CUER / Mbed 2 deprecated BMS_BMUCore_Max

Dependencies:   CUER_CAN CUER_DS1820 LTC2943 LTC6804 mbed PowerControl

Committer:
maxv008
Date:
Sun Jul 09 16:58:32 2017 +0000
Revision:
28:f1f882bd1653
Parent:
25:1fe8a42f8a6d
Child:
29:44924d2b1293
SOC working, voltages mysteriously break everything, tune in next week for more.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
lcockerton62 0:0a5f554d2a16 1 #include "mbed.h"
lcockerton62 0:0a5f554d2a16 2 #include "CANParserBMU.h"
lcockerton62 0:0a5f554d2a16 3 #include "Data_Types_BMU.h"
lcockerton62 0:0a5f554d2a16 4 #include "CAN_Data.h"
lcockerton62 0:0a5f554d2a16 5 #include "CAN_IDs.h"
lcockerton62 1:51477fe4851b 6 #include "EEPROM_I2C.h"
lcockerton62 1:51477fe4851b 7 #include "Temperature.h"
DasSidG 4:9050c5d6925e 8 #include "LTC2943_Read.h"
maxv008 10:1079f8e52d65 9 #include "Cell_Voltage.h"
maxv008 7:d00f4433cea9 10 #include "SPI_I2C_Parser.h"
maxv008 25:1fe8a42f8a6d 11 #include "LTC2943.h"
lcockerton62 0:0a5f554d2a16 12
msharma97 9:82ba050a7e13 13
lcockerton62 0:0a5f554d2a16 14 using namespace CAN_IDs;
lcockerton62 0:0a5f554d2a16 15
lcockerton62 0:0a5f554d2a16 16 // Function definitions
lcockerton62 1:51477fe4851b 17 void transmit_data(BMU_data measurements,uint32_t status);
lcockerton62 1:51477fe4851b 18 void read_temperature_sensors(BMU_data &measurements);
lcockerton62 0:0a5f554d2a16 19 void update_SOC();
lcockerton62 0:0a5f554d2a16 20 void init();
maxv008 14:e0e88a009f4c 21 void interruptHandler();
maxv008 14:e0e88a009f4c 22 void CANDataSentCallback();
lcockerton62 1:51477fe4851b 23 void write_SOC_EEPROM(BMU_data &measurements,uint16_t start_address);
lcockerton62 1:51477fe4851b 24 uint16_t read_EEPROM_startup(BMU_data &measurements);
lcockerton62 1:51477fe4851b 25 uint32_t check_measurements(BMU_data &measurements);
maxv008 23:a1af4439c1fc 26 uint32_t take_measurements(BMU_data &measurements);
maxv008 14:e0e88a009f4c 27 void test_read_CAN_buffer();
DasSidG 12:fa9b1a459e47 28 bool test_read_voltage_CAN(uint16_t readings[], int can_ids[]);
maxv008 10:1079f8e52d65 29 void test_CAN_send();
maxv008 10:1079f8e52d65 30 void test_CAN_read();
lcockerton62 0:0a5f554d2a16 31
lcockerton62 0:0a5f554d2a16 32 CAN can(CAN_READ_PIN, CAN_WRITE_PIN); //Create a CAN object to handle CAN comms
maxv008 14:e0e88a009f4c 33 CANMessage buffer[CAN_BUFFER_SIZE]; //CAN receive buffer
maxv008 14:e0e88a009f4c 34 bool safe_to_write[CAN_BUFFER_SIZE]; //Semaphore bit indicating that it's safe to write to the software buffer
maxv008 14:e0e88a009f4c 35 bool CAN_data_sent = false;
maxv008 14:e0e88a009f4c 36
maxv008 20:a1a1bfc938da 37 //Global array to store most recently obtained voltage and temp measurement:
maxv008 17:94dd9a0d3870 38 CMU_voltage voltage_readings[NO_CMUS];
maxv008 20:a1a1bfc938da 39 individual_temperature templist[NO_TEMPERATURE_SENSORS];
maxv008 28:f1f882bd1653 40 uint32_t status;
maxv008 28:f1f882bd1653 41 //LTC2943 ltc2943(i2c_sda, i2c_scl, alcc_pin, &dummyfunction, R_SENSE, BATTERY_CAPACITY);
maxv008 17:94dd9a0d3870 42
DasSidG 4:9050c5d6925e 43 uint16_t eeprom_start_address; //the initial address where we store/read SoC values
lcockerton62 0:0a5f554d2a16 44
lcockerton62 1:51477fe4851b 45 Timeout loop_delay;
lcockerton62 1:51477fe4851b 46 bool delay_finished = false;
lcockerton62 2:94716229ecc3 47
maxv008 28:f1f882bd1653 48 //The following is to initialize reading tests, can be removed when needed
maxv008 28:f1f882bd1653 49 float packSOC;
maxv008 28:f1f882bd1653 50 float packSOCPercentage;
maxv008 28:f1f882bd1653 51 pack_voltage_extremes minVolt;
maxv008 28:f1f882bd1653 52 pack_voltage_extremes maxVolt;
maxv008 28:f1f882bd1653 53 pack_temperature_extremes minTemp;
maxv008 28:f1f882bd1653 54 pack_temperature_extremes maxTemp;
maxv008 14:e0e88a009f4c 55
lcockerton62 2:94716229ecc3 56 void loop_delay_callback(void)
lcockerton62 2:94716229ecc3 57 {
lcockerton62 1:51477fe4851b 58 delay_finished = true;
lcockerton62 1:51477fe4851b 59 }
lcockerton62 1:51477fe4851b 60
lcockerton62 0:0a5f554d2a16 61 int main()
DasSidG 11:cf2db05cfa56 62 {
lcockerton62 1:51477fe4851b 63 BMU_data measurements;
lcockerton62 1:51477fe4851b 64 uint16_t current_EEPROM_address;
DasSidG 12:fa9b1a459e47 65 uint16_t volt_readings[36];
DasSidG 12:fa9b1a459e47 66 int can_ids[9];
maxv008 10:1079f8e52d65 67
lcockerton62 0:0a5f554d2a16 68 init();
maxv008 10:1079f8e52d65 69
