MAG "ATRSP: " DEF "<-- " CYN "%s" DEF "\n", cmd_buf);
            }

            int rsp_idx = 0;
            while (rsp_list[rsp_idx]) {
                if (strcasecmp(cmd_buf, rsp_list[rsp_idx]) == 0) {
                    return rsp_idx;
                }
                rsp_idx++;
            }
        }
        return MDM_ERR_TIMEOUT;
    }
    pc.printf("D %s",rsp);
    return MDM_OK;
}

void reinitialize_mdm(void)
{
    // Initialize the modem
    printf(GRN "Modem RE-initializing..." DEF "\r\n");
    if (!mdm_init()) {
        printf(RED "\n\rModem RE-initialization failed!" DEF "\n");
    }
    printf("\r\n");
}
// These are built on the fly
string MyServerIpAddress;
string MySocketData;

// These are to be built on the fly
string my_temp;
string my_humidity;

#define CTOF(x)  ((x)*1.8+32)

//********************************************************************************************************************************************
//* Create string with sensor readings that can be sent to flow as an HTTP get
//********************************************************************************************************************************************
K64F_Sensors_t  SENSOR_DATA =
{
    .Temperature        = "0",
    .Humidity           = "0",
    .AccelX             = "0",
    .AccelY             = "0",
    .AccelZ             = "0",
    .MagnetometerX      = "0",
    .MagnetometerY      = "0",
    .MagnetometerZ      = "0",
    .AmbientLightVis    = "0",
    .AmbientLightIr     = "0",
    .UVindex            = "0",
    .Proximity          = "0",
    .Temperature_Si7020 = "0",
    .Humidity_Si7020    = "0"
};

void GenerateModemString(char * modem_string)
{
    switch(iSensorsToReport)
    {
        case TEMP_HUMIDITY_ONLY:
        {
            sprintf(modem_string, "GET %s%s?serial=%s&temp=%s&humidity=%s %s%s\r\n\r\n", FLOW_BASE_URL, FLOW_INPUT_NAME, FLOW_DEVICE_NAME, SENSOR_DATA.Temperature, SENSOR_DATA.Humidity, FLOW_URL_TYPE, MY_SERVER_URL);
            break;
        }
        case TEMP_HUMIDITY_ACCELEROMETER:
        {
            sprintf(modem_string, "GET %s%s?serial=%s&temp=%s&humidity=%s&accelX=%s&accelY=%s&accelZ=%s %s%s\r\n\r\n", FLOW_BASE_URL, FLOW_INPUT_NAME, FLOW_DEVICE_NAME, SENSOR_DATA.Temperature, SENSOR_DATA.Humidity, SENSOR_DATA.AccelX,SENSOR_DATA.AccelY,SENSOR_DATA.AccelZ, FLOW_URL_TYPE, MY_SERVER_URL);
            break;
        }
        case TEMP_HUMIDITY_ACCELEROMETER_PMODSENSORS:
        {
            sprintf(modem_string, "GET %s%s?serial=%s&temp=%s&humidity=%s&accelX=%s&accelY=%s&accelZ=%s&proximity=%s&light_uv=%s&light_vis=%s&light_ir=%s %s%s\r\n\r\n", FLOW_BASE_URL, FLOW_INPUT_NAME, FLOW_DEVICE_NAME, SENSOR_DATA.Temperature, SENSOR_DATA.Humidity, SENSOR_DATA.AccelX,SENSOR_DATA.AccelY,SENSOR_DATA.AccelZ, SENSOR_DATA.Proximity, SENSOR_DATA.UVindex, SENSOR_DATA.AmbientLightVis, SENSOR_DATA.AmbientLightIr, FLOW_URL_TYPE, MY_SERVER_URL);
            break;
        }
        default:
        {
            sprintf(modem_string, "Invalid sensor selected\r\n\r\n");
            break;
        }
    } //switch(iSensorsToReport)
} //GenerateModemString        
            
            
//Periodic timer
Ticker OneMsTicker;
volatile bool bTimerExpiredFlag = false;
int OneMsTicks = 0;
int iTimer1Interval_ms = 1000;
//********************************************************************************************************************************************
//* Periodic 1ms timer tick
//********************************************************************************************************************************************
void OneMsFunction() 
{
    OneMsTicks++;
    if ((OneMsTicks % iTimer1Interval_ms) == 0)
    {
        bTimerExpiredFlag = true;
    }            
} //OneMsFunction()

//********************************************************************************************************************************************
//* Set the RGB LED's Color
//* LED Color 0=Off to 7=White.  3 bits represent BGR (bit0=Red, bit1=Green, bit2=Blue) 
//********************************************************************************************************************************************
void SetLedColor(unsigned char ucColor)
{
    //Note that when an LED is on, you write a 0 to it:
    led_red = !(ucColor & 0x1); //bit 0
    led_green = !(ucColor & 0x2); //bit 1
    led_blue = !(ucColor & 0x4); //bit 2
} //SetLedColor()

