Code to run on the charger board (used to charge the car from the mains).

Dependencies:   mbed CUER_CAN

CANParserCharger.cpp

Committer:
DasSidG
Date:
2017-09-12
Revision:
12:77d493b3320b
Parent:
7:70cf5bff23f9

File content as of revision 12:77d493b3320b:

// Here are the functions to generate the CAN messages
#include "CANParserCharger.h"
#include "mbed.h"
#include "CAN_IDs.h"


using namespace CAN_IDs;

//CAN stuff. Not that there are two sets because there are two separate CAN buses here; one to communicate with the charger, and one to communicate with the rest of the car (importantly the BMS).
//The reason that there are two separate CAN buses is because the charger uses the extended CAN frame format, with a 29 bit ID, whereas the car uses the default 11 bit ID.
CAN car_can(CAR_CAN_READ_PIN, CAR_CAN_WRITE_PIN); //Create a CAN object to handle CAN comms
CANMessage car_buffer[CAN_BUFFER_SIZE]; //CAN receive buffer
bool car_safe_to_write[CAN_BUFFER_SIZE]; //Semaphore bit indicating that it's safe to write to the software buffer
bool car_CAN_data_sent = false;

CAN charger_can(CHARGER_CAN_READ_PIN, CHARGER_CAN_WRITE_PIN); //Create a CAN object to handle CAN comms
CANMessage charger_buffer[CAN_BUFFER_SIZE]; //CAN receive buffer
bool charger_safe_to_write[CAN_BUFFER_SIZE]; //Semaphore bit indicating that it's safe to write to the software buffer
bool charger_CAN_data_sent = false;

void get_max_min_voltage(CANMessage msg, float &_min_cell_voltage, float &_max_cell_voltage) {
    CAN_Data data;
    data.importCANData(msg);
    
    _min_cell_voltage = (float) data.get_u16(0);
    _max_cell_voltage = (float) data.get_u16(1);
}    

void get_battery_status(CANMessage msg, bool &error) { //note using extended battery pack status
    CAN_Data data;
    data.importCANData(msg);
    
    error = data.getLower_uLong() > 0;
    //ignore the rest of the status as we don't care
}

void get_charger_VI_info(CANMessage msg, float &_charger_voltage, float &_charger_current, uint8_t &_charger_status) {
    CAN_Data data;
    data.importCANData(msg);
    
    _charger_voltage = data.get_u16(0)*100.0;
    _charger_current = data.get_u16(1)*100.0;
    _charger_status = data.get_u8(4);
}

void check_precharge_status (CANMessage msg, bool &_precharge_ready) {
    CAN_Data data;
    data.importCANData(msg);
    
    if(data.get_u8(1) == 4) _precharge_ready = true;
    else _precharge_ready = false;
}

CANMessage generate_charger_control_msg(float _desired_voltage, float _desired_current, uint8_t _charger_control) {
    CANMessage msg;
    msg.format = CANExtended; //the charger uses the extended CAN frame format
    msg.len = 8;
    msg.id = CHARGER_VI_CONTROL_ID;
    CAN_Data data;
    data.set_u16(0, (uint16_t) (_desired_voltage/100));
    data.set_u16(1, (uint16_t) (_desired_current/100));
    data.set_u8(4, _charger_control);
    data.set_u8(5,0);
    data.set_u8(6,0);
    data.set_u8(7,0);
    
    for(int i=0; i<8; i++) {
        msg.data[i] = data.get_u8(i);
    }
    
    return msg;
}

CANMessage generate_charger_info_msg(float _charger_voltage, float _charger_current, uint8_t _charger_status, bool _charger_timeout, bool _bms_timeout) {
    CANMessage msg;
    msg.len = 8;
    msg.id = CHARGER_ID;
    CAN_Data data;
    data.set_u16(0, (uint16_t) (_charger_voltage/100));
    data.set_u16(1, (uint16_t) (_charger_current/100));
    data.set_u8(4, _charger_status);
    data.set_u8(5, _charger_timeout);
    data.set_u8(6, _bms_timeout);
    data.set_u8(7,0);
    
    for(int i=0; i<8; i++) {
        msg.data[i] = data.get_u8(i);
    }
    
    return msg;
}

CANMessage generate_charging_finished_msg() {
    CANMessage msg;
    msg.len = 8;
    msg.id = BMS_BASE_ID + EEPROM_RESET_ID;
    
    CAN_Data data;
    data.setLowerFloat(PACK_CAPACITY); //42 is the pack capacity in Ah
    data.setUpperFloat(100); //100% as fully charged
    
    for(int i=0; i<8; i++) {
        msg.data[i] = data.get_u8(i);
    }
    return msg;    
}

void get_CAN_data() {
    
    //Import the data from the buffer into a non-volatile, more usable format
    CANMessage car_msgArray[CAN_BUFFER_SIZE]; //Same as above but some functions take message as their parameter
    int car_received_CAN_IDs[CAN_BUFFER_SIZE]; //needed to keep track of which IDs we've received so far
    for (int i = 0; i<CAN_BUFFER_SIZE; ++i) 
    {
        car_safe_to_write[i] = false;
        car_received_CAN_IDs[i] = car_buffer[i].id;
        car_msgArray[i] = car_buffer[i];
        car_buffer[i].id = BLANK_ID; //this effectively clears the buffer, so that we never reuse old values
        car_safe_to_write[i] = true;
        