DasSidG 11:cf2db05cfa56 70 //current_EEPROM_address = read_EEPROM_startup(measurements); // Read from the eeprom at startup to fill in the values of SoC
DasSidG 11:cf2db05cfa56 71 //ltc2943.accumulatedCharge(measurements.percentage_SOC); // Initialise the LTC2943 with the current state of charge
DasSidG 4:9050c5d6925e 72
lcockerton62 1:51477fe4851b 73 while (true) {
DasSidG 11:cf2db05cfa56 74
maxv008 28:f1f882bd1653 75 //status = take_measurements(measurements);
DasSidG 11:cf2db05cfa56 76 /*// Dont want to read the temperature sensors during each iteration of the loop
lcockerton62 0:0a5f554d2a16 77
lcockerton62 1:51477fe4851b 78 //Store data in the eeprom
lcockerton62 1:51477fe4851b 79 write_SOC_EEPROM(measurements, current_EEPROM_address);
DasSidG 11:cf2db05cfa56 80 */
maxv008 28:f1f882bd1653 81 printf("Beginning of loop \r\n");
lcockerton62 5:793afeef45dc 82 // CAN bus
maxv008 14:e0e88a009f4c 83 CAN_data_sent = false;//Currently does nothing, adding this line in more places then using
maxv008 14:e0e88a009f4c 84 //while(!CAN_data_sent); in order to ensure sending completes
maxv008 28:f1f882bd1653 85 //transmit_data(measurements,status);
maxv008 28:f1f882bd1653 86 test_read_CAN_buffer();
DasSidG 11:cf2db05cfa56 87
DasSidG 11:cf2db05cfa56 88 /*
lcockerton62 0:0a5f554d2a16 89 // Conserve power - enter a low powered mode
lcockerton62 2:94716229ecc3 90 delay_finished = false;
lcockerton62 1:51477fe4851b 91 loop_delay.attach(loop_delay_callback, LOOP_DELAY_S);
lcockerton62 1:51477fe4851b 92 while (!delay_finished) sleep();
DasSidG 11:cf2db05cfa56 93 */
maxv008 28:f1f882bd1653 94 printf("BEFORE THE WAIT \r\n");
DasSidG 11:cf2db05cfa56 95 wait(1);
maxv008 28:f1f882bd1653 96 printf("AFTER THE WAIT \r\n");
maxv008 10:1079f8e52d65 97 }
lcockerton62 0:0a5f554d2a16 98 }
lcockerton62 0:0a5f554d2a16 99
lcockerton62 1:51477fe4851b 100 void transmit_data(BMU_data measurements, uint32_t status)
lcockerton62 0:0a5f554d2a16 101 {
msharma97 9:82ba050a7e13 102 CANMessage msg;
lcockerton62 0:0a5f554d2a16 103 /*
lcockerton62 0:0a5f554d2a16 104 Place all of the collected data onto the CAN bus
lcockerton62 0:0a5f554d2a16 105 */
lcockerton62 5:793afeef45dc 106 // Send cell voltages
maxv008 13:7b42af989cd1 107 //voltages sent in sets of 4 + one cmu data set
msharma97 9:82ba050a7e13 108 int repeating_unit_length = NO_READINGS_PER_CMU /4 + 1;
maxv008 10:1079f8e52d65 109 for(uint16_t i= 0; i < NO_CMUS; i++) {
msharma97 9:82ba050a7e13 110 //input id is offset, data structure is info, voltage, voltage, ......
maxv008 10:1079f8e52d65 111 //This is a slightly modified version of the Tritium BMS datasheet, to add an extra voltage reading set.
maxv008 10:1079f8e52d65 112 msg = createVoltageTelemetry(repeating_unit_length*i+2, measurements.cell_voltages[i].voltages);
msharma97 9:82ba050a7e13 113 can.write(msg);
maxv008 17:94dd9a0d3870 114 printf("Voltage Message id: %d \r\n", msg.id);
maxv008 17:94dd9a0d3870 115 //+4 - 4 cell voltages sent per measurement, simple pointer arithmetic
maxv008 10:1079f8e52d65 116 msg = createVoltageTelemetry(repeating_unit_length*i+3, measurements.cell_voltages[i].voltages + 4);
msharma97 9:82ba050a7e13 117 can.write(msg);
maxv008 17:94dd9a0d3870 118 printf("Voltage Message id: %d \r\n", msg.id);
maxv008 10:1079f8e52d65 119 msg = createVoltageTelemetry(repeating_unit_length*i+4, measurements.cell_voltages[i].voltages + 8);
msharma97 9:82ba050a7e13 120 can.write(msg);
maxv008 17:94dd9a0d3870 121 printf("Voltage Message id: %d \r\n", msg.id);
lcockerton62 1:51477fe4851b 122 }
maxv008 13:7b42af989cd1 123
maxv008 13:7b42af989cd1 124 //Transmitting all of the individual probes:
maxv008 17:94dd9a0d3870 125 for(uint8_t i = 0; i < devices_found; i++)
maxv008 13:7b42af989cd1 126 {
maxv008 14:e0e88a009f4c 127 individual_temperature tempreading = measurements.temperature_measurements[i];
maxv008 14:e0e88a009f4c 128 msg = createTemperatureTelemetry(i, &tempreading.ROMID[0], tempreading.measurement);
maxv008 17:94dd9a0d3870 129 individual_temperature testOut = decodeTemperatureTelemetry(msg);
maxv008 17:94dd9a0d3870 130 printf("Temperature reading sent (CAN ID = %d): (%f,%d) \r\n", msg.id, testOut.measurement, testOut.ID);
maxv008 20:a1a1bfc938da 131 if(can.write(msg));
maxv008 20:a1a1bfc938da 132 else
maxv008 20:a1a1bfc938da 133 printf("Sending Temperature Failed for some reason");
maxv008 13:7b42af989cd1 134 }