//********************************************************************************************************************************************
//* Process JSON response messages
//********************************************************************************************************************************************
bool extract_JSON(char* search_field, char* found_string)
{
    char* beginquote;
    char* endquote;
    beginquote = strchr(search_field, '{'); //start of JSON
    endquote = strchr(search_field, '}'); //end of JSON
    if (beginquote != 0)
    {
        uint16_t ifoundlen;
        if (endquote != 0)
        {
            ifoundlen = (uint16_t) (endquote - beginquote) + 1;
            strncpy(found_string, beginquote, ifoundlen );
            found_string[ifoundlen] = 0; //null terminate
            return true;
        }
        else
        {
            endquote = strchr(search_field, '\0'); //end of string...  sometimes the end bracket is missing
            ifoundlen = (uint16_t) (endquote - beginquote) + 1;
            strncpy(found_string, beginquote, ifoundlen );
            found_string[ifoundlen] = 0; //null terminate
            return false;
        }
    }
    else
    {
        return false;
    }
} //extract_JSON

bool parse_JSON(char* json_string)
{
    char* beginquote;
    char token[] = "\"LED\":\"";
    beginquote = strstr(json_string, token );
    if ((beginquote != 0))
    {
        char cLedColor = beginquote[strlen(token)];
        printf(GRN "LED Found : %c" DEF "\r\n", cLedColor);
        switch(cLedColor)
        {
            case 'O':
            { //Off
                SetLedColor(0);
                break;
            }
            case 'R':
            { //Red
                SetLedColor(1);
                break;
            }
            case 'G':
            { //Green
                SetLedColor(2);
                break;
            }
            case 'Y':
            { //Yellow
                SetLedColor(3);
                break;
            }
            case 'B':
            { //Blue
                SetLedColor(4);
                break;
            }
            case 'M':
            { //Magenta
                SetLedColor(5);
                break;
            }
            case 'T':
            { //Turquoise
                SetLedColor(6);
                break;
            }
            case 'W':
            { //White
                SetLedColor(7);
                break;
            }
            default:
            {
                break;
            }
        } //switch(cLedColor)
        return true;
    }
    else
    {
        return false;
    }
} //parse_JSON

int main() {
    int i;
    HTS221 hts221;
    pc.baud(115200);
    
    void hts221_init(void);

    // Set LED to RED until init finishes
    SetLedColor(0x1);

    pc.printf(BLU "Hello World from AT&T Shape!\r\n\n\r");
    pc.printf(GRN "Initialize the HTS221\n\r");

    i = hts221.begin();  
    if( i ) 
        pc.printf(BLU "HTS221 Detected! (0x%02X)\n\r",i);
    else
        pc.printf(RED "HTS221 NOT DETECTED!!\n\r");

    printf("Temp  is: %0.2f F \n\r",CTOF(hts221.readTemperature()));
    printf("Humid is: %02d %%\n\r",hts221.readHumidity());
    
    sensors_init();
    read_sensors();

    // Initialize the modem
    printf(GRN "Modem initializing... will take up to 60 seconds" DEF "\r\n");
    do {
        i=mdm_init();
        if (!i) {
            pc.printf(RED "Modem initialization failed!" DEF "\n");
        }
    } while (!i);
    
    //Software init
    software_init_mdm();
 
    // Resolve URL to IP address to connect to
    resolve_mdm();

    //Create a 1ms timer tick function:
    OneMsTicker.attach(OneMsFunction, 0.001f) ;

    iTimer1Interval_ms = SENSOR_UPDATE_INTERVAL_MS;

    // Open the socket (connect to the server)
    sockopen_mdm();

    // Set LED BLUE for partial init
    SetLedColor(0x4);

    // Send and receive data perpetually
    while(1) {
        static unsigned ledOnce = 0;
        if  (bTimerExpiredFlag)
        {
            bTimerExpiredFlag = false;
            sprintf(SENSOR_DATA.Temperature, "%0.2f", CTOF(hts221.readTemperature()));
            sprintf(SENSOR_DATA.Humidity, "%02d", hts221.readHumidity());
            read_sensors(); //read available external sensors from a PMOD and the on-board motion sensor
            char modem_string[512];
            GenerateModemString(&modem_string[0]);
            printf(BLU "Sending to modem : %s" DEF "\n", modem_string); 
            sockwrite_mdm(modem_string);
            sockread_mdm(&MySocketData, 1024, 20);
            
            // If any non-zero response from server, make it GREEN one-time
            //  then the actual FLOW responses will set the color.
            if ((!ledOnce) && (MySocketData.length() > 0))
            {
                ledOnce = 1;
                SetLedColor(0x2);
            }
            
            printf(BLU "Read back : %s" DEF "\n", &MySocketData[0]);
            char myJsonResponse[512];
            if (extract_JSON(&MySocketData[0], &myJsonResponse[0]))
            {
                printf(GRN "JSON : %s" DEF "\n", &myJsonResponse[0]);
                parse_JSON(&myJsonResponse[0]);
            }
            else
            {
                printf(RED "JSON : %s" DEF "\n", &myJsonResponse[0]); //most likely an incomplete JSON string
                parse_JSON(&myJsonResponse[0]); //This is risky, as the string may be corrupted
            }
        } //bTimerExpiredFlag
    } //forever loop
}