This program simply connects to a HTS221 I2C device to read Temperature & Humidity, and a WNC Cellular Module both of which are on the Avnet WNC Shield.

Dependencies:   mbed FXOS8700CQ

/media/uploads/JMF/avnet_logo.gif

AT&T Shape Hackathon QuickStart Instructions

  • One area that has been problematic is setting the the MY_SERVER_URL. When you copy the URL from the flow, you must make sure that the MY_SERVER_URL is also set to the appropirate server. It can be either "run-east.att.io" or "run-west.att.io", so be sure to check this.

Useful Links

Adding Additional Sensors

The FLOW_DEVICE_NAME field must contain the name of the instance of the Virtual Starter kit in FLOW that you will be communicating with. Usually this will be "vstarterkit001", but if you have problems communicating you can verify that this is indeed correct. Note that this device will not be created until you click the “Initialize” input on the Virtual Device tab of the Starter Kit project in FLOW. At that point it becomes available in M2X and you can see it there, as the DEVICE SERIAL field under Devices as in the image below.

Sensors: When executing, the FRDM-K64F board will upload sensor measurements to AT&T’s Flow environment every 5 seconds, using the Cellular shield board. You can adjust how often you want to do this by editing the SENSOR_UPDATE_INTERVAL_MS value in the header file. Temperature and humidity: By default the board will report readings from the HTS221 temperature and humidity sensor. These two values are sent to the HTTP IN /climate port in FLOW with field names “temp” and “humidity”. Temperature is in degrees Fahrenheit and humidity is a %. This default assignment is: iSensorsToReport = TEMP_HUMIDITY_ONLY;

Accelerometer: If you want to expand and use the on-board motion sensor, you can also send 3-axis accelerometer information from the board as “accelX”, “accelY” and “accelZ”. This is useful if you want to know the stationary position of the board with regards to gravity, or whether it is in motion. These readings are in g’s. To send these values, change the assignment to: iSensorsToReport = TEMP_HUMIDITY_ACCELEROMETER;

PMOD Sensors: If you have a Silicon Labs sensor module that can plug into the PMOD connector on the Cellular shield, you will also be able to measure proximity, UV light, ambient visible and infrared light from the Si1145 sensor. This PMOD also has a temperature and humidity sensor, but in this case it is redundant. When enabled, the fields “proximity”, “light_uv”, “light_vis” and “light_ir” will also be sent. To enable all these sensors, change the assignment to: iSensorsToReport = TEMP_HUMIDITY_ACCELEROMETER_PMODSENSORS;

Connecting up the PMOD sensors: Because the pinouts do not align, the SiLabs PMOD sensor board cannot be plugged into the J10 PMOD receptacle on the shield directly. The following wiring instructions must be used:

Signal=J10=(Shield) PMOD=Color in the image below
VCCPin 6Pin 6Red
GNDPin 5Pin 5Black
SDAPin4Pin 3Green
SCLPin3Pin 2Yellow

Link to AT&T M2X

M2X

Link to AT&T Flow

FLOW

Avnet WNC-Shield Information

Getting Started with the Avnet WNC-Shield & Hackathon software

  • This project uses Revision 119 of the MBED library because of I2C implementation differences with the tip (Revision 121)
  • This project uses Revision 4 of the FXOS8700CQ library for sensors

Easily modifiable parameters in source code

Inside the mbed “AvnetATT_shape_hackathon” project, the parameters that are needed to customize your board are in the config_me.h file.

  • FLOW parameters: This project assumes that you are using a fork of the “Starter Kit Base” project, which is a reference design that was created using AT&T’s FLOW (https://flow.att.com) that allows the creation of on-line virtualization and other IoT functionality. The default parameters in the config_me.h file are done for a specific instance of this project. When you fork the original project, you get your own instance and it will have its own base address. At the bottom of the FLOW environment, when you click on the “Endpoints” tab, you will see the URL information that is specific to your instance. Of note is the Base URL. In the example below (as in the default mbed project), the Base URL is: https://run-west.att.io/1e464b19cdcde/774c88d68202/86694923d5bf28a/in/flow You have to take note of two parts of this address. The run-west.att.io part is the server URL, and you have to make sure the
  • MY_SERVER_URL field in config_me.h matches this. Then there is the rest of the base URL, in green above, that needs to be pasted into the FLOW_BASE_URL field.

There is also a FLOW_INPUT_NAME field. This should match the name of the HTTP IN port in the FLOW project that you want to send sensor data to. The default is "/climate", as in the FLOW image below.

/media/uploads/JMF/sf.png

Where is the binary I compiled

When the COMPILE button is pressed, it will compile your project and link it. The result is placed in the DOWNLOAD folder you use when downloading files from the internet. It will be called AvnetATT_shape_hackathon_K64F.bin.

Additional information on compiling/configuring

Comprehensive instructions can be found at: Quick Start Instructions

Committer:
stefanrousseau
Date:
Sat Jul 23 01:10:53 2016 +0000
Revision:
34:029e07b67a41
Parent:
0:9d5134074d84
Fixed the char to be * char myJsonResponse[512];;

Who changed what in which revision?