lcockerton62 1:51477fe4851b 135
lcockerton62 1:51477fe4851b 136 // Create SOC CAN message
maxv008 23:a1af4439c1fc 137 msg = createPackSOC(measurements.SOC, measurements.percentage_SOC);
maxv008 23:a1af4439c1fc 138 can.write(msg);
maxv008 28:f1f882bd1653 139 printf("SOC is %f and percentage SOC is %f and id is %d \r\n", measurements.SOC, measurements.percentage_SOC, msg.id);
maxv008 23:a1af4439c1fc 140
lcockerton62 1:51477fe4851b 141 // Min/max cell voltages
maxv008 23:a1af4439c1fc 142 msg = createCellVoltageMAXMIN(measurements.max_cell_voltage, measurements.min_cell_voltage);
maxv008 23:a1af4439c1fc 143 can.write(msg);
maxv008 23:a1af4439c1fc 144
maxv008 23:a1af4439c1fc 145 // Min/Max cell temperatures
maxv008 23:a1af4439c1fc 146 msg = createCellTemperatureMAXMIN(measurements.min_cell_temp, true);
maxv008 23:a1af4439c1fc 147 can.write(msg);
maxv008 23:a1af4439c1fc 148 msg = createCellTemperatureMAXMIN(measurements.max_cell_temp, false);
maxv008 23:a1af4439c1fc 149 can.write(msg);
maxv008 23:a1af4439c1fc 150
lcockerton62 2:94716229ecc3 151 // Battery voltage and current
lcockerton62 5:793afeef45dc 152 // @TODO add the voltage
maxv008 23:a1af4439c1fc 153 msg = createBatteryVI(measurements.battery_voltage,measurements.battery_current);
maxv008 23:a1af4439c1fc 154 //can.write(msg);
maxv008 23:a1af4439c1fc 155
lcockerton62 1:51477fe4851b 156 //Extended battery pack status
maxv008 23:a1af4439c1fc 157 msg = createExtendedBatteryPackStatus(status);
maxv008 23:a1af4439c1fc 158 can.write(msg);
lcockerton62 0:0a5f554d2a16 159 }
lcockerton62 0:0a5f554d2a16 160
maxv008 10:1079f8e52d65 161
lcockerton62 1:51477fe4851b 162 uint16_t read_EEPROM_startup(BMU_data &measurements)
lcockerton62 0:0a5f554d2a16 163 {
lcockerton62 1:51477fe4851b 164 /* The first page of the EEPROM, specifically the first 2 addresses store a
lcockerton62 1:51477fe4851b 165 pointer of the first memory location of measurement data. The EEPROM only has a finite number of
lcockerton62 1:51477fe4851b 166 read/write cycles which is why we aren't writing to the same location throughout
lcockerton62 1:51477fe4851b 167 */
lcockerton62 5:793afeef45dc 168
lcockerton62 1:51477fe4851b 169 uint16_t start_address;
lcockerton62 1:51477fe4851b 170 char start_address_array[2];
lcockerton62 22:2df45c818786 171 char SOC_out[10]; // 4 bytes for the 2 floats one is SOC and the other % charge
lcockerton62 1:51477fe4851b 172 float *fp1,*fp2; // temporary storage for float conversion
lcockerton62 22:2df45c818786 173 uint16_t received_pec;
lcockerton62 22:2df45c818786 174 uint16_t data_pec;
lcockerton62 22:2df45c818786 175 int8_t pec_error;
lcockerton62 1:51477fe4851b 176
lcockerton62 1:51477fe4851b 177 // Get a pointer to the start address for the data stored in the eeprom
lcockerton62 1:51477fe4851b 178 i2c_page_read(0x0000,2,start_address_array);
lcockerton62 1:51477fe4851b 179
lcockerton62 1:51477fe4851b 180 // Read the data from this address
lcockerton62 1:51477fe4851b 181 start_address = (start_address_array[1]<< 8) | start_address_array[0]; // mbed little endian follow this convention
lcockerton62 22:2df45c818786 182 i2c_page_read(start_address, 10,SOC_out); // Reading will aquire 2 floats and a PEC for the data
lcockerton62 0:0a5f554d2a16 183
lcockerton62 22:2df45c818786 184 // Convert the SOC_out values back into floats and deal with the pec
lcockerton62 22:2df45c818786 185 received_pec = (uint16_t)(SOC_out[8]<<8) + (uint16_t)SOC_out[9];
lcockerton62 22:2df45c818786 186 data_pec = pec15_calc(8, (uint8_t*)SOC_out);
lcockerton62 22:2df45c818786 187 if(received_pec != data_pec) {
lcockerton62 22:2df45c818786 188 pec_error = -1;
lcockerton62 22:2df45c818786 189 cout << "PEC error!!!" << endl; // @TODO An error flag really needs to be raised here
lcockerton62 22:2df45c818786 190 }
lcockerton62 22:2df45c818786 191 else{
lcockerton62 22:2df45c818786 192 fp1 = (float*)(&SOC_out[0]);
lcockerton62 22:2df45c818786 193 fp2 = (float*)(&SOC_out[4]);
lcockerton62 22:2df45c818786 194 measurements.SOC = *fp1;
lcockerton62 22:2df45c818786 195 measurements.percentage_SOC = *fp2;
lcockerton62 22:2df45c818786 196 }
lcockerton62 1:51477fe4851b 197
lcockerton62 1:51477fe4851b 198 // Select the next address to write to
lcockerton62 1:51477fe4851b 199 start_address += 0x0040;
lcockerton62 1:51477fe4851b 200 if(start_address > MAX_WRITE_ADDRESS) {