        //Now actually import the data from the CAN packets into the global variables
        switch (car_received_CAN_IDs[i]) {
            
            case BMS_BASE_ID:
                break;
                
            case BMS_BASE_ID + MAX_MIN_VOLTAGE:
                get_max_min_voltage(car_msgArray[i], min_cell_voltage, max_cell_voltage);
                break;
                
            case BMS_BASE_ID + BATTERY_STATUS_ID:
                get_battery_status(car_msgArray[i], bms_error); 
                break;
            
            case BMS_BASE_ID + BATTERY_PRECHARGE_ID:
                check_precharge_status(car_msgArray[i], precharge_status);
                break;
            
            case BLANK_ID: //This means we haven't received this type of message yet, so do nothing
                break;
            default:
                break;
        }
    }
    
    //Import the data from the buffer into a non-volatile, more usable format
    CANMessage charger_msgArray[CAN_BUFFER_SIZE]; //Same as above but some functions take message as their parameter
    int charger_received_CAN_IDs[CAN_BUFFER_SIZE]; //needed to keep track of which IDs we've received so far
    for (int i = 0; i<CAN_BUFFER_SIZE; ++i) 
    {
        charger_safe_to_write[i] = false;
        charger_received_CAN_IDs[i] = charger_buffer[i].id;
        charger_msgArray[i] = charger_buffer[i];
        charger_buffer[i].id = BLANK_ID;
        charger_safe_to_write[i] = true;
        
        //Now actually import the data from the CAN packets into the global variables
        switch (charger_received_CAN_IDs[i]) {
            
            case CHARGER_VI_INFO_ID:
                get_charger_VI_info(charger_msgArray[i], charger_voltage, charger_current, charger_status);
                if(charger_status bitand 1 == 1) {
                    if (DEBUG) printf("Charger status: Hardware Failure\r\n");
                    charger_failure = true;
                }
                
                if(charger_status bitand 2 == 2) {
                    if (DEBUG) printf("Charger status: Over Temperature\r\n");
                    charger_failure = true; 
                }
                
                if(charger_status bitand 4 == 4) {
                    if (DEBUG) printf("Charger status: Input Voltage Wrong\r\n");
                    charger_failure = true; 
                }
                
                if(charger_status bitand 8 == 8) {
                    if (DEBUG) printf("Charger status: Reverse Polarity\r\n");
                    charger_failure = true;
                }
                
                if(charger_status bitand 16 == 16) {
                    if (DEBUG) printf("Charger status: communication timeout\r\n");
                    charger_failure = true; 
                }
                break;
            case BLANK_ID: //This means we haven't received this type of message yet, so do nothing
                break;
            default:
                break;
        }
    }
}

void car_CANDataSentCallback(void) {
    car_CAN_data_sent = true;
}

void charger_CANDataSentCallback(void) {
    charger_CAN_data_sent = true;
}

void car_interruptHandler()
{
    CANMessage msg;
    car_can.read(msg);
    //if(DEBUG) printf("id %d incoming \r\n", msg.id);
    if(idAccepted(msg.id)) {
        for(int i=0; i<CAN_BUFFER_SIZE; i++) {
            if((car_buffer[i].id == msg.id || car_buffer[i].id==BLANK_ID) && car_safe_to_write[i]) {
                //("id %d added to buffer \r\n", msg.id);
                car_buffer[i] = msg;
                //return required so that only first blank buffer entry is converted to incoming message ID each time new message ID is encountered
                return;
            }
        }
    }
}

void charger_interruptHandler()
{
    CANMessage msg;
    charger_can.read(msg);
    //if(DEBUG) printf("id %d incoming \r\n", msg.id);
    if(idAccepted(msg.id)) {
        for(int i=0; i<CAN_BUFFER_SIZE; i++) {
            if((charger_buffer[i].id == msg.id || charger_buffer[i].id==BLANK_ID) && charger_safe_to_write[i]) {
                //("id %d added to buffer \r\n", msg.id);
                charger_buffer[i] = msg;
                //return required so that only first blank buffer entry is converted to incoming message ID each time new message ID is encountered
                return;
            }
        }
    }
}

bool idAccepted(int id)
{
    switch(id) {
        case BMS_BASE_ID:
            timeouts.BMS_timeout.reset();
            return true;
            
        case BMS_BASE_ID + MAX_MIN_VOLTAGE:
        case BMS_BASE_ID + BATTERY_STATUS_ID:
        case BMS_BASE_ID + BATTERY_PRECHARGE_ID:
            return true;
        case CHARGER_VI_INFO_ID:
            timeouts.charger_timeout.reset();
            return true;   
        default:
            return false;
    }
}   

void CAN_Init() {
    for(int i=0; i<CAN_BUFFER_SIZE; i++) 
    {
        car_buffer[i].id = BLANK_ID;
        //("%d",buffer[i].id);
        car_safe_to_write[i]= true;
        
        charger_buffer[i].id = BLANK_ID;
        //("%d",buffer[i].id);
        charger_safe_to_write[i]= true;
    }
    
    //Initialise CAN stuff, attach CAN interrupt handlers
    car_can.frequency(CAN_BIT_RATE); //set transmission rate to agreed bit rate
    car_can.reset(); 
    car_can.attach(&car_interruptHandler, CAN::RxIrq); //receive interrupt handler
    car_can.attach(&car_CANDataSentCallback, CAN::TxIrq); //send interrupt handler
    
    charger_can.frequency(CHARGER_CAN_BIT_RATE); //set transmission rate to agreed bit rate
    charger_can.reset();
    charger_can.attach(&charger_interruptHandler, CAN::RxIrq); //receive interrupt handler
    charger_can.attach(&charger_CANDataSentCallback, CAN::TxIrq); //send interrupt handler
}