UserRevisionLine numberNew contents of line
JMF 0:9d5134074d84 1
JMF 0:9d5134074d84 2 #include "mbed.h"
JMF 0:9d5134074d84 3 #include "SerialBuffered.h"
JMF 0:9d5134074d84 4
JMF 0:9d5134074d84 5 SerialBuffered::SerialBuffered( PinName tx, PinName rx, size_t bufferSize ) : Serial( tx, rx )
JMF 0:9d5134074d84 6 {
JMF 0:9d5134074d84 7 m_buffSize = 0;
JMF 0:9d5134074d84 8 m_contentStart = 0;
JMF 0:9d5134074d84 9 m_contentEnd = 0;
JMF 0:9d5134074d84 10 m_timeout = -1.0;
JMF 0:9d5134074d84 11 _txpin = tx;
JMF 0:9d5134074d84 12 _rxpin = rx;
JMF 0:9d5134074d84 13
JMF 0:9d5134074d84 14 attach( this, &SerialBuffered::handleInterrupt );
JMF 0:9d5134074d84 15
JMF 0:9d5134074d84 16 m_buff = (uint8_t *) malloc( bufferSize );
JMF 0:9d5134074d84 17 if( m_buff )
JMF 0:9d5134074d84 18 m_buffSize = bufferSize;
JMF 0:9d5134074d84 19 }
JMF 0:9d5134074d84 20
JMF 0:9d5134074d84 21
JMF 0:9d5134074d84 22 SerialBuffered::~SerialBuffered()
JMF 0:9d5134074d84 23 {
JMF 0:9d5134074d84 24 if( m_buff )
JMF 0:9d5134074d84 25 free( m_buff );
JMF 0:9d5134074d84 26 }
JMF 0:9d5134074d84 27
JMF 0:9d5134074d84 28 void SerialBuffered::setTimeout( float seconds )
JMF 0:9d5134074d84 29 {
JMF 0:9d5134074d84 30 m_timeout = seconds;
JMF 0:9d5134074d84 31 }
JMF 0:9d5134074d84 32
JMF 0:9d5134074d84 33 size_t SerialBuffered::readBytes( uint8_t *bytes, size_t requested )
JMF 0:9d5134074d84 34 {
JMF 0:9d5134074d84 35 int i = 0;
JMF 0:9d5134074d84 36
JMF 0:9d5134074d84 37 for( ; i < requested; )
JMF 0:9d5134074d84 38 {
JMF 0:9d5134074d84 39 int c = getc();
JMF 0:9d5134074d84 40 if( c < 0 )
JMF 0:9d5134074d84 41 break;
JMF 0:9d5134074d84 42 bytes[i] = c;
JMF 0:9d5134074d84 43 i++;
JMF 0:9d5134074d84 44 }
JMF 0:9d5134074d84 45
JMF 0:9d5134074d84 46 return i;
JMF 0:9d5134074d84 47
JMF 0:9d5134074d84 48 }
JMF 0:9d5134074d84 49
JMF 0:9d5134074d84 50
JMF 0:9d5134074d84 51 int SerialBuffered::_getc()
JMF 0:9d5134074d84 52 {
JMF 0:9d5134074d84 53 m_timer.reset();
JMF 0:9d5134074d84 54 m_timer.start();
JMF 0:9d5134074d84 55 while (m_contentStart == m_contentEnd) {
JMF 0:9d5134074d84 56 if (m_timeout >= 0 && m_timer.read() >= m_timeout )
JMF 0:9d5134074d84 57 return EOF;
JMF 0:9d5134074d84 58 wait_ms( 1 );
JMF 0:9d5134074d84 59 }
JMF 0:9d5134074d84 60
JMF 0:9d5134074d84 61 m_timer.stop();
JMF 0:9d5134074d84 62
JMF 0:9d5134074d84 63 int nbp = (m_contentStart + 1) % m_buffSize;
JMF 0:9d5134074d84 64 uint8_t result = m_buff[m_contentStart];
JMF 0:9d5134074d84 65 m_contentStart = nbp;
JMF 0:9d5134074d84 66 return result;
JMF 0:9d5134074d84 67 }
JMF 0:9d5134074d84 68
JMF 0:9d5134074d84 69 //int Serial::_getc() {
JMF 0:9d5134074d84 70 // return _base_getc();
JMF 0:9d5134074d84 71 //}
JMF 0:9d5134074d84 72
JMF 0:9d5134074d84 73 int SerialBuffered::_putc(int c) {
JMF 0:9d5134074d84 74 return _base_putc(c);
JMF 0:9d5134074d84 75 }
JMF 0:9d5134074d84 76
JMF 0:9d5134074d84 77 int SerialBuffered::readable()
JMF 0:9d5134074d84 78 {
JMF 0:9d5134074d84 79 return m_contentStart != m_contentEnd ;
JMF 0:9d5134074d84 80 }
JMF 0:9d5134074d84 81
JMF 0:9d5134074d84 82 void SerialBuffered::handleInterrupt()
JMF 0:9d5134074d84 83 {
JMF 0:9d5134074d84 84 while (serial_readable(&_serial)) {
JMF 0:9d5134074d84 85 char c_in = _base_getc();
JMF 0:9d5134074d84 86 int nbp = (m_contentEnd + 1) % m_buffSize;
JMF 0:9d5134074d84 87
JMF 0:9d5134074d84 88 if (nbp != m_contentStart) {
JMF 0:9d5134074d84 89 m_buff[m_contentEnd] = c_in;
JMF 0:9d5134074d84 90 m_contentEnd = nbp;
JMF 0:9d5134074d84 91 }
JMF 0:9d5134074d84 92 }
JMF 0:9d5134074d84 93 }