lcockerton62 5:793afeef45dc 201 start_address = START_WRITE_ADDRESS; // Loop to the start of the eeprom
lcockerton62 1:51477fe4851b 202 }
lcockerton62 1:51477fe4851b 203
lcockerton62 5:793afeef45dc 204 /*@TODO need to include a CRC check for the address pointer for the scenario
lcockerton62 5:793afeef45dc 205 when power is removed and we are writing to the eeprom*/
lcockerton62 1:51477fe4851b 206 // write the new address to location 0x0000
lcockerton62 1:51477fe4851b 207 start_address_array[0] = start_address | 0x00FF;
lcockerton62 1:51477fe4851b 208 start_address_array[1] = start_address >> 8;
lcockerton62 1:51477fe4851b 209 i2c_page_write(0x0000, 2, start_address_array);
lcockerton62 1:51477fe4851b 210
lcockerton62 1:51477fe4851b 211 return start_address;
lcockerton62 0:0a5f554d2a16 212 }
lcockerton62 0:0a5f554d2a16 213
lcockerton62 1:51477fe4851b 214 void write_SOC_EEPROM(BMU_data &measurements,uint16_t start_address)
lcockerton62 0:0a5f554d2a16 215 {
lcockerton62 22:2df45c818786 216 char data_out[10];
lcockerton62 1:51477fe4851b 217 float *fp1,*fp2;
lcockerton62 22:2df45c818786 218 uint16_t data_pec;
lcockerton62 1:51477fe4851b 219
lcockerton62 1:51477fe4851b 220 fp1 = (float*)(&measurements.SOC);
lcockerton62 1:51477fe4851b 221 fp2 = (float*)(&measurements.percentage_SOC);
lcockerton62 0:0a5f554d2a16 222
lcockerton62 1:51477fe4851b 223 for(int i = 0; i < 4; i++ ) {
lcockerton62 1:51477fe4851b 224 data_out[i] = *fp1;
lcockerton62 1:51477fe4851b 225 fp1++;
lcockerton62 1:51477fe4851b 226 }
lcockerton62 1:51477fe4851b 227 for(int j = 4; j < 7; j++ ) {
lcockerton62 1:51477fe4851b 228 data_out[j] = *fp2;
lcockerton62 1:51477fe4851b 229 fp2++;
lcockerton62 1:51477fe4851b 230 }
lcockerton62 22:2df45c818786 231 data_pec = pec15_calc(8, ((uint8_t*)data_out)); // Calculate the pec and then write it to memory
lcockerton62 22:2df45c818786 232 data_out[8] = (char)(data_pec >> 8);
lcockerton62 22:2df45c818786 233 data_out[9] = (char)(data_pec);
lcockerton62 1:51477fe4851b 234 i2c_page_write(start_address, 8,data_out);
lcockerton62 0:0a5f554d2a16 235 }
lcockerton62 0:0a5f554d2a16 236
lcockerton62 1:51477fe4851b 237 void read_temperature_sensors(BMU_data &measurements)
lcockerton62 0:0a5f554d2a16 238 {
lcockerton62 1:51477fe4851b 239 float min_temperature;
maxv008 23:a1af4439c1fc 240 char min_id[8];
lcockerton62 1:51477fe4851b 241 float max_temperature;
maxv008 23:a1af4439c1fc 242 char max_id[8];
DasSidG 21:d461d58e70fc 243 isotherm_12V_pin = 1;
lcockerton62 1:51477fe4851b 244 probe[0]->convert_temperature(DS1820::all_devices);
DasSidG 21:d461d58e70fc 245
lcockerton62 1:51477fe4851b 246 min_temperature = probe[0]->temperature('C');
maxv008 23:a1af4439c1fc 247 std::memcpy(min_id, probe[0]->ROM, sizeof(char)*8); //invalid shallow copy: min_id = probe[0]->ROM;
lcockerton62 1:51477fe4851b 248 max_temperature = min_temperature; // Initially set the max and min temperature equal
maxv008 23:a1af4439c1fc 249 std::memcpy(max_id, probe[0]->ROM, sizeof(char)*8);
DasSidG 16:b2ef68c9a4fd 250 for (int i=0; i<devices_found; i++) {
maxv008 14:e0e88a009f4c 251 for(int j = 0; j < 7; j++)
maxv008 14:e0e88a009f4c 252 measurements.temperature_measurements[i].ROMID[j] = probe[i]->ROM[j];
lcockerton62 1:51477fe4851b 253 measurements.temperature_measurements[i].measurement = probe[i] ->temperature('C');
maxv008 14:e0e88a009f4c 254
lcockerton62 1:51477fe4851b 255 if(measurements.temperature_measurements[i].measurement > max_temperature) {
lcockerton62 1:51477fe4851b 256 max_temperature = measurements.temperature_measurements[i].measurement;
maxv008 23:a1af4439c1fc 257 std::memcpy(max_id, measurements.temperature_measurements[i].ROMID, sizeof(char)*8);
lcockerton62 2:94716229ecc3 258 } else if (measurements.temperature_measurements[i].measurement < min_temperature) {
lcockerton62 1:51477fe4851b 259 min_temperature = measurements.temperature_measurements[i].measurement;
maxv008 23:a1af4439c1fc 260 std::memcpy(min_id, measurements.temperature_measurements[i].ROMID, sizeof(char)*8);
lcockerton62 1:51477fe4851b 261 }
DasSidG 12:fa9b1a459e47 262
maxv008 18:521ffdd724f3 263 //printf("Device %d temperature is %3.3f degrees Celcius.\r\n",i+1 ,probe[i]->temperature('C'));
lcockerton62 1:51477fe4851b 264 }
DasSidG 21:d461d58e70fc 265 isotherm_12V_pin = 0;
maxv008 13:7b42af989cd1 266 //There is also a CMU # component of this struct, currently unfilled, perhaps not needed at all.
lcockerton62 1:51477fe4851b 267 measurements.max_cell_temp.temperature = max_temperature;
maxv008 23:a1af4439c1fc 268 std::memcpy(measurements.max_cell_temp.ROMID, max_id, sizeof(char)*8);
lcockerton62 1:51477fe4851b 269 measurements.min_cell_temp.temperature = min_temperature;
maxv008 28:f1f882bd1653 270 std::memcpy(measurements.min_cell_temp.ROMID, min_id, sizeof(char)*8);
maxv008 28:f1f882bd1653 271 delete max_id;
maxv008 28:f1f882bd1653 272 delete min_id;
lcockerton62 0:0a5f554d2a16 273 }
lcockerton62 0:0a5f554d2a16 274
lcockerton62 0:0a5f554d2a16 275 void update_SOC()
lcockerton62 0:0a5f554d2a16 276 {
lcockerton62 1:51477fe4851b 277 // Update the SOC value
maxv008 25:1fe8a42f8a6d 278 ltc2943.readAll();
lcockerton62 0:0a5f554d2a16 279 }
lcockerton62 0:0a5f554d2a16 280
lcockerton62 0:0a5f554d2a16 281
lcockerton62 1:51477fe4851b 282 uint32_t check_measurements(BMU_data &measurements)
lcockerton62 1:51477fe4851b 283 {
lcockerton62 1:51477fe4851b 284 uint32_t status;
lcockerton62 2:94716229ecc3 285
lcockerton62 2:94716229ecc3 286 if(measurements.max_cell_voltage.voltage > MAX_CELL_VOLTAGE) {
lcockerton62 2:94716229ecc3 287 status = status | CELL_OVER_VOLTAGE;
lcockerton62 2:94716229ecc3 288 } else if (measurements.min_cell_voltage.voltage < MIN_CELL_VOLTAGE) {
lcockerton62 1:51477fe4851b 289 status = status | CELL_UNDER_VOLTAGE;
lcockerton62 2:94716229ecc3 290 } else if (measurements.max_cell_temp.temperature > MAX_CELL_TEMPERATURE) {
lcockerton62 1:51477fe4851b 291 status = status | CELL_OVER_TEMPERATURE;
lcockerton62 1:51477fe4851b 292 }
lcockerton62 2:94716229ecc3 293
lcockerton62 1:51477fe4851b 294 /*
lcockerton62 1:51477fe4851b 295 @TODO also include errors for:
lcockerton62 1:51477fe4851b 296 *untrusted measurement
lcockerton62 1:51477fe4851b 297 *CMU timeout
lcockerton62 1:51477fe4851b 298 *SOC not valid
lcockerton62 1:51477fe4851b 299 */
lcockerton62 1:51477fe4851b 300 return status;
lcockerton62 1:51477fe4851b 301 }
lcockerton62 1:51477fe4851b 302
maxv008 23:a1af4439c1fc 303 //Returns the status variable
maxv008 23:a1af4439c1fc 304 uint32_t take_measurements(BMU_data &measurements)
lcockerton62 1:51477fe4851b 305 {
maxv008 6:b567fcb604aa 306 uint16_t cellvoltages[NO_CMUS][12];
DasSidG 16:b2ef68c9a4fd 307 //Use LTC6804_acquireVoltage to fill this array, and then properly format
maxv008 6:b567fcb604aa 308 //it to be sent over CAN
maxv008 6:b567fcb604aa 309
DasSidG 16:b2ef68c9a4fd 310 LTC6804_acquireVoltage(cellvoltages);
maxv008 23:a1af4439c1fc 311 pack_voltage_extremes min_voltage;
maxv008 23:a1af4439c1fc 312 pack_voltage_extremes max_voltage; //TODO do minmax voltage stuff
maxv008 23:a1af4439c1fc 313 min_voltage.voltage = 65535; //largest 16 bit unsigned int
maxv008 23:a1af4439c1fc 314 max_voltage.voltage = 0;
maxv008 23:a1af4439c1fc 315
maxv008 23:a1af4439c1fc 316 //Sets voltage readings as well as max/min voltage values.
maxv008 10:1079f8e52d65 317 for(int i=0; i<NO_CMUS; i++){
maxv008 17:94dd9a0d3870 318 for(int j=0; j < NO_READINGS_PER_CMU; j++){
DasSidG 16:b2ef68c9a4fd 319 measurements.cell_voltages[i].voltages[j] = cellvoltages[i][j]/ 10; //To get units of mV
maxv008 17:94dd9a0d3870 320 measurements.cell_voltages[i].CMU_number = i;
maxv008 23:a1af4439c1fc 321 if(measurements.cell_voltages[i].voltages[j] < min_voltage.voltage)
maxv008 23:a1af4439c1fc 322 {
maxv008 23:a1af4439c1fc 323 min_voltage.voltage = measurements.cell_voltages[i].voltages[j];
maxv008 23:a1af4439c1fc 324 min_voltage.CMU_number = i;
maxv008 23:a1af4439c1fc 325 min_voltage.cell_number = j;
maxv008 23:a1af4439c1fc 326 }
maxv008 23:a1af4439c1fc 327 else if(measurements.cell_voltages[i].voltages[j] < max_voltage.voltage)
maxv008 23:a1af4439c1fc 328 {
maxv008 23:a1af4439c1fc 329 max_voltage.voltage = measurements.cell_voltages[i].voltages[j];
maxv008 23:a1af4439c1fc 330 max_voltage.CMU_number = i;
maxv008 23:a1af4439c1fc 331 max_voltage.cell_number = j;
maxv008 23:a1af4439c1fc 332 }
maxv008 10:1079f8e52d65 333 }
maxv008 23:a1af4439c1fc 334 }
maxv008 23:a1af4439c1fc 335 measurements.max_cell_voltage = max_voltage;
maxv008 23:a1af4439c1fc 336 measurements.min_cell_voltage = min_voltage;
DasSidG 4:9050c5d6925e 337
maxv008 13:7b42af989cd1 338 //Add code to take all temperature measurements and add it to measurements struct.
maxv008 13:7b42af989cd1 339 read_temperature_sensors(measurements);
maxv008 23:a1af4439c1fc 340
maxv008 23:a1af4439c1fc 341 // Update the SOC and take relevant measurements
maxv008 23:a1af4439c1fc 342 update_SOC();
maxv008 28:f1f882bd1653 343 measurements.battery_current = (uint32_t) ltc2943.current() * 1000; //*1000 to convert to mA
DasSidG 4:9050c5d6925e 344 measurements.percentage_SOC = ltc2943.accumulatedCharge();
DasSidG 4:9050c5d6925e 345 measurements.SOC = (measurements.percentage_SOC /100) * BATTERY_CAPACITY;
maxv008 23:a1af4439c1fc 346
maxv008 23:a1af4439c1fc 347 // Check data for errors
maxv008 23:a1af4439c1fc 348 return check_measurements(measurements);
lcockerton62 1:51477fe4851b 349 }
lcockerton62 1:51477fe4851b 350
lcockerton62 0:0a5f554d2a16 351 void init()
lcockerton62 0:0a5f554d2a16 352 {
maxv008 18:521ffdd724f3 353 //Comment out measurement stuff with BCU testing
maxv008 28:f1f882bd1653 354 /*temperature_init(); // Initialise the temperature sensors
DasSidG 4:9050c5d6925e 355 LTC2943_initialise(); //Initialises the fixed parameters of the LTC2943
DasSidG 15:e901aff1f5b3 356 LTC6804_init(MD_FAST, DCP_DISABLED, CELL_CH_ALL, AUX_CH_VREF2); //Initialises the LTC6804s
maxv008 28:f1f882bd1653 357 */
maxv008 14:e0e88a009f4c 358 for(int i=0; i<CAN_BUFFER_SIZE; i++)
maxv008 14:e0e88a009f4c 359 {
maxv008 14:e0e88a009f4c 360 buffer[i].id = BLANK_ID;
maxv008 14:e0e88a009f4c 361 safe_to_write[i]= true;
maxv008 14:e0e88a009f4c 362 }
maxv008 14:e0e88a009f4c 363
maxv008 14:e0e88a009f4c 364 //Initialise CAN stuff, attach CAN interrupt handlers
maxv008 14:e0e88a009f4c 365 can.frequency(CAN_BIT_RATE); //set transmission rate to agreed bit rate (ELEC-006)
maxv008 14:e0e88a009f4c 366 can.reset(); // (FUNC-018)
maxv008 14:e0e88a009f4c 367 can.attach(&interruptHandler, CAN::RxIrq); //receive interrupt handler
maxv008 14:e0e88a009f4c 368 can.attach(&CANDataSentCallback, CAN::TxIrq); //send interrupt handler
maxv008 17:94dd9a0d3870 369
maxv008 17:94dd9a0d3870 370 //Initialize voltage array
maxv008 17:94dd9a0d3870 371 for(int i = 0; i < NO_CMUS; i++)
maxv008 17:94dd9a0d3870 372 {
maxv008 17:94dd9a0d3870 373 for(int j = 0; j < NO_READINGS_PER_CMU; j++)
maxv008 17:94dd9a0d3870 374 {
maxv008 17:94dd9a0d3870 375 voltage_readings[i].voltages[j] = 0;
maxv008 17:94dd9a0d3870 376 }
maxv008 17:94dd9a0d3870 377 }
maxv008 20:a1a1bfc938da 378 //Initialize Temperature Array
maxv008 20:a1a1bfc938da 379 for(int i = 0; i < NO_TEMPERATURE_SENSORS; i++)
maxv008 20:a1a1bfc938da 380 {
maxv008 28:f1f882bd1653 381 templist[i].measurement = INFINITY;
maxv008 20:a1a1bfc938da 382 templist[i].ID = 0;
maxv008 20:a1a1bfc938da 383 }
maxv008 28:f1f882bd1653 384 //initialize stuff used in reading test:
maxv008 28:f1f882bd1653 385 packSOC = INFINITY;
maxv008 28:f1f882bd1653 386 packSOCPercentage = INFINITY;
maxv008 28:f1f882bd1653 387
maxv008 28:f1f882bd1653 388 minVolt.voltage = 0;
maxv008 28:f1f882bd1653 389 maxVolt.voltage = 0;
maxv008 28:f1f882bd1653 390
maxv008 28:f1f882bd1653 391 minTemp.temperature = 0; minTemp.ID = 0;
maxv008 28:f1f882bd1653 392 maxTemp.temperature = 0; maxTemp.ID = 0;
maxv008 14:e0e88a009f4c 393 }
maxv008 14:e0e88a009f4c 394
maxv008 14:e0e88a009f4c 395 void CANDataSentCallback(void) {
maxv008 14:e0e88a009f4c 396 CAN_data_sent = true;
lcockerton62 0:0a5f554d2a16 397 }
lcockerton62 0:0a5f554d2a16 398
maxv008 14:e0e88a009f4c 399 void interruptHandler()
maxv008 14:e0e88a009f4c 400 {
maxv008 14:e0e88a009f4c 401 CANMessage msg;
DasSidG 16:b2ef68c9a4fd 402 can.read(msg);
maxv008 14:e0e88a009f4c 403 for(int i=0; i<CAN_BUFFER_SIZE; i++) {
maxv008 14:e0e88a009f4c 404 if((buffer[i].id == msg.id || buffer[i].id==BLANK_ID) && safe_to_write[i]) {
maxv008 14:e0e88a009f4c 405 //("id %d added to buffer \r\n", msg.id);
maxv008 14:e0e88a009f4c 406 buffer[i] = msg;
maxv008 14:e0e88a009f4c 407 //return required so that only first blank buffer entry is converted to incoming message ID each time new message ID is encountered
maxv008 14:e0e88a009f4c 408 return;
maxv008 14:e0e88a009f4c 409 }
maxv008 14:e0e88a009f4c 410 }
maxv008 14:e0e88a009f4c 411 }
maxv008 14:e0e88a009f4c 412
maxv008 14:e0e88a009f4c 413 void test_read_CAN_buffer()
maxv008 14:e0e88a009f4c 414 {
maxv008 14:e0e88a009f4c 415 //Import the data from the buffer into a non-volatile, more usable format
maxv008 14:e0e88a009f4c 416 CAN_Data can_data[CAN_BUFFER_SIZE]; //container for all of the raw data
maxv008 17:94dd9a0d3870 417 CANMessage msgArray[CAN_BUFFER_SIZE]; //Same as above but some functions take message as their parameter
maxv008 14:e0e88a009f4c 418 int received_CAN_IDs[CAN_BUFFER_SIZE]; //needed to keep track of which IDs we've received so far
maxv008 14:e0e88a009f4c 419 for (int i = 0; i<CAN_BUFFER_SIZE; ++i)
maxv008 14:e0e88a009f4c 420 {
maxv008 14:e0e88a009f4c 421 safe_to_write[i] = false;
maxv008 14:e0e88a009f4c 422 can_data[i].importCANData(buffer[i]);
maxv008 14:e0e88a009f4c 423 received_CAN_IDs[i] = buffer[i].id;
maxv008 17:94dd9a0d3870 424 msgArray[i] = buffer[i];
maxv008 14:e0e88a009f4c 425 safe_to_write[i] = true;
maxv008 14:e0e88a009f4c 426 }
maxv008 17:94dd9a0d3870 427
maxv008 23:a1af4439c1fc 428 //voltage and Temp and SOC readings:
maxv008 18:521ffdd724f3 429 for(int i = 0; i < CAN_BUFFER_SIZE; i++)
maxv008 18:521ffdd724f3 430 {
maxv008 18:521ffdd724f3 431 //voltage
maxv008 28:f1f882bd1653 432 if(decodeVoltageTelemetry(msgArray[i], voltage_readings))
maxv008 28:f1f882bd1653 433 printf("we made it inside the if \r\n");//continue;
maxv008 28:f1f882bd1653 434 //temperature
maxv008 28:f1f882bd1653 435 printf("We made it past the if statement \r\n");
maxv008 20:a1a1bfc938da 436 if(msgArray[i].id >= 0x700)
maxv008 18:521ffdd724f3 437 {
maxv008 20:a1a1bfc938da 438 individual_temperature dataPoint = decodeTemperatureTelemetry(msgArray[i]);
maxv008 20:a1a1bfc938da 439 for(int j = 0; j < NO_TEMPERATURE_SENSORS; j++)
maxv008 20:a1a1bfc938da 440 {
maxv008 20:a1a1bfc938da 441 if(dataPoint.ID == templist[j].ID)
maxv008 20:a1a1bfc938da 442 {
maxv008 20:a1a1bfc938da 443 templist[j] = dataPoint;
maxv008 20:a1a1bfc938da 444 break;
maxv008 20:a1a1bfc938da 445 }
maxv008 20:a1a1bfc938da 446 else if(templist[j].ID == 0)
maxv008 20:a1a1bfc938da 447 {
maxv008 20:a1a1bfc938da 448 templist[j] = dataPoint;
maxv008 20:a1a1bfc938da 449 break;
maxv008 20:a1a1bfc938da 450 }
maxv008 20:a1a1bfc938da 451 }
maxv008 20:a1a1bfc938da 452
maxv008 23:a1af4439c1fc 453 }
maxv008 23:a1af4439c1fc 454 //SOC
maxv008 23:a1af4439c1fc 455 if(msgArray[i].id == 0x6F4)
maxv008 23:a1af4439c1fc 456 {
maxv008 23:a1af4439c1fc 457 packSOC = decodePackSOC(msgArray[i]);
maxv008 23:a1af4439c1fc 458 packSOCPercentage = decodePackSOCPercentage(msgArray[i]);
maxv008 28:f1f882bd1653 459 }
maxv008 23:a1af4439c1fc 460
maxv008 23:a1af4439c1fc 461 if(msgArray[i].id == BMS_BASE_ID + MIN_TEMPERATURE)
maxv008 23:a1af4439c1fc 462 minTemp = decodeCellTemperatureMAXMIN(msgArray[i]);
maxv008 23:a1af4439c1fc 463 if(msgArray[i].id == BMS_BASE_ID + MAX_TEMPERATURE)
maxv008 23:a1af4439c1fc 464 maxTemp = decodeCellTemperatureMAXMIN(msgArray[i]);
maxv008 28:f1f882bd1653 465
maxv008 23:a1af4439c1fc 466 if(msgArray[i].id == BMS_BASE_ID + MAX_MIN_VOLTAGE)
maxv008 23:a1af4439c1fc 467 {
maxv008 23:a1af4439c1fc 468 decodeCellVoltageMAXMIN(msgArray[i], minVolt, maxVolt);
maxv008 23:a1af4439c1fc 469 }
maxv008 23:a1af4439c1fc 470
maxv008 23:a1af4439c1fc 471 if(msgArray[i].id == BMS_BASE_ID + BATTERY_STATUS_ID)
maxv008 28:f1f882bd1653 472 status = decodeExtendedBatteryPackStatus(msgArray[i]);
maxv008 28:f1f882bd1653 473 }
maxv008 18:521ffdd724f3 474 //Print obtained Readings:
maxv008 18:521ffdd724f3 475 for(int i = 0; i < NO_CMUS; i++)
maxv008 18:521ffdd724f3 476 for(int j = 0; j < 12; j++)
maxv008 18:521ffdd724f3 477 printf("Voltage number %d for CMU %d is %d \r\n", j, i, voltage_readings[i].voltages[j]);
maxv008 17:94dd9a0d3870 478
maxv008 18:521ffdd724f3 479 for(int i = 0; i < NO_TEMPERATURE_SENSORS; i++)
maxv008 23:a1af4439c1fc 480 printf("Temperature of Sensor with ID %d is %f \r\n", templist[i].ID, templist[i].measurement);
maxv008 23:a1af4439c1fc 481
maxv008 23:a1af4439c1fc 482 printf("SOC is %f and SOC Percentage is %f \r\n", packSOC, packSOCPercentage);
maxv008 23:a1af4439c1fc 483
maxv008 23:a1af4439c1fc 484 printf("Voltage (Max,Min) = (%d,%d) \r\n", maxVolt.voltage, minVolt.voltage);
maxv008 23:a1af4439c1fc 485
maxv008 28:f1f882bd1653 486 printf("(Temperature, ID): Minimum = (%d,%d). Maximum = (%d,%d) \r\n",
maxv008 23:a1af4439c1fc 487 minTemp.temperature,minTemp.ID,maxTemp.temperature,maxTemp.ID);
maxv008 23:a1af4439c1fc 488
maxv008 23:a1af4439c1fc 489 printf("Status value is: %d \r\n", status);
maxv008 14:e0e88a009f4c 490 }
maxv008 23:a1af4439c1fc 491
DasSidG 12:fa9b1a459e47 492 bool test_read_voltage_CAN(uint16_t readings[], int can_ids[])
maxv008 10:1079f8e52d65 493 {
maxv008 10:1079f8e52d65 494 CANMessage msg;
maxv008 10:1079f8e52d65 495 int can_id;
maxv008 10:1079f8e52d65 496 int offset;
maxv008 10:1079f8e52d65 497 int first_index;
maxv008 10:1079f8e52d65 498 int second_index;
maxv008 10:1079f8e52d65 499
maxv008 10:1079f8e52d65 500 if(can.read(msg))
maxv008 10:1079f8e52d65 501 {
maxv008 10:1079f8e52d65 502 for(int i =0; i < 4; i++)
maxv008 10:1079f8e52d65 503 {
maxv008 10:1079f8e52d65 504 readings[i] = (msg.data[2 * i]) + (msg.data[2*i+1] << 8); //Since data is 8 8bit ints not 4 16 bit ones
maxv008 10:1079f8e52d65 505 }
DasSidG 12:fa9b1a459e47 506 can_id = msg.id;
DasSidG 12:fa9b1a459e47 507 can_ids[0] = msg.id;
DasSidG 12:fa9b1a459e47 508
DasSidG 11:cf2db05cfa56 509 offset = can_id - 1536; //1536 = 0x600
maxv008 10:1079f8e52d65 510 first_index = (offset - 1)/4; //offset of 2,3,4 is CMU 1; 6,7,8, is CMU 2; etc.
DasSidG 11:cf2db05cfa56 511 second_index = ((offset - 1) % 4) - 1; //Makes it so 0,1,2 represent each voltage set //SID: subtracted 1 to make it work
DasSidG 12:fa9b1a459e47 512
DasSidG 12:fa9b1a459e47 513 return true;
maxv008 10:1079f8e52d65 514 }
maxv008 10:1079f8e52d65 515 else
DasSidG 12:fa9b1a459e47 516 return false;
maxv008 10:1079f8e52d65 517 }
maxv008 10:1079f8e52d65 518
maxv008 10:1079f8e52d65 519 void test_CAN_send()
maxv008 10:1079f8e52d65 520 {
maxv008 10:1079f8e52d65 521 CANMessage msg;
DasSidG 11:cf2db05cfa56 522 char value = 142;
maxv008 10:1079f8e52d65 523 msg = CANMessage(1, &value,1);
maxv008 10:1079f8e52d65 524 if(can.write(msg))
maxv008 10:1079f8e52d65 525 printf("Succesfully sent %d \r\n", value);
maxv008 10:1079f8e52d65 526 else
maxv008 10:1079f8e52d65 527 printf("Sending Failed \r\n");
maxv008 10:1079f8e52d65 528 }
maxv008 10:1079f8e52d65 529
maxv008 10:1079f8e52d65 530 void test_CAN_read()
maxv008 10:1079f8e52d65 531 {
maxv008 10:1079f8e52d65 532 CANMessage msg;
maxv008 10:1079f8e52d65 533 if(can.read(msg))
maxv008 10:1079f8e52d65 534 printf("Successfully recieved %d \r\n", msg.data[0]);
maxv008 10:1079f8e52d65 535 else
maxv008 10:1079f8e52d65 536 printf("Reading Failed \r\n");
maxv008 10:1079f8e52d65 537 }